-(function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;i<t.length;i++)o(t[i]);return o}return r})()({1:[function(require,module,exports){
-window["THREE"] = require("three");
-},{"three":2}],2:[function(require,module,exports){
-/**
- * @license
- * Copyright 2010-2021 Three.js Authors
- * SPDX-License-Identifier: MIT
- */
-(function (global, factory) {
- typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
- typeof define === 'function' && define.amd ? define(['exports'], factory) :
- (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.THREE = {}));
-}(this, (function (exports) { 'use strict';
-
- const REVISION = '132';
- const MOUSE = {
- LEFT: 0,
- MIDDLE: 1,
- RIGHT: 2,
- ROTATE: 0,
- DOLLY: 1,
- PAN: 2
- };
- const TOUCH = {
- ROTATE: 0,
- PAN: 1,
- DOLLY_PAN: 2,
- DOLLY_ROTATE: 3
- };
- const CullFaceNone = 0;
- const CullFaceBack = 1;
- const CullFaceFront = 2;
- const CullFaceFrontBack = 3;
- const BasicShadowMap = 0;
- const PCFShadowMap = 1;
- const PCFSoftShadowMap = 2;
- const VSMShadowMap = 3;
- const FrontSide = 0;
- const BackSide = 1;
- const DoubleSide = 2;
- const FlatShading = 1;
- const SmoothShading = 2;
- const NoBlending = 0;
- const NormalBlending = 1;
- const AdditiveBlending = 2;
- const SubtractiveBlending = 3;
- const MultiplyBlending = 4;
- const CustomBlending = 5;
- const AddEquation = 100;
- const SubtractEquation = 101;
- const ReverseSubtractEquation = 102;
- const MinEquation = 103;
- const MaxEquation = 104;
- const ZeroFactor = 200;
- const OneFactor = 201;
- const SrcColorFactor = 202;
- const OneMinusSrcColorFactor = 203;
- const SrcAlphaFactor = 204;
- const OneMinusSrcAlphaFactor = 205;
- const DstAlphaFactor = 206;
- const OneMinusDstAlphaFactor = 207;
- const DstColorFactor = 208;
- const OneMinusDstColorFactor = 209;
- const SrcAlphaSaturateFactor = 210;
- const NeverDepth = 0;
- const AlwaysDepth = 1;
- const LessDepth = 2;
- const LessEqualDepth = 3;
- const EqualDepth = 4;
- const GreaterEqualDepth = 5;
- const GreaterDepth = 6;
- const NotEqualDepth = 7;
- const MultiplyOperation = 0;
- const MixOperation = 1;
- const AddOperation = 2;
- const NoToneMapping = 0;
- const LinearToneMapping = 1;
- const ReinhardToneMapping = 2;
- const CineonToneMapping = 3;
- const ACESFilmicToneMapping = 4;
- const CustomToneMapping = 5;
- const UVMapping = 300;
- const CubeReflectionMapping = 301;
- const CubeRefractionMapping = 302;
- const EquirectangularReflectionMapping = 303;
- const EquirectangularRefractionMapping = 304;
- const CubeUVReflectionMapping = 306;
- const CubeUVRefractionMapping = 307;
- const RepeatWrapping = 1000;
- const ClampToEdgeWrapping = 1001;
- const MirroredRepeatWrapping = 1002;
- const NearestFilter = 1003;
- const NearestMipmapNearestFilter = 1004;
- const NearestMipMapNearestFilter = 1004;
- const NearestMipmapLinearFilter = 1005;
- const NearestMipMapLinearFilter = 1005;
- const LinearFilter = 1006;
- const LinearMipmapNearestFilter = 1007;
- const LinearMipMapNearestFilter = 1007;
- const LinearMipmapLinearFilter = 1008;
- const LinearMipMapLinearFilter = 1008;
- const UnsignedByteType = 1009;
- const ByteType = 1010;
- const ShortType = 1011;
- const UnsignedShortType = 1012;
- const IntType = 1013;
- const UnsignedIntType = 1014;
- const FloatType = 1015;
- const HalfFloatType = 1016;
- const UnsignedShort4444Type = 1017;
- const UnsignedShort5551Type = 1018;
- const UnsignedShort565Type = 1019;
- const UnsignedInt248Type = 1020;
- const AlphaFormat = 1021;
- const RGBFormat = 1022;
- const RGBAFormat = 1023;
- const LuminanceFormat = 1024;
- const LuminanceAlphaFormat = 1025;
- const RGBEFormat = RGBAFormat;
- const DepthFormat = 1026;
- const DepthStencilFormat = 1027;
- const RedFormat = 1028;
- const RedIntegerFormat = 1029;
- const RGFormat = 1030;
- const RGIntegerFormat = 1031;
- const RGBIntegerFormat = 1032;
- const RGBAIntegerFormat = 1033;
- const RGB_S3TC_DXT1_Format = 33776;
- const RGBA_S3TC_DXT1_Format = 33777;
- const RGBA_S3TC_DXT3_Format = 33778;
- const RGBA_S3TC_DXT5_Format = 33779;
- const RGB_PVRTC_4BPPV1_Format = 35840;
- const RGB_PVRTC_2BPPV1_Format = 35841;
- const RGBA_PVRTC_4BPPV1_Format = 35842;
- const RGBA_PVRTC_2BPPV1_Format = 35843;
- const RGB_ETC1_Format = 36196;
- const RGB_ETC2_Format = 37492;
- const RGBA_ETC2_EAC_Format = 37496;
- const RGBA_ASTC_4x4_Format = 37808;
- const RGBA_ASTC_5x4_Format = 37809;
- const RGBA_ASTC_5x5_Format = 37810;
- const RGBA_ASTC_6x5_Format = 37811;
- const RGBA_ASTC_6x6_Format = 37812;
- const RGBA_ASTC_8x5_Format = 37813;
- const RGBA_ASTC_8x6_Format = 37814;
- const RGBA_ASTC_8x8_Format = 37815;
- const RGBA_ASTC_10x5_Format = 37816;
- const RGBA_ASTC_10x6_Format = 37817;
- const RGBA_ASTC_10x8_Format = 37818;
- const RGBA_ASTC_10x10_Format = 37819;
- const RGBA_ASTC_12x10_Format = 37820;
- const RGBA_ASTC_12x12_Format = 37821;
- const RGBA_BPTC_Format = 36492;
- const SRGB8_ALPHA8_ASTC_4x4_Format = 37840;
- const SRGB8_ALPHA8_ASTC_5x4_Format = 37841;
- const SRGB8_ALPHA8_ASTC_5x5_Format = 37842;
- const SRGB8_ALPHA8_ASTC_6x5_Format = 37843;
- const SRGB8_ALPHA8_ASTC_6x6_Format = 37844;
- const SRGB8_ALPHA8_ASTC_8x5_Format = 37845;
- const SRGB8_ALPHA8_ASTC_8x6_Format = 37846;
- const SRGB8_ALPHA8_ASTC_8x8_Format = 37847;
- const SRGB8_ALPHA8_ASTC_10x5_Format = 37848;
- const SRGB8_ALPHA8_ASTC_10x6_Format = 37849;
- const SRGB8_ALPHA8_ASTC_10x8_Format = 37850;
- const SRGB8_ALPHA8_ASTC_10x10_Format = 37851;
- const SRGB8_ALPHA8_ASTC_12x10_Format = 37852;
- const SRGB8_ALPHA8_ASTC_12x12_Format = 37853;
- const LoopOnce = 2200;
- const LoopRepeat = 2201;
- const LoopPingPong = 2202;
- const InterpolateDiscrete = 2300;
- const InterpolateLinear = 2301;
- const InterpolateSmooth = 2302;
- const ZeroCurvatureEnding = 2400;
- const ZeroSlopeEnding = 2401;
- const WrapAroundEnding = 2402;
- const NormalAnimationBlendMode = 2500;
- const AdditiveAnimationBlendMode = 2501;
- const TrianglesDrawMode = 0;
- const TriangleStripDrawMode = 1;
- const TriangleFanDrawMode = 2;
- const LinearEncoding = 3000;
- const sRGBEncoding = 3001;
- const GammaEncoding = 3007;
- const RGBEEncoding = 3002;
- const LogLuvEncoding = 3003;
- const RGBM7Encoding = 3004;
- const RGBM16Encoding = 3005;
- const RGBDEncoding = 3006;
- const BasicDepthPacking = 3200;
- const RGBADepthPacking = 3201;
- const TangentSpaceNormalMap = 0;
- const ObjectSpaceNormalMap = 1;
- const ZeroStencilOp = 0;
- const KeepStencilOp = 7680;
- const ReplaceStencilOp = 7681;
- const IncrementStencilOp = 7682;
- const DecrementStencilOp = 7683;
- const IncrementWrapStencilOp = 34055;
- const DecrementWrapStencilOp = 34056;
- const InvertStencilOp = 5386;
- const NeverStencilFunc = 512;
- const LessStencilFunc = 513;
- const EqualStencilFunc = 514;
- const LessEqualStencilFunc = 515;
- const GreaterStencilFunc = 516;
- const NotEqualStencilFunc = 517;
- const GreaterEqualStencilFunc = 518;
- const AlwaysStencilFunc = 519;
- const StaticDrawUsage = 35044;
- const DynamicDrawUsage = 35048;
- const StreamDrawUsage = 35040;
- const StaticReadUsage = 35045;
- const DynamicReadUsage = 35049;
- const StreamReadUsage = 35041;
- const StaticCopyUsage = 35046;
- const DynamicCopyUsage = 35050;
- const StreamCopyUsage = 35042;
- const GLSL1 = '100';
- const GLSL3 = '300 es';
-
- /**
- * https://github.com/mrdoob/eventdispatcher.js/
- */
- class EventDispatcher {
- addEventListener(type, listener) {
- if (this._listeners === undefined) this._listeners = {};
- const listeners = this._listeners;
-
- if (listeners[type] === undefined) {
- listeners[type] = [];
- }
-
- if (listeners[type].indexOf(listener) === -1) {
- listeners[type].push(listener);
- }
- }
+(function () {
+ function r(e, n, t) {
+ function o(i, f) {
+ if (!n[i]) {
+ if (!e[i]) {
+ var c = "function" == typeof require && require;
+ if (!f && c) return c(i, !0);
+ if (u) return u(i, !0);
+ var a = new Error("Cannot find module '" + i + "'");
+ throw a.code = "MODULE_NOT_FOUND", a
+ }
+ var p = n[i] = {exports: {}};
+ e[i][0].call(p.exports, function (r) {
+ var n = e[i][1][r];
+ return o(n || r)
+ }, p, p.exports, r, e, n, t)
+ }
+ return n[i].exports
+ }
+
+ for (var u = "function" == typeof require && require, i = 0; i < t.length; i++) o(t[i]);
+ return o
+ }
+
+ return r
+})()({
+ 1: [function (require, module, exports) {
+ window["THREE"] = require("three");
+ }, {"three": 2}], 2: [function (require, module, exports) {
+ /**
+ * @license
+ * Copyright 2010-2021 Three.js Authors
+ * SPDX-License-Identifier: MIT
+ */
+ (function (global, factory) {
+ typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
+ typeof define === 'function' && define.amd ? define(['exports'], factory) :
+ (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.THREE = {}));
+ }(this, (function (exports) {
+ 'use strict';
+
+ const REVISION = '132';
+ const MOUSE = {
+ LEFT: 0,
+ MIDDLE: 1,
+ RIGHT: 2,
+ ROTATE: 0,
+ DOLLY: 1,
+ PAN: 2
+ };
+ const TOUCH = {
+ ROTATE: 0,
+ PAN: 1,
+ DOLLY_PAN: 2,
+ DOLLY_ROTATE: 3
+ };
+ const CullFaceNone = 0;
+ const CullFaceBack = 1;
+ const CullFaceFront = 2;
+ const CullFaceFrontBack = 3;
+ const BasicShadowMap = 0;
+ const PCFShadowMap = 1;
+ const PCFSoftShadowMap = 2;
+ const VSMShadowMap = 3;
+ const FrontSide = 0;
+ const BackSide = 1;
+ const DoubleSide = 2;
+ const FlatShading = 1;
+ const SmoothShading = 2;
+ const NoBlending = 0;
+ const NormalBlending = 1;
+ const AdditiveBlending = 2;
+ const SubtractiveBlending = 3;
+ const MultiplyBlending = 4;
+ const CustomBlending = 5;
+ const AddEquation = 100;
+ const SubtractEquation = 101;
+ const ReverseSubtractEquation = 102;
+ const MinEquation = 103;
+ const MaxEquation = 104;
+ const ZeroFactor = 200;
+ const OneFactor = 201;
+ const SrcColorFactor = 202;
+ const OneMinusSrcColorFactor = 203;
+ const SrcAlphaFactor = 204;
+ const OneMinusSrcAlphaFactor = 205;
+ const DstAlphaFactor = 206;
+ const OneMinusDstAlphaFactor = 207;
+ const DstColorFactor = 208;
+ const OneMinusDstColorFactor = 209;
+ const SrcAlphaSaturateFactor = 210;
+ const NeverDepth = 0;
+ const AlwaysDepth = 1;
+ const LessDepth = 2;
+ const LessEqualDepth = 3;
+ const EqualDepth = 4;
+ const GreaterEqualDepth = 5;
+ const GreaterDepth = 6;
+ const NotEqualDepth = 7;
+ const MultiplyOperation = 0;
+ const MixOperation = 1;
+ const AddOperation = 2;
+ const NoToneMapping = 0;
+ const LinearToneMapping = 1;
+ const ReinhardToneMapping = 2;
+ const CineonToneMapping = 3;
+ const ACESFilmicToneMapping = 4;
+ const CustomToneMapping = 5;
+ const UVMapping = 300;
+ const CubeReflectionMapping = 301;
+ const CubeRefractionMapping = 302;
+ const EquirectangularReflectionMapping = 303;
+ const EquirectangularRefractionMapping = 304;
+ const CubeUVReflectionMapping = 306;
+ const CubeUVRefractionMapping = 307;
+ const RepeatWrapping = 1000;
+ const ClampToEdgeWrapping = 1001;
+ const MirroredRepeatWrapping = 1002;
+ const NearestFilter = 1003;
+ const NearestMipmapNearestFilter = 1004;
+ const NearestMipMapNearestFilter = 1004;
+ const NearestMipmapLinearFilter = 1005;
+ const NearestMipMapLinearFilter = 1005;
+ const LinearFilter = 1006;
+ const LinearMipmapNearestFilter = 1007;
+ const LinearMipMapNearestFilter = 1007;
+ const LinearMipmapLinearFilter = 1008;
+ const LinearMipMapLinearFilter = 1008;
+ const UnsignedByteType = 1009;
+ const ByteType = 1010;
+ const ShortType = 1011;
+ const UnsignedShortType = 1012;
+ const IntType = 1013;
+ const UnsignedIntType = 1014;
+ const FloatType = 1015;
+ const HalfFloatType = 1016;
+ const UnsignedShort4444Type = 1017;
+ const UnsignedShort5551Type = 1018;
+ const UnsignedShort565Type = 1019;
+ const UnsignedInt248Type = 1020;
+ const AlphaFormat = 1021;
+ const RGBFormat = 1022;
+ const RGBAFormat = 1023;
+ const LuminanceFormat = 1024;
+ const LuminanceAlphaFormat = 1025;
+ const RGBEFormat = RGBAFormat;
+ const DepthFormat = 1026;
+ const DepthStencilFormat = 1027;
+ const RedFormat = 1028;
+ const RedIntegerFormat = 1029;
+ const RGFormat = 1030;
+ const RGIntegerFormat = 1031;
+ const RGBIntegerFormat = 1032;
+ const RGBAIntegerFormat = 1033;
+ const RGB_S3TC_DXT1_Format = 33776;
+ const RGBA_S3TC_DXT1_Format = 33777;
+ const RGBA_S3TC_DXT3_Format = 33778;
+ const RGBA_S3TC_DXT5_Format = 33779;
+ const RGB_PVRTC_4BPPV1_Format = 35840;
+ const RGB_PVRTC_2BPPV1_Format = 35841;
+ const RGBA_PVRTC_4BPPV1_Format = 35842;
+ const RGBA_PVRTC_2BPPV1_Format = 35843;
+ const RGB_ETC1_Format = 36196;
+ const RGB_ETC2_Format = 37492;
+ const RGBA_ETC2_EAC_Format = 37496;
+ const RGBA_ASTC_4x4_Format = 37808;
+ const RGBA_ASTC_5x4_Format = 37809;
+ const RGBA_ASTC_5x5_Format = 37810;
+ const RGBA_ASTC_6x5_Format = 37811;
+ const RGBA_ASTC_6x6_Format = 37812;
+ const RGBA_ASTC_8x5_Format = 37813;
+ const RGBA_ASTC_8x6_Format = 37814;
+ const RGBA_ASTC_8x8_Format = 37815;
+ const RGBA_ASTC_10x5_Format = 37816;
+ const RGBA_ASTC_10x6_Format = 37817;
+ const RGBA_ASTC_10x8_Format = 37818;
+ const RGBA_ASTC_10x10_Format = 37819;
+ const RGBA_ASTC_12x10_Format = 37820;
+ const RGBA_ASTC_12x12_Format = 37821;
+ const RGBA_BPTC_Format = 36492;
+ const SRGB8_ALPHA8_ASTC_4x4_Format = 37840;
+ const SRGB8_ALPHA8_ASTC_5x4_Format = 37841;
+ const SRGB8_ALPHA8_ASTC_5x5_Format = 37842;
+ const SRGB8_ALPHA8_ASTC_6x5_Format = 37843;
+ const SRGB8_ALPHA8_ASTC_6x6_Format = 37844;
+ const SRGB8_ALPHA8_ASTC_8x5_Format = 37845;
+ const SRGB8_ALPHA8_ASTC_8x6_Format = 37846;
+ const SRGB8_ALPHA8_ASTC_8x8_Format = 37847;
+ const SRGB8_ALPHA8_ASTC_10x5_Format = 37848;
+ const SRGB8_ALPHA8_ASTC_10x6_Format = 37849;
+ const SRGB8_ALPHA8_ASTC_10x8_Format = 37850;
+ const SRGB8_ALPHA8_ASTC_10x10_Format = 37851;
+ const SRGB8_ALPHA8_ASTC_12x10_Format = 37852;
+ const SRGB8_ALPHA8_ASTC_12x12_Format = 37853;
+ const LoopOnce = 2200;
+ const LoopRepeat = 2201;
+ const LoopPingPong = 2202;
+ const InterpolateDiscrete = 2300;
+ const InterpolateLinear = 2301;
+ const InterpolateSmooth = 2302;
+ const ZeroCurvatureEnding = 2400;
+ const ZeroSlopeEnding = 2401;
+ const WrapAroundEnding = 2402;
+ const NormalAnimationBlendMode = 2500;
+ const AdditiveAnimationBlendMode = 2501;
+ const TrianglesDrawMode = 0;
+ const TriangleStripDrawMode = 1;
+ const TriangleFanDrawMode = 2;
+ const LinearEncoding = 3000;
+ const sRGBEncoding = 3001;
+ const GammaEncoding = 3007;
+ const RGBEEncoding = 3002;
+ const LogLuvEncoding = 3003;
+ const RGBM7Encoding = 3004;
+ const RGBM16Encoding = 3005;
+ const RGBDEncoding = 3006;
+ const BasicDepthPacking = 3200;
+ const RGBADepthPacking = 3201;
+ const TangentSpaceNormalMap = 0;
+ const ObjectSpaceNormalMap = 1;
+ const ZeroStencilOp = 0;
+ const KeepStencilOp = 7680;
+ const ReplaceStencilOp = 7681;
+ const IncrementStencilOp = 7682;
+ const DecrementStencilOp = 7683;
+ const IncrementWrapStencilOp = 34055;
+ const DecrementWrapStencilOp = 34056;
+ const InvertStencilOp = 5386;
+ const NeverStencilFunc = 512;
+ const LessStencilFunc = 513;
+ const EqualStencilFunc = 514;
+ const LessEqualStencilFunc = 515;
+ const GreaterStencilFunc = 516;
+ const NotEqualStencilFunc = 517;
+ const GreaterEqualStencilFunc = 518;
+ const AlwaysStencilFunc = 519;
+ const StaticDrawUsage = 35044;
+ const DynamicDrawUsage = 35048;
+ const StreamDrawUsage = 35040;
+ const StaticReadUsage = 35045;
+ const DynamicReadUsage = 35049;
+ const StreamReadUsage = 35041;
+ const StaticCopyUsage = 35046;
+ const DynamicCopyUsage = 35050;
+ const StreamCopyUsage = 35042;
+ const GLSL1 = '100';
+ const GLSL3 = '300 es';
- hasEventListener(type, listener) {
- if (this._listeners === undefined) return false;
- const listeners = this._listeners;
- return listeners[type] !== undefined && listeners[type].indexOf(listener) !== -1;
- }
+ /**
+ * https://github.com/mrdoob/eventdispatcher.js/
+ */
+ class EventDispatcher {
+ addEventListener(type, listener) {
+ if (this._listeners === undefined) this._listeners = {};
+ const listeners = this._listeners;
- removeEventListener(type, listener) {
- if (this._listeners === undefined) return;
- const listeners = this._listeners;
- const listenerArray = listeners[type];
+ if (listeners[type] === undefined) {
+ listeners[type] = [];
+ }
- if (listenerArray !== undefined) {
- const index = listenerArray.indexOf(listener);
+ if (listeners[type].indexOf(listener) === -1) {
+ listeners[type].push(listener);
+ }
+ }
- if (index !== -1) {
- listenerArray.splice(index, 1);
+ hasEventListener(type, listener) {
+ if (this._listeners === undefined) return false;
+ const listeners = this._listeners;
+ return listeners[type] !== undefined && listeners[type].indexOf(listener) !== -1;
}
- }
- }
- dispatchEvent(event) {
- if (this._listeners === undefined) return;
- const listeners = this._listeners;
- const listenerArray = listeners[event.type];
+ removeEventListener(type, listener) {
+ if (this._listeners === undefined) return;
+ const listeners = this._listeners;
+ const listenerArray = listeners[type];
+
+ if (listenerArray !== undefined) {
+ const index = listenerArray.indexOf(listener);
+
+ if (index !== -1) {
+ listenerArray.splice(index, 1);
+ }
+ }
+ }
+
+ dispatchEvent(event) {
+ if (this._listeners === undefined) return;
+ const listeners = this._listeners;
+ const listenerArray = listeners[event.type];
- if (listenerArray !== undefined) {
- event.target = this; // Make a copy, in case listeners are removed while iterating.
+ if (listenerArray !== undefined) {
+ event.target = this; // Make a copy, in case listeners are removed while iterating.
- const array = listenerArray.slice(0);
+ const array = listenerArray.slice(0);
- for (let i = 0, l = array.length; i < l; i++) {
- array[i].call(this, event);
+ for (let i = 0, l = array.length; i < l; i++) {
+ array[i].call(this, event);
+ }
+
+ event.target = null;
+ }
}
- event.target = null;
}
- }
- }
-
- const _lut = [];
+ const _lut = [];
- for (let i = 0; i < 256; i++) {
- _lut[i] = (i < 16 ? '0' : '') + i.toString(16);
- }
+ for (let i = 0; i < 256; i++) {
+ _lut[i] = (i < 16 ? '0' : '') + i.toString(16);
+ }
- let _seed = 1234567;
- const DEG2RAD = Math.PI / 180;
- const RAD2DEG = 180 / Math.PI; // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136
+ let _seed = 1234567;
+ const DEG2RAD = Math.PI / 180;
+ const RAD2DEG = 180 / Math.PI; // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136
- function generateUUID() {
- const d0 = Math.random() * 0xffffffff | 0;
- const d1 = Math.random() * 0xffffffff | 0;
- const d2 = Math.random() * 0xffffffff | 0;
- const d3 = Math.random() * 0xffffffff | 0;
- const uuid = _lut[d0 & 0xff] + _lut[d0 >> 8 & 0xff] + _lut[d0 >> 16 & 0xff] + _lut[d0 >> 24 & 0xff] + '-' + _lut[d1 & 0xff] + _lut[d1 >> 8 & 0xff] + '-' + _lut[d1 >> 16 & 0x0f | 0x40] + _lut[d1 >> 24 & 0xff] + '-' + _lut[d2 & 0x3f | 0x80] + _lut[d2 >> 8 & 0xff] + '-' + _lut[d2 >> 16 & 0xff] + _lut[d2 >> 24 & 0xff] + _lut[d3 & 0xff] + _lut[d3 >> 8 & 0xff] + _lut[d3 >> 16 & 0xff] + _lut[d3 >> 24 & 0xff]; // .toUpperCase() here flattens concatenated strings to save heap memory space.
+ function generateUUID() {
+ const d0 = Math.random() * 0xffffffff | 0;
+ const d1 = Math.random() * 0xffffffff | 0;
+ const d2 = Math.random() * 0xffffffff | 0;
+ const d3 = Math.random() * 0xffffffff | 0;
+ const uuid = _lut[d0 & 0xff] + _lut[d0 >> 8 & 0xff] + _lut[d0 >> 16 & 0xff] + _lut[d0 >> 24 & 0xff] + '-' + _lut[d1 & 0xff] + _lut[d1 >> 8 & 0xff] + '-' + _lut[d1 >> 16 & 0x0f | 0x40] + _lut[d1 >> 24 & 0xff] + '-' + _lut[d2 & 0x3f | 0x80] + _lut[d2 >> 8 & 0xff] + '-' + _lut[d2 >> 16 & 0xff] + _lut[d2 >> 24 & 0xff] + _lut[d3 & 0xff] + _lut[d3 >> 8 & 0xff] + _lut[d3 >> 16 & 0xff] + _lut[d3 >> 24 & 0xff]; // .toUpperCase() here flattens concatenated strings to save heap memory space.
- return uuid.toUpperCase();
- }
+ return uuid.toUpperCase();
+ }
- function clamp(value, min, max) {
- return Math.max(min, Math.min(max, value));
- } // compute euclidian modulo of m % n
- // https://en.wikipedia.org/wiki/Modulo_operation
+ function clamp(value, min, max) {
+ return Math.max(min, Math.min(max, value));
+ } // compute euclidian modulo of m % n
+ // https://en.wikipedia.org/wiki/Modulo_operation
- function euclideanModulo(n, m) {
- return (n % m + m) % m;
- } // Linear mapping from range <a1, a2> to range <b1, b2>
+ function euclideanModulo(n, m) {
+ return (n % m + m) % m;
+ } // Linear mapping from range <a1, a2> to range <b1, b2>
- function mapLinear(x, a1, a2, b1, b2) {
- return b1 + (x - a1) * (b2 - b1) / (a2 - a1);
- } // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/
+ function mapLinear(x, a1, a2, b1, b2) {
+ return b1 + (x - a1) * (b2 - b1) / (a2 - a1);
+ } // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/
- function inverseLerp(x, y, value) {
- if (x !== y) {
- return (value - x) / (y - x);
- } else {
- return 0;
- }
- } // https://en.wikipedia.org/wiki/Linear_interpolation
+ function inverseLerp(x, y, value) {
+ if (x !== y) {
+ return (value - x) / (y - x);
+ } else {
+ return 0;
+ }
+ } // https://en.wikipedia.org/wiki/Linear_interpolation
- function lerp(x, y, t) {
- return (1 - t) * x + t * y;
- } // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/
+ function lerp(x, y, t) {
+ return (1 - t) * x + t * y;
+ } // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/
- function damp(x, y, lambda, dt) {
- return lerp(x, y, 1 - Math.exp(-lambda * dt));
- } // https://www.desmos.com/calculator/vcsjnyz7x4
+ function damp(x, y, lambda, dt) {
+ return lerp(x, y, 1 - Math.exp(-lambda * dt));
+ } // https://www.desmos.com/calculator/vcsjnyz7x4
- function pingpong(x, length = 1) {
- return length - Math.abs(euclideanModulo(x, length * 2) - length);
- } // http://en.wikipedia.org/wiki/Smoothstep
+ function pingpong(x, length = 1) {
+ return length - Math.abs(euclideanModulo(x, length * 2) - length);
+ } // http://en.wikipedia.org/wiki/Smoothstep
- function smoothstep(x, min, max) {
- if (x <= min) return 0;
- if (x >= max) return 1;
- x = (x - min) / (max - min);
- return x * x * (3 - 2 * x);
- }
+ function smoothstep(x, min, max) {
+ if (x <= min) return 0;
+ if (x >= max) return 1;
+ x = (x - min) / (max - min);
+ return x * x * (3 - 2 * x);
+ }
- function smootherstep(x, min, max) {
- if (x <= min) return 0;
- if (x >= max) return 1;
- x = (x - min) / (max - min);
- return x * x * x * (x * (x * 6 - 15) + 10);
- } // Random integer from <low, high> interval
+ function smootherstep(x, min, max) {
+ if (x <= min) return 0;
+ if (x >= max) return 1;
+ x = (x - min) / (max - min);
+ return x * x * x * (x * (x * 6 - 15) + 10);
+ } // Random integer from <low, high> interval
- function randInt(low, high) {
- return low + Math.floor(Math.random() * (high - low + 1));
- } // Random float from <low, high> interval
+ function randInt(low, high) {
+ return low + Math.floor(Math.random() * (high - low + 1));
+ } // Random float from <low, high> interval
- function randFloat(low, high) {
- return low + Math.random() * (high - low);
- } // Random float from <-range/2, range/2> interval
+ function randFloat(low, high) {
+ return low + Math.random() * (high - low);
+ } // Random float from <-range/2, range/2> interval
- function randFloatSpread(range) {
- return range * (0.5 - Math.random());
- } // Deterministic pseudo-random float in the interval [ 0, 1 ]
+ function randFloatSpread(range) {
+ return range * (0.5 - Math.random());
+ } // Deterministic pseudo-random float in the interval [ 0, 1 ]
- function seededRandom(s) {
- if (s !== undefined) _seed = s % 2147483647; // Park-Miller algorithm
+ function seededRandom(s) {
+ if (s !== undefined) _seed = s % 2147483647; // Park-Miller algorithm
- _seed = _seed * 16807 % 2147483647;
- return (_seed - 1) / 2147483646;
- }
+ _seed = _seed * 16807 % 2147483647;
+ return (_seed - 1) / 2147483646;
+ }
- function degToRad(degrees) {
- return degrees * DEG2RAD;
- }
+ function degToRad(degrees) {
+ return degrees * DEG2RAD;
+ }
- function radToDeg(radians) {
- return radians * RAD2DEG;
- }
+ function radToDeg(radians) {
+ return radians * RAD2DEG;
+ }
- function isPowerOfTwo(value) {
- return (value & value - 1) === 0 && value !== 0;
- }
+ function isPowerOfTwo(value) {
+ return (value & value - 1) === 0 && value !== 0;
+ }
- function ceilPowerOfTwo(value) {
- return Math.pow(2, Math.ceil(Math.log(value) / Math.LN2));
- }
+ function ceilPowerOfTwo(value) {
+ return Math.pow(2, Math.ceil(Math.log(value) / Math.LN2));
+ }
- function floorPowerOfTwo(value) {
- return Math.pow(2, Math.floor(Math.log(value) / Math.LN2));
- }
+ function floorPowerOfTwo(value) {
+ return Math.pow(2, Math.floor(Math.log(value) / Math.LN2));
+ }
- function setQuaternionFromProperEuler(q, a, b, c, order) {
- // Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles
- // rotations are applied to the axes in the order specified by 'order'
- // rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c'
- // angles are in radians
- const cos = Math.cos;
- const sin = Math.sin;
- const c2 = cos(b / 2);
- const s2 = sin(b / 2);
- const c13 = cos((a + c) / 2);
- const s13 = sin((a + c) / 2);
- const c1_3 = cos((a - c) / 2);
- const s1_3 = sin((a - c) / 2);
- const c3_1 = cos((c - a) / 2);
- const s3_1 = sin((c - a) / 2);
-
- switch (order) {
- case 'XYX':
- q.set(c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13);
- break;
-
- case 'YZY':
- q.set(s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13);
- break;
-
- case 'ZXZ':
- q.set(s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13);
- break;
-
- case 'XZX':
- q.set(c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13);
- break;
-
- case 'YXY':
- q.set(s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13);
- break;
-
- case 'ZYZ':
- q.set(s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13);
- break;
-
- default:
- console.warn('THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order);
- }
- }
+ function setQuaternionFromProperEuler(q, a, b, c, order) {
+ // Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles
+ // rotations are applied to the axes in the order specified by 'order'
+ // rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c'
+ // angles are in radians
+ const cos = Math.cos;
+ const sin = Math.sin;
+ const c2 = cos(b / 2);
+ const s2 = sin(b / 2);
+ const c13 = cos((a + c) / 2);
+ const s13 = sin((a + c) / 2);
+ const c1_3 = cos((a - c) / 2);
+ const s1_3 = sin((a - c) / 2);
+ const c3_1 = cos((c - a) / 2);
+ const s3_1 = sin((c - a) / 2);
- var MathUtils = /*#__PURE__*/Object.freeze({
- __proto__: null,
- DEG2RAD: DEG2RAD,
- RAD2DEG: RAD2DEG,
- generateUUID: generateUUID,
- clamp: clamp,
- euclideanModulo: euclideanModulo,
- mapLinear: mapLinear,
- inverseLerp: inverseLerp,
- lerp: lerp,
- damp: damp,
- pingpong: pingpong,
- smoothstep: smoothstep,
- smootherstep: smootherstep,
- randInt: randInt,
- randFloat: randFloat,
- randFloatSpread: randFloatSpread,
- seededRandom: seededRandom,
- degToRad: degToRad,
- radToDeg: radToDeg,
- isPowerOfTwo: isPowerOfTwo,
- ceilPowerOfTwo: ceilPowerOfTwo,
- floorPowerOfTwo: floorPowerOfTwo,
- setQuaternionFromProperEuler: setQuaternionFromProperEuler
- });
-
- class Vector2 {
- constructor(x = 0, y = 0) {
- this.x = x;
- this.y = y;
- }
+ switch (order) {
+ case 'XYX':
+ q.set(c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13);
+ break;
- get width() {
- return this.x;
- }
+ case 'YZY':
+ q.set(s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13);
+ break;
- set width(value) {
- this.x = value;
- }
+ case 'ZXZ':
+ q.set(s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13);
+ break;
- get height() {
- return this.y;
- }
+ case 'XZX':
+ q.set(c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13);
+ break;
- set height(value) {
- this.y = value;
- }
+ case 'YXY':
+ q.set(s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13);
+ break;
- set(x, y) {
- this.x = x;
- this.y = y;
- return this;
- }
+ case 'ZYZ':
+ q.set(s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13);
+ break;
- setScalar(scalar) {
- this.x = scalar;
- this.y = scalar;
- return this;
- }
+ default:
+ console.warn('THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order);
+ }
+ }
+
+ var MathUtils = /*#__PURE__*/Object.freeze({
+ __proto__: null,
+ DEG2RAD: DEG2RAD,
+ RAD2DEG: RAD2DEG,
+ generateUUID: generateUUID,
+ clamp: clamp,
+ euclideanModulo: euclideanModulo,
+ mapLinear: mapLinear,
+ inverseLerp: inverseLerp,
+ lerp: lerp,
+ damp: damp,
+ pingpong: pingpong,
+ smoothstep: smoothstep,
+ smootherstep: smootherstep,
+ randInt: randInt,
+ randFloat: randFloat,
+ randFloatSpread: randFloatSpread,
+ seededRandom: seededRandom,
+ degToRad: degToRad,
+ radToDeg: radToDeg,
+ isPowerOfTwo: isPowerOfTwo,
+ ceilPowerOfTwo: ceilPowerOfTwo,
+ floorPowerOfTwo: floorPowerOfTwo,
+ setQuaternionFromProperEuler: setQuaternionFromProperEuler
+ });
- setX(x) {
- this.x = x;
- return this;
- }
+ class Vector2 {
+ constructor(x = 0, y = 0) {
+ this.x = x;
+ this.y = y;
+ }
- setY(y) {
- this.y = y;
- return this;
- }
+ get width() {
+ return this.x;
+ }
- setComponent(index, value) {
- switch (index) {
- case 0:
+ set width(value) {
this.x = value;
- break;
+ }
+
+ get height() {
+ return this.y;
+ }
- case 1:
+ set height(value) {
this.y = value;
- break;
+ }
- default:
- throw new Error('index is out of range: ' + index);
- }
+ set(x, y) {
+ this.x = x;
+ this.y = y;
+ return this;
+ }
- return this;
- }
+ setScalar(scalar) {
+ this.x = scalar;
+ this.y = scalar;
+ return this;
+ }
- getComponent(index) {
- switch (index) {
- case 0:
- return this.x;
+ setX(x) {
+ this.x = x;
+ return this;
+ }
- case 1:
- return this.y;
+ setY(y) {
+ this.y = y;
+ return this;
+ }
- default:
- throw new Error('index is out of range: ' + index);
- }
- }
+ setComponent(index, value) {
+ switch (index) {
+ case 0:
+ this.x = value;
+ break;
- clone() {
- return new this.constructor(this.x, this.y);
- }
+ case 1:
+ this.y = value;
+ break;
- copy(v) {
- this.x = v.x;
- this.y = v.y;
- return this;
- }
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
- add(v, w) {
- if (w !== undefined) {
- console.warn('THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
- return this.addVectors(v, w);
- }
+ return this;
+ }
- this.x += v.x;
- this.y += v.y;
- return this;
- }
+ getComponent(index) {
+ switch (index) {
+ case 0:
+ return this.x;
- addScalar(s) {
- this.x += s;
- this.y += s;
- return this;
- }
+ case 1:
+ return this.y;
- addVectors(a, b) {
- this.x = a.x + b.x;
- this.y = a.y + b.y;
- return this;
- }
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
+ }
- addScaledVector(v, s) {
- this.x += v.x * s;
- this.y += v.y * s;
- return this;
- }
+ clone() {
+ return new this.constructor(this.x, this.y);
+ }
- sub(v, w) {
- if (w !== undefined) {
- console.warn('THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
- return this.subVectors(v, w);
- }
+ copy(v) {
+ this.x = v.x;
+ this.y = v.y;
+ return this;
+ }
- this.x -= v.x;
- this.y -= v.y;
- return this;
- }
+ add(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
+ return this.addVectors(v, w);
+ }
- subScalar(s) {
- this.x -= s;
- this.y -= s;
- return this;
- }
+ this.x += v.x;
+ this.y += v.y;
+ return this;
+ }
- subVectors(a, b) {
- this.x = a.x - b.x;
- this.y = a.y - b.y;
- return this;
- }
+ addScalar(s) {
+ this.x += s;
+ this.y += s;
+ return this;
+ }
- multiply(v) {
- this.x *= v.x;
- this.y *= v.y;
- return this;
- }
+ addVectors(a, b) {
+ this.x = a.x + b.x;
+ this.y = a.y + b.y;
+ return this;
+ }
- multiplyScalar(scalar) {
- this.x *= scalar;
- this.y *= scalar;
- return this;
- }
+ addScaledVector(v, s) {
+ this.x += v.x * s;
+ this.y += v.y * s;
+ return this;
+ }
- divide(v) {
- this.x /= v.x;
- this.y /= v.y;
- return this;
- }
+ sub(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
+ return this.subVectors(v, w);
+ }
- divideScalar(scalar) {
- return this.multiplyScalar(1 / scalar);
- }
+ this.x -= v.x;
+ this.y -= v.y;
+ return this;
+ }
- applyMatrix3(m) {
- const x = this.x,
+ subScalar(s) {
+ this.x -= s;
+ this.y -= s;
+ return this;
+ }
+
+ subVectors(a, b) {
+ this.x = a.x - b.x;
+ this.y = a.y - b.y;
+ return this;
+ }
+
+ multiply(v) {
+ this.x *= v.x;
+ this.y *= v.y;
+ return this;
+ }
+
+ multiplyScalar(scalar) {
+ this.x *= scalar;
+ this.y *= scalar;
+ return this;
+ }
+
+ divide(v) {
+ this.x /= v.x;
+ this.y /= v.y;
+ return this;
+ }
+
+ divideScalar(scalar) {
+ return this.multiplyScalar(1 / scalar);
+ }
+
+ applyMatrix3(m) {
+ const x = this.x,
y = this.y;
- const e = m.elements;
- this.x = e[0] * x + e[3] * y + e[6];
- this.y = e[1] * x + e[4] * y + e[7];
- return this;
- }
+ const e = m.elements;
+ this.x = e[0] * x + e[3] * y + e[6];
+ this.y = e[1] * x + e[4] * y + e[7];
+ return this;
+ }
- min(v) {
- this.x = Math.min(this.x, v.x);
- this.y = Math.min(this.y, v.y);
- return this;
- }
+ min(v) {
+ this.x = Math.min(this.x, v.x);
+ this.y = Math.min(this.y, v.y);
+ return this;
+ }
- max(v) {
- this.x = Math.max(this.x, v.x);
- this.y = Math.max(this.y, v.y);
- return this;
- }
+ max(v) {
+ this.x = Math.max(this.x, v.x);
+ this.y = Math.max(this.y, v.y);
+ return this;
+ }
- clamp(min, max) {
- // assumes min < max, componentwise
- this.x = Math.max(min.x, Math.min(max.x, this.x));
- this.y = Math.max(min.y, Math.min(max.y, this.y));
- return this;
- }
+ clamp(min, max) {
+ // assumes min < max, componentwise
+ this.x = Math.max(min.x, Math.min(max.x, this.x));
+ this.y = Math.max(min.y, Math.min(max.y, this.y));
+ return this;
+ }
- clampScalar(minVal, maxVal) {
- this.x = Math.max(minVal, Math.min(maxVal, this.x));
- this.y = Math.max(minVal, Math.min(maxVal, this.y));
- return this;
- }
+ clampScalar(minVal, maxVal) {
+ this.x = Math.max(minVal, Math.min(maxVal, this.x));
+ this.y = Math.max(minVal, Math.min(maxVal, this.y));
+ return this;
+ }
- clampLength(min, max) {
- const length = this.length();
- return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
- }
+ clampLength(min, max) {
+ const length = this.length();
+ return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
+ }
- floor() {
- this.x = Math.floor(this.x);
- this.y = Math.floor(this.y);
- return this;
- }
+ floor() {
+ this.x = Math.floor(this.x);
+ this.y = Math.floor(this.y);
+ return this;
+ }
- ceil() {
- this.x = Math.ceil(this.x);
- this.y = Math.ceil(this.y);
- return this;
- }
+ ceil() {
+ this.x = Math.ceil(this.x);
+ this.y = Math.ceil(this.y);
+ return this;
+ }
- round() {
- this.x = Math.round(this.x);
- this.y = Math.round(this.y);
- return this;
- }
+ round() {
+ this.x = Math.round(this.x);
+ this.y = Math.round(this.y);
+ return this;
+ }
- roundToZero() {
- this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
- this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
- return this;
- }
+ roundToZero() {
+ this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
+ this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
+ return this;
+ }
- negate() {
- this.x = -this.x;
- this.y = -this.y;
- return this;
- }
+ negate() {
+ this.x = -this.x;
+ this.y = -this.y;
+ return this;
+ }
- dot(v) {
- return this.x * v.x + this.y * v.y;
- }
+ dot(v) {
+ return this.x * v.x + this.y * v.y;
+ }
- cross(v) {
- return this.x * v.y - this.y * v.x;
- }
+ cross(v) {
+ return this.x * v.y - this.y * v.x;
+ }
- lengthSq() {
- return this.x * this.x + this.y * this.y;
- }
+ lengthSq() {
+ return this.x * this.x + this.y * this.y;
+ }
- length() {
- return Math.sqrt(this.x * this.x + this.y * this.y);
- }
+ length() {
+ return Math.sqrt(this.x * this.x + this.y * this.y);
+ }
- manhattanLength() {
- return Math.abs(this.x) + Math.abs(this.y);
- }
+ manhattanLength() {
+ return Math.abs(this.x) + Math.abs(this.y);
+ }
- normalize() {
- return this.divideScalar(this.length() || 1);
- }
+ normalize() {
+ return this.divideScalar(this.length() || 1);
+ }
- angle() {
- // computes the angle in radians with respect to the positive x-axis
- const angle = Math.atan2(-this.y, -this.x) + Math.PI;
- return angle;
- }
+ angle() {
+ // computes the angle in radians with respect to the positive x-axis
+ const angle = Math.atan2(-this.y, -this.x) + Math.PI;
+ return angle;
+ }
- distanceTo(v) {
- return Math.sqrt(this.distanceToSquared(v));
- }
+ distanceTo(v) {
+ return Math.sqrt(this.distanceToSquared(v));
+ }
- distanceToSquared(v) {
- const dx = this.x - v.x,
+ distanceToSquared(v) {
+ const dx = this.x - v.x,
dy = this.y - v.y;
- return dx * dx + dy * dy;
- }
+ return dx * dx + dy * dy;
+ }
- manhattanDistanceTo(v) {
- return Math.abs(this.x - v.x) + Math.abs(this.y - v.y);
- }
+ manhattanDistanceTo(v) {
+ return Math.abs(this.x - v.x) + Math.abs(this.y - v.y);
+ }
- setLength(length) {
- return this.normalize().multiplyScalar(length);
- }
+ setLength(length) {
+ return this.normalize().multiplyScalar(length);
+ }
- lerp(v, alpha) {
- this.x += (v.x - this.x) * alpha;
- this.y += (v.y - this.y) * alpha;
- return this;
- }
+ lerp(v, alpha) {
+ this.x += (v.x - this.x) * alpha;
+ this.y += (v.y - this.y) * alpha;
+ return this;
+ }
- lerpVectors(v1, v2, alpha) {
- this.x = v1.x + (v2.x - v1.x) * alpha;
- this.y = v1.y + (v2.y - v1.y) * alpha;
- return this;
- }
+ lerpVectors(v1, v2, alpha) {
+ this.x = v1.x + (v2.x - v1.x) * alpha;
+ this.y = v1.y + (v2.y - v1.y) * alpha;
+ return this;
+ }
- equals(v) {
- return v.x === this.x && v.y === this.y;
- }
+ equals(v) {
+ return v.x === this.x && v.y === this.y;
+ }
- fromArray(array, offset = 0) {
- this.x = array[offset];
- this.y = array[offset + 1];
- return this;
- }
+ fromArray(array, offset = 0) {
+ this.x = array[offset];
+ this.y = array[offset + 1];
+ return this;
+ }
- toArray(array = [], offset = 0) {
- array[offset] = this.x;
- array[offset + 1] = this.y;
- return array;
- }
+ toArray(array = [], offset = 0) {
+ array[offset] = this.x;
+ array[offset + 1] = this.y;
+ return array;
+ }
- fromBufferAttribute(attribute, index, offset) {
- if (offset !== undefined) {
- console.warn('THREE.Vector2: offset has been removed from .fromBufferAttribute().');
- }
+ fromBufferAttribute(attribute, index, offset) {
+ if (offset !== undefined) {
+ console.warn('THREE.Vector2: offset has been removed from .fromBufferAttribute().');
+ }
- this.x = attribute.getX(index);
- this.y = attribute.getY(index);
- return this;
- }
+ this.x = attribute.getX(index);
+ this.y = attribute.getY(index);
+ return this;
+ }
- rotateAround(center, angle) {
- const c = Math.cos(angle),
+ rotateAround(center, angle) {
+ const c = Math.cos(angle),
s = Math.sin(angle);
- const x = this.x - center.x;
- const y = this.y - center.y;
- this.x = x * c - y * s + center.x;
- this.y = x * s + y * c + center.y;
- return this;
- }
+ const x = this.x - center.x;
+ const y = this.y - center.y;
+ this.x = x * c - y * s + center.x;
+ this.y = x * s + y * c + center.y;
+ return this;
+ }
- random() {
- this.x = Math.random();
- this.y = Math.random();
- return this;
- }
+ random() {
+ this.x = Math.random();
+ this.y = Math.random();
+ return this;
+ }
- }
+ }
- Vector2.prototype.isVector2 = true;
+ Vector2.prototype.isVector2 = true;
- class Matrix3 {
- constructor() {
- this.elements = [1, 0, 0, 0, 1, 0, 0, 0, 1];
+ class Matrix3 {
+ constructor() {
+ this.elements = [1, 0, 0, 0, 1, 0, 0, 0, 1];
- if (arguments.length > 0) {
- console.error('THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.');
- }
- }
+ if (arguments.length > 0) {
+ console.error('THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.');
+ }
+ }
- set(n11, n12, n13, n21, n22, n23, n31, n32, n33) {
- const te = this.elements;
- te[0] = n11;
- te[1] = n21;
- te[2] = n31;
- te[3] = n12;
- te[4] = n22;
- te[5] = n32;
- te[6] = n13;
- te[7] = n23;
- te[8] = n33;
- return this;
- }
+ set(n11, n12, n13, n21, n22, n23, n31, n32, n33) {
+ const te = this.elements;
+ te[0] = n11;
+ te[1] = n21;
+ te[2] = n31;
+ te[3] = n12;
+ te[4] = n22;
+ te[5] = n32;
+ te[6] = n13;
+ te[7] = n23;
+ te[8] = n33;
+ return this;
+ }
- identity() {
- this.set(1, 0, 0, 0, 1, 0, 0, 0, 1);
- return this;
- }
+ identity() {
+ this.set(1, 0, 0, 0, 1, 0, 0, 0, 1);
+ return this;
+ }
- copy(m) {
- const te = this.elements;
- const me = m.elements;
- te[0] = me[0];
- te[1] = me[1];
- te[2] = me[2];
- te[3] = me[3];
- te[4] = me[4];
- te[5] = me[5];
- te[6] = me[6];
- te[7] = me[7];
- te[8] = me[8];
- return this;
- }
+ copy(m) {
+ const te = this.elements;
+ const me = m.elements;
+ te[0] = me[0];
+ te[1] = me[1];
+ te[2] = me[2];
+ te[3] = me[3];
+ te[4] = me[4];
+ te[5] = me[5];
+ te[6] = me[6];
+ te[7] = me[7];
+ te[8] = me[8];
+ return this;
+ }
- extractBasis(xAxis, yAxis, zAxis) {
- xAxis.setFromMatrix3Column(this, 0);
- yAxis.setFromMatrix3Column(this, 1);
- zAxis.setFromMatrix3Column(this, 2);
- return this;
- }
+ extractBasis(xAxis, yAxis, zAxis) {
+ xAxis.setFromMatrix3Column(this, 0);
+ yAxis.setFromMatrix3Column(this, 1);
+ zAxis.setFromMatrix3Column(this, 2);
+ return this;
+ }
- setFromMatrix4(m) {
- const me = m.elements;
- this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10]);
- return this;
- }
+ setFromMatrix4(m) {
+ const me = m.elements;
+ this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10]);
+ return this;
+ }
- multiply(m) {
- return this.multiplyMatrices(this, m);
- }
+ multiply(m) {
+ return this.multiplyMatrices(this, m);
+ }
- premultiply(m) {
- return this.multiplyMatrices(m, this);
- }
+ premultiply(m) {
+ return this.multiplyMatrices(m, this);
+ }
- multiplyMatrices(a, b) {
- const ae = a.elements;
- const be = b.elements;
- const te = this.elements;
- const a11 = ae[0],
+ multiplyMatrices(a, b) {
+ const ae = a.elements;
+ const be = b.elements;
+ const te = this.elements;
+ const a11 = ae[0],
a12 = ae[3],
a13 = ae[6];
- const a21 = ae[1],
+ const a21 = ae[1],
a22 = ae[4],
a23 = ae[7];
- const a31 = ae[2],
+ const a31 = ae[2],
a32 = ae[5],
a33 = ae[8];
- const b11 = be[0],
+ const b11 = be[0],
b12 = be[3],
b13 = be[6];
- const b21 = be[1],
+ const b21 = be[1],
b22 = be[4],
b23 = be[7];
- const b31 = be[2],
+ const b31 = be[2],
b32 = be[5],
b33 = be[8];
- te[0] = a11 * b11 + a12 * b21 + a13 * b31;
- te[3] = a11 * b12 + a12 * b22 + a13 * b32;
- te[6] = a11 * b13 + a12 * b23 + a13 * b33;
- te[1] = a21 * b11 + a22 * b21 + a23 * b31;
- te[4] = a21 * b12 + a22 * b22 + a23 * b32;
- te[7] = a21 * b13 + a22 * b23 + a23 * b33;
- te[2] = a31 * b11 + a32 * b21 + a33 * b31;
- te[5] = a31 * b12 + a32 * b22 + a33 * b32;
- te[8] = a31 * b13 + a32 * b23 + a33 * b33;
- return this;
- }
+ te[0] = a11 * b11 + a12 * b21 + a13 * b31;
+ te[3] = a11 * b12 + a12 * b22 + a13 * b32;
+ te[6] = a11 * b13 + a12 * b23 + a13 * b33;
+ te[1] = a21 * b11 + a22 * b21 + a23 * b31;
+ te[4] = a21 * b12 + a22 * b22 + a23 * b32;
+ te[7] = a21 * b13 + a22 * b23 + a23 * b33;
+ te[2] = a31 * b11 + a32 * b21 + a33 * b31;
+ te[5] = a31 * b12 + a32 * b22 + a33 * b32;
+ te[8] = a31 * b13 + a32 * b23 + a33 * b33;
+ return this;
+ }
- multiplyScalar(s) {
- const te = this.elements;
- te[0] *= s;
- te[3] *= s;
- te[6] *= s;
- te[1] *= s;
- te[4] *= s;
- te[7] *= s;
- te[2] *= s;
- te[5] *= s;
- te[8] *= s;
- return this;
- }
+ multiplyScalar(s) {
+ const te = this.elements;
+ te[0] *= s;
+ te[3] *= s;
+ te[6] *= s;
+ te[1] *= s;
+ te[4] *= s;
+ te[7] *= s;
+ te[2] *= s;
+ te[5] *= s;
+ te[8] *= s;
+ return this;
+ }
- determinant() {
- const te = this.elements;
- const a = te[0],
+ determinant() {
+ const te = this.elements;
+ const a = te[0],
b = te[1],
c = te[2],
d = te[3],
g = te[6],
h = te[7],
i = te[8];
- return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
- }
+ return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
+ }
- invert() {
- const te = this.elements,
+ invert() {
+ const te = this.elements,
n11 = te[0],
n21 = te[1],
n31 = te[2],
t12 = n32 * n13 - n33 * n12,
t13 = n23 * n12 - n22 * n13,
det = n11 * t11 + n21 * t12 + n31 * t13;
- if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0);
- const detInv = 1 / det;
- te[0] = t11 * detInv;
- te[1] = (n31 * n23 - n33 * n21) * detInv;
- te[2] = (n32 * n21 - n31 * n22) * detInv;
- te[3] = t12 * detInv;
- te[4] = (n33 * n11 - n31 * n13) * detInv;
- te[5] = (n31 * n12 - n32 * n11) * detInv;
- te[6] = t13 * detInv;
- te[7] = (n21 * n13 - n23 * n11) * detInv;
- te[8] = (n22 * n11 - n21 * n12) * detInv;
- return this;
- }
+ if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0);
+ const detInv = 1 / det;
+ te[0] = t11 * detInv;
+ te[1] = (n31 * n23 - n33 * n21) * detInv;
+ te[2] = (n32 * n21 - n31 * n22) * detInv;
+ te[3] = t12 * detInv;
+ te[4] = (n33 * n11 - n31 * n13) * detInv;
+ te[5] = (n31 * n12 - n32 * n11) * detInv;
+ te[6] = t13 * detInv;
+ te[7] = (n21 * n13 - n23 * n11) * detInv;
+ te[8] = (n22 * n11 - n21 * n12) * detInv;
+ return this;
+ }
- transpose() {
- let tmp;
- const m = this.elements;
- tmp = m[1];
- m[1] = m[3];
- m[3] = tmp;
- tmp = m[2];
- m[2] = m[6];
- m[6] = tmp;
- tmp = m[5];
- m[5] = m[7];
- m[7] = tmp;
- return this;
- }
+ transpose() {
+ let tmp;
+ const m = this.elements;
+ tmp = m[1];
+ m[1] = m[3];
+ m[3] = tmp;
+ tmp = m[2];
+ m[2] = m[6];
+ m[6] = tmp;
+ tmp = m[5];
+ m[5] = m[7];
+ m[7] = tmp;
+ return this;
+ }
- getNormalMatrix(matrix4) {
- return this.setFromMatrix4(matrix4).invert().transpose();
- }
+ getNormalMatrix(matrix4) {
+ return this.setFromMatrix4(matrix4).invert().transpose();
+ }
- transposeIntoArray(r) {
- const m = this.elements;
- r[0] = m[0];
- r[1] = m[3];
- r[2] = m[6];
- r[3] = m[1];
- r[4] = m[4];
- r[5] = m[7];
- r[6] = m[2];
- r[7] = m[5];
- r[8] = m[8];
- return this;
- }
+ transposeIntoArray(r) {
+ const m = this.elements;
+ r[0] = m[0];
+ r[1] = m[3];
+ r[2] = m[6];
+ r[3] = m[1];
+ r[4] = m[4];
+ r[5] = m[7];
+ r[6] = m[2];
+ r[7] = m[5];
+ r[8] = m[8];
+ return this;
+ }
- setUvTransform(tx, ty, sx, sy, rotation, cx, cy) {
- const c = Math.cos(rotation);
- const s = Math.sin(rotation);
- this.set(sx * c, sx * s, -sx * (c * cx + s * cy) + cx + tx, -sy * s, sy * c, -sy * (-s * cx + c * cy) + cy + ty, 0, 0, 1);
- return this;
- }
+ setUvTransform(tx, ty, sx, sy, rotation, cx, cy) {
+ const c = Math.cos(rotation);
+ const s = Math.sin(rotation);
+ this.set(sx * c, sx * s, -sx * (c * cx + s * cy) + cx + tx, -sy * s, sy * c, -sy * (-s * cx + c * cy) + cy + ty, 0, 0, 1);
+ return this;
+ }
- scale(sx, sy) {
- const te = this.elements;
- te[0] *= sx;
- te[3] *= sx;
- te[6] *= sx;
- te[1] *= sy;
- te[4] *= sy;
- te[7] *= sy;
- return this;
- }
+ scale(sx, sy) {
+ const te = this.elements;
+ te[0] *= sx;
+ te[3] *= sx;
+ te[6] *= sx;
+ te[1] *= sy;
+ te[4] *= sy;
+ te[7] *= sy;
+ return this;
+ }
- rotate(theta) {
- const c = Math.cos(theta);
- const s = Math.sin(theta);
- const te = this.elements;
- const a11 = te[0],
+ rotate(theta) {
+ const c = Math.cos(theta);
+ const s = Math.sin(theta);
+ const te = this.elements;
+ const a11 = te[0],
a12 = te[3],
a13 = te[6];
- const a21 = te[1],
+ const a21 = te[1],
a22 = te[4],
a23 = te[7];
- te[0] = c * a11 + s * a21;
- te[3] = c * a12 + s * a22;
- te[6] = c * a13 + s * a23;
- te[1] = -s * a11 + c * a21;
- te[4] = -s * a12 + c * a22;
- te[7] = -s * a13 + c * a23;
- return this;
- }
-
- translate(tx, ty) {
- const te = this.elements;
- te[0] += tx * te[2];
- te[3] += tx * te[5];
- te[6] += tx * te[8];
- te[1] += ty * te[2];
- te[4] += ty * te[5];
- te[7] += ty * te[8];
- return this;
- }
-
- equals(matrix) {
- const te = this.elements;
- const me = matrix.elements;
-
- for (let i = 0; i < 9; i++) {
- if (te[i] !== me[i]) return false;
- }
-
- return true;
- }
+ te[0] = c * a11 + s * a21;
+ te[3] = c * a12 + s * a22;
+ te[6] = c * a13 + s * a23;
+ te[1] = -s * a11 + c * a21;
+ te[4] = -s * a12 + c * a22;
+ te[7] = -s * a13 + c * a23;
+ return this;
+ }
- fromArray(array, offset = 0) {
- for (let i = 0; i < 9; i++) {
- this.elements[i] = array[i + offset];
- }
+ translate(tx, ty) {
+ const te = this.elements;
+ te[0] += tx * te[2];
+ te[3] += tx * te[5];
+ te[6] += tx * te[8];
+ te[1] += ty * te[2];
+ te[4] += ty * te[5];
+ te[7] += ty * te[8];
+ return this;
+ }
- return this;
- }
+ equals(matrix) {
+ const te = this.elements;
+ const me = matrix.elements;
- toArray(array = [], offset = 0) {
- const te = this.elements;
- array[offset] = te[0];
- array[offset + 1] = te[1];
- array[offset + 2] = te[2];
- array[offset + 3] = te[3];
- array[offset + 4] = te[4];
- array[offset + 5] = te[5];
- array[offset + 6] = te[6];
- array[offset + 7] = te[7];
- array[offset + 8] = te[8];
- return array;
- }
+ for (let i = 0; i < 9; i++) {
+ if (te[i] !== me[i]) return false;
+ }
- clone() {
- return new this.constructor().fromArray(this.elements);
- }
+ return true;
+ }
- }
+ fromArray(array, offset = 0) {
+ for (let i = 0; i < 9; i++) {
+ this.elements[i] = array[i + offset];
+ }
- Matrix3.prototype.isMatrix3 = true;
+ return this;
+ }
- let _canvas;
+ toArray(array = [], offset = 0) {
+ const te = this.elements;
+ array[offset] = te[0];
+ array[offset + 1] = te[1];
+ array[offset + 2] = te[2];
+ array[offset + 3] = te[3];
+ array[offset + 4] = te[4];
+ array[offset + 5] = te[5];
+ array[offset + 6] = te[6];
+ array[offset + 7] = te[7];
+ array[offset + 8] = te[8];
+ return array;
+ }
- class ImageUtils {
- static getDataURL(image) {
- if (/^data:/i.test(image.src)) {
- return image.src;
- }
+ clone() {
+ return new this.constructor().fromArray(this.elements);
+ }
- if (typeof HTMLCanvasElement == 'undefined') {
- return image.src;
}
- let canvas;
+ Matrix3.prototype.isMatrix3 = true;
- if (image instanceof HTMLCanvasElement) {
- canvas = image;
- } else {
- if (_canvas === undefined) _canvas = document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas');
- _canvas.width = image.width;
- _canvas.height = image.height;
+ let _canvas;
- const context = _canvas.getContext('2d');
+ class ImageUtils {
+ static getDataURL(image) {
+ if (/^data:/i.test(image.src)) {
+ return image.src;
+ }
- if (image instanceof ImageData) {
- context.putImageData(image, 0, 0);
- } else {
- context.drawImage(image, 0, 0, image.width, image.height);
- }
+ if (typeof HTMLCanvasElement == 'undefined') {
+ return image.src;
+ }
- canvas = _canvas;
- }
+ let canvas;
- if (canvas.width > 2048 || canvas.height > 2048) {
- console.warn('THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image);
- return canvas.toDataURL('image/jpeg', 0.6);
- } else {
- return canvas.toDataURL('image/png');
- }
- }
+ if (image instanceof HTMLCanvasElement) {
+ canvas = image;
+ } else {
+ if (_canvas === undefined) _canvas = document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas');
+ _canvas.width = image.width;
+ _canvas.height = image.height;
- }
+ const context = _canvas.getContext('2d');
- let textureId = 0;
+ if (image instanceof ImageData) {
+ context.putImageData(image, 0, 0);
+ } else {
+ context.drawImage(image, 0, 0, image.width, image.height);
+ }
- class Texture extends EventDispatcher {
- constructor(image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = 1, encoding = LinearEncoding) {
- super();
- Object.defineProperty(this, 'id', {
- value: textureId++
- });
- this.uuid = generateUUID();
- this.name = '';
- this.image = image;
- this.mipmaps = [];
- this.mapping = mapping;
- this.wrapS = wrapS;
- this.wrapT = wrapT;
- this.magFilter = magFilter;
- this.minFilter = minFilter;
- this.anisotropy = anisotropy;
- this.format = format;
- this.internalFormat = null;
- this.type = type;
- this.offset = new Vector2(0, 0);
- this.repeat = new Vector2(1, 1);
- this.center = new Vector2(0, 0);
- this.rotation = 0;
- this.matrixAutoUpdate = true;
- this.matrix = new Matrix3();
- this.generateMipmaps = true;
- this.premultiplyAlpha = false;
- this.flipY = true;
- this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
- // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
- //
- // Also changing the encoding after already used by a Material will not automatically make the Material
- // update. You need to explicitly call Material.needsUpdate to trigger it to recompile.
+ canvas = _canvas;
+ }
- this.encoding = encoding;
- this.version = 0;
- this.onUpdate = null;
- this.isRenderTargetTexture = false;
- }
+ if (canvas.width > 2048 || canvas.height > 2048) {
+ console.warn('THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image);
+ return canvas.toDataURL('image/jpeg', 0.6);
+ } else {
+ return canvas.toDataURL('image/png');
+ }
+ }
- updateMatrix() {
- this.matrix.setUvTransform(this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y);
- }
+ }
- clone() {
- return new this.constructor().copy(this);
- }
+ let textureId = 0;
- copy(source) {
- this.name = source.name;
- this.image = source.image;
- this.mipmaps = source.mipmaps.slice(0);
- this.mapping = source.mapping;
- this.wrapS = source.wrapS;
- this.wrapT = source.wrapT;
- this.magFilter = source.magFilter;
- this.minFilter = source.minFilter;
- this.anisotropy = source.anisotropy;
- this.format = source.format;
- this.internalFormat = source.internalFormat;
- this.type = source.type;
- this.offset.copy(source.offset);
- this.repeat.copy(source.repeat);
- this.center.copy(source.center);
- this.rotation = source.rotation;
- this.matrixAutoUpdate = source.matrixAutoUpdate;
- this.matrix.copy(source.matrix);
- this.generateMipmaps = source.generateMipmaps;
- this.premultiplyAlpha = source.premultiplyAlpha;
- this.flipY = source.flipY;
- this.unpackAlignment = source.unpackAlignment;
- this.encoding = source.encoding;
- return this;
- }
+ class Texture extends EventDispatcher {
+ constructor(image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = 1, encoding = LinearEncoding) {
+ super();
+ Object.defineProperty(this, 'id', {
+ value: textureId++
+ });
+ this.uuid = generateUUID();
+ this.name = '';
+ this.image = image;
+ this.mipmaps = [];
+ this.mapping = mapping;
+ this.wrapS = wrapS;
+ this.wrapT = wrapT;
+ this.magFilter = magFilter;
+ this.minFilter = minFilter;
+ this.anisotropy = anisotropy;
+ this.format = format;
+ this.internalFormat = null;
+ this.type = type;
+ this.offset = new Vector2(0, 0);
+ this.repeat = new Vector2(1, 1);
+ this.center = new Vector2(0, 0);
+ this.rotation = 0;
+ this.matrixAutoUpdate = true;
+ this.matrix = new Matrix3();
+ this.generateMipmaps = true;
+ this.premultiplyAlpha = false;
+ this.flipY = true;
+ this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
+ // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
+ //
+ // Also changing the encoding after already used by a Material will not automatically make the Material
+ // update. You need to explicitly call Material.needsUpdate to trigger it to recompile.
+
+ this.encoding = encoding;
+ this.version = 0;
+ this.onUpdate = null;
+ this.isRenderTargetTexture = false;
+ }
+
+ updateMatrix() {
+ this.matrix.setUvTransform(this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y);
+ }
+
+ clone() {
+ return new this.constructor().copy(this);
+ }
+
+ copy(source) {
+ this.name = source.name;
+ this.image = source.image;
+ this.mipmaps = source.mipmaps.slice(0);
+ this.mapping = source.mapping;
+ this.wrapS = source.wrapS;
+ this.wrapT = source.wrapT;
+ this.magFilter = source.magFilter;
+ this.minFilter = source.minFilter;
+ this.anisotropy = source.anisotropy;
+ this.format = source.format;
+ this.internalFormat = source.internalFormat;
+ this.type = source.type;
+ this.offset.copy(source.offset);
+ this.repeat.copy(source.repeat);
+ this.center.copy(source.center);
+ this.rotation = source.rotation;
+ this.matrixAutoUpdate = source.matrixAutoUpdate;
+ this.matrix.copy(source.matrix);
+ this.generateMipmaps = source.generateMipmaps;
+ this.premultiplyAlpha = source.premultiplyAlpha;
+ this.flipY = source.flipY;
+ this.unpackAlignment = source.unpackAlignment;
+ this.encoding = source.encoding;
+ return this;
+ }
- toJSON(meta) {
- const isRootObject = meta === undefined || typeof meta === 'string';
+ toJSON(meta) {
+ const isRootObject = meta === undefined || typeof meta === 'string';
- if (!isRootObject && meta.textures[this.uuid] !== undefined) {
- return meta.textures[this.uuid];
- }
+ if (!isRootObject && meta.textures[this.uuid] !== undefined) {
+ return meta.textures[this.uuid];
+ }
- const output = {
- metadata: {
- version: 4.5,
- type: 'Texture',
- generator: 'Texture.toJSON'
- },
- uuid: this.uuid,
- name: this.name,
- mapping: this.mapping,
- repeat: [this.repeat.x, this.repeat.y],
- offset: [this.offset.x, this.offset.y],
- center: [this.center.x, this.center.y],
- rotation: this.rotation,
- wrap: [this.wrapS, this.wrapT],
- format: this.format,
- type: this.type,
- encoding: this.encoding,
- minFilter: this.minFilter,
- magFilter: this.magFilter,
- anisotropy: this.anisotropy,
- flipY: this.flipY,
- premultiplyAlpha: this.premultiplyAlpha,
- unpackAlignment: this.unpackAlignment
- };
+ const output = {
+ metadata: {
+ version: 4.5,
+ type: 'Texture',
+ generator: 'Texture.toJSON'
+ },
+ uuid: this.uuid,
+ name: this.name,
+ mapping: this.mapping,
+ repeat: [this.repeat.x, this.repeat.y],
+ offset: [this.offset.x, this.offset.y],
+ center: [this.center.x, this.center.y],
+ rotation: this.rotation,
+ wrap: [this.wrapS, this.wrapT],
+ format: this.format,
+ type: this.type,
+ encoding: this.encoding,
+ minFilter: this.minFilter,
+ magFilter: this.magFilter,
+ anisotropy: this.anisotropy,
+ flipY: this.flipY,
+ premultiplyAlpha: this.premultiplyAlpha,
+ unpackAlignment: this.unpackAlignment
+ };
- if (this.image !== undefined) {
- // TODO: Move to THREE.Image
- const image = this.image;
+ if (this.image !== undefined) {
+ // TODO: Move to THREE.Image
+ const image = this.image;
- if (image.uuid === undefined) {
- image.uuid = generateUUID(); // UGH
- }
+ if (image.uuid === undefined) {
+ image.uuid = generateUUID(); // UGH
+ }
- if (!isRootObject && meta.images[image.uuid] === undefined) {
- let url;
+ if (!isRootObject && meta.images[image.uuid] === undefined) {
+ let url;
- if (Array.isArray(image)) {
- // process array of images e.g. CubeTexture
- url = [];
+ if (Array.isArray(image)) {
+ // process array of images e.g. CubeTexture
+ url = [];
- for (let i = 0, l = image.length; i < l; i++) {
- // check cube texture with data textures
- if (image[i].isDataTexture) {
- url.push(serializeImage(image[i].image));
+ for (let i = 0, l = image.length; i < l; i++) {
+ // check cube texture with data textures
+ if (image[i].isDataTexture) {
+ url.push(serializeImage(image[i].image));
+ } else {
+ url.push(serializeImage(image[i]));
+ }
+ }
} else {
- url.push(serializeImage(image[i]));
+ // process single image
+ url = serializeImage(image);
}
+
+ meta.images[image.uuid] = {
+ uuid: image.uuid,
+ url: url
+ };
}
- } else {
- // process single image
- url = serializeImage(image);
- }
- meta.images[image.uuid] = {
- uuid: image.uuid,
- url: url
- };
- }
+ output.image = image.uuid;
+ }
- output.image = image.uuid;
- }
+ if (!isRootObject) {
+ meta.textures[this.uuid] = output;
+ }
- if (!isRootObject) {
- meta.textures[this.uuid] = output;
- }
+ return output;
+ }
- return output;
- }
+ dispose() {
+ this.dispatchEvent({
+ type: 'dispose'
+ });
+ }
- dispose() {
- this.dispatchEvent({
- type: 'dispose'
- });
- }
+ transformUv(uv) {
+ if (this.mapping !== UVMapping) return uv;
+ uv.applyMatrix3(this.matrix);
- transformUv(uv) {
- if (this.mapping !== UVMapping) return uv;
- uv.applyMatrix3(this.matrix);
+ if (uv.x < 0 || uv.x > 1) {
+ switch (this.wrapS) {
+ case RepeatWrapping:
+ uv.x = uv.x - Math.floor(uv.x);
+ break;
- if (uv.x < 0 || uv.x > 1) {
- switch (this.wrapS) {
- case RepeatWrapping:
- uv.x = uv.x - Math.floor(uv.x);
- break;
+ case ClampToEdgeWrapping:
+ uv.x = uv.x < 0 ? 0 : 1;
+ break;
- case ClampToEdgeWrapping:
- uv.x = uv.x < 0 ? 0 : 1;
- break;
+ case MirroredRepeatWrapping:
+ if (Math.abs(Math.floor(uv.x) % 2) === 1) {
+ uv.x = Math.ceil(uv.x) - uv.x;
+ } else {
+ uv.x = uv.x - Math.floor(uv.x);
+ }
- case MirroredRepeatWrapping:
- if (Math.abs(Math.floor(uv.x) % 2) === 1) {
- uv.x = Math.ceil(uv.x) - uv.x;
- } else {
- uv.x = uv.x - Math.floor(uv.x);
+ break;
}
+ }
- break;
- }
- }
+ if (uv.y < 0 || uv.y > 1) {
+ switch (this.wrapT) {
+ case RepeatWrapping:
+ uv.y = uv.y - Math.floor(uv.y);
+ break;
- if (uv.y < 0 || uv.y > 1) {
- switch (this.wrapT) {
- case RepeatWrapping:
- uv.y = uv.y - Math.floor(uv.y);
- break;
+ case ClampToEdgeWrapping:
+ uv.y = uv.y < 0 ? 0 : 1;
+ break;
- case ClampToEdgeWrapping:
- uv.y = uv.y < 0 ? 0 : 1;
- break;
+ case MirroredRepeatWrapping:
+ if (Math.abs(Math.floor(uv.y) % 2) === 1) {
+ uv.y = Math.ceil(uv.y) - uv.y;
+ } else {
+ uv.y = uv.y - Math.floor(uv.y);
+ }
- case MirroredRepeatWrapping:
- if (Math.abs(Math.floor(uv.y) % 2) === 1) {
- uv.y = Math.ceil(uv.y) - uv.y;
- } else {
- uv.y = uv.y - Math.floor(uv.y);
+ break;
}
+ }
- break;
- }
- }
+ if (this.flipY) {
+ uv.y = 1 - uv.y;
+ }
- if (this.flipY) {
- uv.y = 1 - uv.y;
- }
+ return uv;
+ }
- return uv;
- }
+ set needsUpdate(value) {
+ if (value === true) this.version++;
+ }
- set needsUpdate(value) {
- if (value === true) this.version++;
- }
+ }
- }
+ Texture.DEFAULT_IMAGE = undefined;
+ Texture.DEFAULT_MAPPING = UVMapping;
+ Texture.prototype.isTexture = true;
- Texture.DEFAULT_IMAGE = undefined;
- Texture.DEFAULT_MAPPING = UVMapping;
- Texture.prototype.isTexture = true;
-
- function serializeImage(image) {
- if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) {
- // default images
- return ImageUtils.getDataURL(image);
- } else {
- if (image.data) {
- // images of DataTexture
- return {
- data: Array.prototype.slice.call(image.data),
- width: image.width,
- height: image.height,
- type: image.data.constructor.name
- };
- } else {
- console.warn('THREE.Texture: Unable to serialize Texture.');
- return {};
+ function serializeImage(image) {
+ if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) {
+ // default images
+ return ImageUtils.getDataURL(image);
+ } else {
+ if (image.data) {
+ // images of DataTexture
+ return {
+ data: Array.prototype.slice.call(image.data),
+ width: image.width,
+ height: image.height,
+ type: image.data.constructor.name
+ };
+ } else {
+ console.warn('THREE.Texture: Unable to serialize Texture.');
+ return {};
+ }
+ }
}
- }
- }
- class Vector4 {
- constructor(x = 0, y = 0, z = 0, w = 1) {
- this.x = x;
- this.y = y;
- this.z = z;
- this.w = w;
- }
+ class Vector4 {
+ constructor(x = 0, y = 0, z = 0, w = 1) {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.w = w;
+ }
- get width() {
- return this.z;
- }
+ get width() {
+ return this.z;
+ }
- set width(value) {
- this.z = value;
- }
+ set width(value) {
+ this.z = value;
+ }
- get height() {
- return this.w;
- }
+ get height() {
+ return this.w;
+ }
- set height(value) {
- this.w = value;
- }
+ set height(value) {
+ this.w = value;
+ }
- set(x, y, z, w) {
- this.x = x;
- this.y = y;
- this.z = z;
- this.w = w;
- return this;
- }
+ set(x, y, z, w) {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.w = w;
+ return this;
+ }
- setScalar(scalar) {
- this.x = scalar;
- this.y = scalar;
- this.z = scalar;
- this.w = scalar;
- return this;
- }
+ setScalar(scalar) {
+ this.x = scalar;
+ this.y = scalar;
+ this.z = scalar;
+ this.w = scalar;
+ return this;
+ }
- setX(x) {
- this.x = x;
- return this;
- }
+ setX(x) {
+ this.x = x;
+ return this;
+ }
- setY(y) {
- this.y = y;
- return this;
- }
+ setY(y) {
+ this.y = y;
+ return this;
+ }
- setZ(z) {
- this.z = z;
- return this;
- }
+ setZ(z) {
+ this.z = z;
+ return this;
+ }
- setW(w) {
- this.w = w;
- return this;
- }
+ setW(w) {
+ this.w = w;
+ return this;
+ }
- setComponent(index, value) {
- switch (index) {
- case 0:
- this.x = value;
- break;
+ setComponent(index, value) {
+ switch (index) {
+ case 0:
+ this.x = value;
+ break;
- case 1:
- this.y = value;
- break;
+ case 1:
+ this.y = value;
+ break;
- case 2:
- this.z = value;
- break;
+ case 2:
+ this.z = value;
+ break;
- case 3:
- this.w = value;
- break;
+ case 3:
+ this.w = value;
+ break;
- default:
- throw new Error('index is out of range: ' + index);
- }
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
- return this;
- }
+ return this;
+ }
- getComponent(index) {
- switch (index) {
- case 0:
- return this.x;
+ getComponent(index) {
+ switch (index) {
+ case 0:
+ return this.x;
- case 1:
- return this.y;
+ case 1:
+ return this.y;
- case 2:
- return this.z;
+ case 2:
+ return this.z;
- case 3:
- return this.w;
+ case 3:
+ return this.w;
- default:
- throw new Error('index is out of range: ' + index);
- }
- }
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
+ }
- clone() {
- return new this.constructor(this.x, this.y, this.z, this.w);
- }
+ clone() {
+ return new this.constructor(this.x, this.y, this.z, this.w);
+ }
- copy(v) {
- this.x = v.x;
- this.y = v.y;
- this.z = v.z;
- this.w = v.w !== undefined ? v.w : 1;
- return this;
- }
+ copy(v) {
+ this.x = v.x;
+ this.y = v.y;
+ this.z = v.z;
+ this.w = v.w !== undefined ? v.w : 1;
+ return this;
+ }
- add(v, w) {
- if (w !== undefined) {
- console.warn('THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
- return this.addVectors(v, w);
- }
+ add(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
+ return this.addVectors(v, w);
+ }
- this.x += v.x;
- this.y += v.y;
- this.z += v.z;
- this.w += v.w;
- return this;
- }
+ this.x += v.x;
+ this.y += v.y;
+ this.z += v.z;
+ this.w += v.w;
+ return this;
+ }
- addScalar(s) {
- this.x += s;
- this.y += s;
- this.z += s;
- this.w += s;
- return this;
- }
+ addScalar(s) {
+ this.x += s;
+ this.y += s;
+ this.z += s;
+ this.w += s;
+ return this;
+ }
- addVectors(a, b) {
- this.x = a.x + b.x;
- this.y = a.y + b.y;
- this.z = a.z + b.z;
- this.w = a.w + b.w;
- return this;
- }
+ addVectors(a, b) {
+ this.x = a.x + b.x;
+ this.y = a.y + b.y;
+ this.z = a.z + b.z;
+ this.w = a.w + b.w;
+ return this;
+ }
- addScaledVector(v, s) {
- this.x += v.x * s;
- this.y += v.y * s;
- this.z += v.z * s;
- this.w += v.w * s;
- return this;
- }
+ addScaledVector(v, s) {
+ this.x += v.x * s;
+ this.y += v.y * s;
+ this.z += v.z * s;
+ this.w += v.w * s;
+ return this;
+ }
- sub(v, w) {
- if (w !== undefined) {
- console.warn('THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
- return this.subVectors(v, w);
- }
+ sub(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
+ return this.subVectors(v, w);
+ }
- this.x -= v.x;
- this.y -= v.y;
- this.z -= v.z;
- this.w -= v.w;
- return this;
- }
+ this.x -= v.x;
+ this.y -= v.y;
+ this.z -= v.z;
+ this.w -= v.w;
+ return this;
+ }
- subScalar(s) {
- this.x -= s;
- this.y -= s;
- this.z -= s;
- this.w -= s;
- return this;
- }
+ subScalar(s) {
+ this.x -= s;
+ this.y -= s;
+ this.z -= s;
+ this.w -= s;
+ return this;
+ }
- subVectors(a, b) {
- this.x = a.x - b.x;
- this.y = a.y - b.y;
- this.z = a.z - b.z;
- this.w = a.w - b.w;
- return this;
- }
+ subVectors(a, b) {
+ this.x = a.x - b.x;
+ this.y = a.y - b.y;
+ this.z = a.z - b.z;
+ this.w = a.w - b.w;
+ return this;
+ }
- multiply(v) {
- this.x *= v.x;
- this.y *= v.y;
- this.z *= v.z;
- this.w *= v.w;
- return this;
- }
+ multiply(v) {
+ this.x *= v.x;
+ this.y *= v.y;
+ this.z *= v.z;
+ this.w *= v.w;
+ return this;
+ }
- multiplyScalar(scalar) {
- this.x *= scalar;
- this.y *= scalar;
- this.z *= scalar;
- this.w *= scalar;
- return this;
- }
+ multiplyScalar(scalar) {
+ this.x *= scalar;
+ this.y *= scalar;
+ this.z *= scalar;
+ this.w *= scalar;
+ return this;
+ }
- applyMatrix4(m) {
- const x = this.x,
+ applyMatrix4(m) {
+ const x = this.x,
y = this.y,
z = this.z,
w = this.w;
- const e = m.elements;
- this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w;
- this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w;
- this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w;
- this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w;
- return this;
- }
+ const e = m.elements;
+ this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w;
+ this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w;
+ this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w;
+ this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w;
+ return this;
+ }
- divideScalar(scalar) {
- return this.multiplyScalar(1 / scalar);
- }
+ divideScalar(scalar) {
+ return this.multiplyScalar(1 / scalar);
+ }
- setAxisAngleFromQuaternion(q) {
- // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
- // q is assumed to be normalized
- this.w = 2 * Math.acos(q.w);
- const s = Math.sqrt(1 - q.w * q.w);
+ setAxisAngleFromQuaternion(q) {
+ // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
+ // q is assumed to be normalized
+ this.w = 2 * Math.acos(q.w);
+ const s = Math.sqrt(1 - q.w * q.w);
- if (s < 0.0001) {
- this.x = 1;
- this.y = 0;
- this.z = 0;
- } else {
- this.x = q.x / s;
- this.y = q.y / s;
- this.z = q.z / s;
- }
+ if (s < 0.0001) {
+ this.x = 1;
+ this.y = 0;
+ this.z = 0;
+ } else {
+ this.x = q.x / s;
+ this.y = q.y / s;
+ this.z = q.z / s;
+ }
- return this;
- }
+ return this;
+ }
- setAxisAngleFromRotationMatrix(m) {
- // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
- // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
- let angle, x, y, z; // variables for result
+ setAxisAngleFromRotationMatrix(m) {
+ // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
+ // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
+ let angle, x, y, z; // variables for result
- const epsilon = 0.01,
+ const epsilon = 0.01,
// margin to allow for rounding errors
- epsilon2 = 0.1,
+ epsilon2 = 0.1,
// margin to distinguish between 0 and 180 degrees
- te = m.elements,
+ te = m.elements,
m11 = te[0],
m12 = te[4],
m13 = te[8],
m32 = te[6],
m33 = te[10];
- if (Math.abs(m12 - m21) < epsilon && Math.abs(m13 - m31) < epsilon && Math.abs(m23 - m32) < epsilon) {
- // singularity found
- // first check for identity matrix which must have +1 for all terms
- // in leading diagonal and zero in other terms
- if (Math.abs(m12 + m21) < epsilon2 && Math.abs(m13 + m31) < epsilon2 && Math.abs(m23 + m32) < epsilon2 && Math.abs(m11 + m22 + m33 - 3) < epsilon2) {
- // this singularity is identity matrix so angle = 0
- this.set(1, 0, 0, 0);
- return this; // zero angle, arbitrary axis
- } // otherwise this singularity is angle = 180
-
-
- angle = Math.PI;
- const xx = (m11 + 1) / 2;
- const yy = (m22 + 1) / 2;
- const zz = (m33 + 1) / 2;
- const xy = (m12 + m21) / 4;
- const xz = (m13 + m31) / 4;
- const yz = (m23 + m32) / 4;
-
- if (xx > yy && xx > zz) {
- // m11 is the largest diagonal term
- if (xx < epsilon) {
- x = 0;
- y = 0.707106781;
- z = 0.707106781;
- } else {
- x = Math.sqrt(xx);
- y = xy / x;
- z = xz / x;
- }
- } else if (yy > zz) {
- // m22 is the largest diagonal term
- if (yy < epsilon) {
- x = 0.707106781;
- y = 0;
- z = 0.707106781;
- } else {
- y = Math.sqrt(yy);
- x = xy / y;
- z = yz / y;
- }
- } else {
- // m33 is the largest diagonal term so base result on this
- if (zz < epsilon) {
- x = 0.707106781;
- y = 0.707106781;
- z = 0;
- } else {
- z = Math.sqrt(zz);
- x = xz / z;
- y = yz / z;
- }
- }
-
- this.set(x, y, z, angle);
- return this; // return 180 deg rotation
- } // as we have reached here there are no singularities so we can handle normally
-
-
- let s = Math.sqrt((m32 - m23) * (m32 - m23) + (m13 - m31) * (m13 - m31) + (m21 - m12) * (m21 - m12)); // used to normalize
-
- if (Math.abs(s) < 0.001) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be
- // caught by singularity test above, but I've left it in just in case
+ if (Math.abs(m12 - m21) < epsilon && Math.abs(m13 - m31) < epsilon && Math.abs(m23 - m32) < epsilon) {
+ // singularity found
+ // first check for identity matrix which must have +1 for all terms
+ // in leading diagonal and zero in other terms
+ if (Math.abs(m12 + m21) < epsilon2 && Math.abs(m13 + m31) < epsilon2 && Math.abs(m23 + m32) < epsilon2 && Math.abs(m11 + m22 + m33 - 3) < epsilon2) {
+ // this singularity is identity matrix so angle = 0
+ this.set(1, 0, 0, 0);
+ return this; // zero angle, arbitrary axis
+ } // otherwise this singularity is angle = 180
+
+
+ angle = Math.PI;
+ const xx = (m11 + 1) / 2;
+ const yy = (m22 + 1) / 2;
+ const zz = (m33 + 1) / 2;
+ const xy = (m12 + m21) / 4;
+ const xz = (m13 + m31) / 4;
+ const yz = (m23 + m32) / 4;
+
+ if (xx > yy && xx > zz) {
+ // m11 is the largest diagonal term
+ if (xx < epsilon) {
+ x = 0;
+ y = 0.707106781;
+ z = 0.707106781;
+ } else {
+ x = Math.sqrt(xx);
+ y = xy / x;
+ z = xz / x;
+ }
+ } else if (yy > zz) {
+ // m22 is the largest diagonal term
+ if (yy < epsilon) {
+ x = 0.707106781;
+ y = 0;
+ z = 0.707106781;
+ } else {
+ y = Math.sqrt(yy);
+ x = xy / y;
+ z = yz / y;
+ }
+ } else {
+ // m33 is the largest diagonal term so base result on this
+ if (zz < epsilon) {
+ x = 0.707106781;
+ y = 0.707106781;
+ z = 0;
+ } else {
+ z = Math.sqrt(zz);
+ x = xz / z;
+ y = yz / z;
+ }
+ }
- this.x = (m32 - m23) / s;
- this.y = (m13 - m31) / s;
- this.z = (m21 - m12) / s;
- this.w = Math.acos((m11 + m22 + m33 - 1) / 2);
- return this;
- }
+ this.set(x, y, z, angle);
+ return this; // return 180 deg rotation
+ } // as we have reached here there are no singularities so we can handle normally
- min(v) {
- this.x = Math.min(this.x, v.x);
- this.y = Math.min(this.y, v.y);
- this.z = Math.min(this.z, v.z);
- this.w = Math.min(this.w, v.w);
- return this;
- }
- max(v) {
- this.x = Math.max(this.x, v.x);
- this.y = Math.max(this.y, v.y);
- this.z = Math.max(this.z, v.z);
- this.w = Math.max(this.w, v.w);
- return this;
- }
+ let s = Math.sqrt((m32 - m23) * (m32 - m23) + (m13 - m31) * (m13 - m31) + (m21 - m12) * (m21 - m12)); // used to normalize
- clamp(min, max) {
- // assumes min < max, componentwise
- this.x = Math.max(min.x, Math.min(max.x, this.x));
- this.y = Math.max(min.y, Math.min(max.y, this.y));
- this.z = Math.max(min.z, Math.min(max.z, this.z));
- this.w = Math.max(min.w, Math.min(max.w, this.w));
- return this;
- }
+ if (Math.abs(s) < 0.001) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be
+ // caught by singularity test above, but I've left it in just in case
- clampScalar(minVal, maxVal) {
- this.x = Math.max(minVal, Math.min(maxVal, this.x));
- this.y = Math.max(minVal, Math.min(maxVal, this.y));
- this.z = Math.max(minVal, Math.min(maxVal, this.z));
- this.w = Math.max(minVal, Math.min(maxVal, this.w));
- return this;
- }
+ this.x = (m32 - m23) / s;
+ this.y = (m13 - m31) / s;
+ this.z = (m21 - m12) / s;
+ this.w = Math.acos((m11 + m22 + m33 - 1) / 2);
+ return this;
+ }
- clampLength(min, max) {
- const length = this.length();
- return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
- }
+ min(v) {
+ this.x = Math.min(this.x, v.x);
+ this.y = Math.min(this.y, v.y);
+ this.z = Math.min(this.z, v.z);
+ this.w = Math.min(this.w, v.w);
+ return this;
+ }
- floor() {
- this.x = Math.floor(this.x);
- this.y = Math.floor(this.y);
- this.z = Math.floor(this.z);
- this.w = Math.floor(this.w);
- return this;
- }
+ max(v) {
+ this.x = Math.max(this.x, v.x);
+ this.y = Math.max(this.y, v.y);
+ this.z = Math.max(this.z, v.z);
+ this.w = Math.max(this.w, v.w);
+ return this;
+ }
- ceil() {
- this.x = Math.ceil(this.x);
- this.y = Math.ceil(this.y);
- this.z = Math.ceil(this.z);
- this.w = Math.ceil(this.w);
- return this;
- }
+ clamp(min, max) {
+ // assumes min < max, componentwise
+ this.x = Math.max(min.x, Math.min(max.x, this.x));
+ this.y = Math.max(min.y, Math.min(max.y, this.y));
+ this.z = Math.max(min.z, Math.min(max.z, this.z));
+ this.w = Math.max(min.w, Math.min(max.w, this.w));
+ return this;
+ }
- round() {
- this.x = Math.round(this.x);
- this.y = Math.round(this.y);
- this.z = Math.round(this.z);
- this.w = Math.round(this.w);
- return this;
- }
+ clampScalar(minVal, maxVal) {
+ this.x = Math.max(minVal, Math.min(maxVal, this.x));
+ this.y = Math.max(minVal, Math.min(maxVal, this.y));
+ this.z = Math.max(minVal, Math.min(maxVal, this.z));
+ this.w = Math.max(minVal, Math.min(maxVal, this.w));
+ return this;
+ }
- roundToZero() {
- this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
- this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
- this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z);
- this.w = this.w < 0 ? Math.ceil(this.w) : Math.floor(this.w);
- return this;
- }
+ clampLength(min, max) {
+ const length = this.length();
+ return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
+ }
- negate() {
- this.x = -this.x;
- this.y = -this.y;
- this.z = -this.z;
- this.w = -this.w;
- return this;
- }
+ floor() {
+ this.x = Math.floor(this.x);
+ this.y = Math.floor(this.y);
+ this.z = Math.floor(this.z);
+ this.w = Math.floor(this.w);
+ return this;
+ }
- dot(v) {
- return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
- }
+ ceil() {
+ this.x = Math.ceil(this.x);
+ this.y = Math.ceil(this.y);
+ this.z = Math.ceil(this.z);
+ this.w = Math.ceil(this.w);
+ return this;
+ }
- lengthSq() {
- return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
- }
+ round() {
+ this.x = Math.round(this.x);
+ this.y = Math.round(this.y);
+ this.z = Math.round(this.z);
+ this.w = Math.round(this.w);
+ return this;
+ }
- length() {
- return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w);
- }
+ roundToZero() {
+ this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
+ this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
+ this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z);
+ this.w = this.w < 0 ? Math.ceil(this.w) : Math.floor(this.w);
+ return this;
+ }
- manhattanLength() {
- return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) + Math.abs(this.w);
- }
+ negate() {
+ this.x = -this.x;
+ this.y = -this.y;
+ this.z = -this.z;
+ this.w = -this.w;
+ return this;
+ }
- normalize() {
- return this.divideScalar(this.length() || 1);
- }
+ dot(v) {
+ return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
+ }
- setLength(length) {
- return this.normalize().multiplyScalar(length);
- }
+ lengthSq() {
+ return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
+ }
- lerp(v, alpha) {
- this.x += (v.x - this.x) * alpha;
- this.y += (v.y - this.y) * alpha;
- this.z += (v.z - this.z) * alpha;
- this.w += (v.w - this.w) * alpha;
- return this;
- }
+ length() {
+ return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w);
+ }
- lerpVectors(v1, v2, alpha) {
- this.x = v1.x + (v2.x - v1.x) * alpha;
- this.y = v1.y + (v2.y - v1.y) * alpha;
- this.z = v1.z + (v2.z - v1.z) * alpha;
- this.w = v1.w + (v2.w - v1.w) * alpha;
- return this;
- }
+ manhattanLength() {
+ return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) + Math.abs(this.w);
+ }
- equals(v) {
- return v.x === this.x && v.y === this.y && v.z === this.z && v.w === this.w;
- }
+ normalize() {
+ return this.divideScalar(this.length() || 1);
+ }
- fromArray(array, offset = 0) {
- this.x = array[offset];
- this.y = array[offset + 1];
- this.z = array[offset + 2];
- this.w = array[offset + 3];
- return this;
- }
+ setLength(length) {
+ return this.normalize().multiplyScalar(length);
+ }
- toArray(array = [], offset = 0) {
- array[offset] = this.x;
- array[offset + 1] = this.y;
- array[offset + 2] = this.z;
- array[offset + 3] = this.w;
- return array;
- }
+ lerp(v, alpha) {
+ this.x += (v.x - this.x) * alpha;
+ this.y += (v.y - this.y) * alpha;
+ this.z += (v.z - this.z) * alpha;
+ this.w += (v.w - this.w) * alpha;
+ return this;
+ }
- fromBufferAttribute(attribute, index, offset) {
- if (offset !== undefined) {
- console.warn('THREE.Vector4: offset has been removed from .fromBufferAttribute().');
- }
+ lerpVectors(v1, v2, alpha) {
+ this.x = v1.x + (v2.x - v1.x) * alpha;
+ this.y = v1.y + (v2.y - v1.y) * alpha;
+ this.z = v1.z + (v2.z - v1.z) * alpha;
+ this.w = v1.w + (v2.w - v1.w) * alpha;
+ return this;
+ }
- this.x = attribute.getX(index);
- this.y = attribute.getY(index);
- this.z = attribute.getZ(index);
- this.w = attribute.getW(index);
- return this;
- }
+ equals(v) {
+ return v.x === this.x && v.y === this.y && v.z === this.z && v.w === this.w;
+ }
- random() {
- this.x = Math.random();
- this.y = Math.random();
- this.z = Math.random();
- this.w = Math.random();
- return this;
- }
+ fromArray(array, offset = 0) {
+ this.x = array[offset];
+ this.y = array[offset + 1];
+ this.z = array[offset + 2];
+ this.w = array[offset + 3];
+ return this;
+ }
- }
+ toArray(array = [], offset = 0) {
+ array[offset] = this.x;
+ array[offset + 1] = this.y;
+ array[offset + 2] = this.z;
+ array[offset + 3] = this.w;
+ return array;
+ }
+
+ fromBufferAttribute(attribute, index, offset) {
+ if (offset !== undefined) {
+ console.warn('THREE.Vector4: offset has been removed from .fromBufferAttribute().');
+ }
+
+ this.x = attribute.getX(index);
+ this.y = attribute.getY(index);
+ this.z = attribute.getZ(index);
+ this.w = attribute.getW(index);
+ return this;
+ }
+
+ random() {
+ this.x = Math.random();
+ this.y = Math.random();
+ this.z = Math.random();
+ this.w = Math.random();
+ return this;
+ }
+
+ }
- Vector4.prototype.isVector4 = true;
+ Vector4.prototype.isVector4 = true;
- /*
+ /*
In options, we can specify:
* Texture parameters for an auto-generated target texture
* depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
*/
- class WebGLRenderTarget extends EventDispatcher {
- constructor(width, height, options = {}) {
- super();
- this.width = width;
- this.height = height;
- this.depth = 1;
- this.scissor = new Vector4(0, 0, width, height);
- this.scissorTest = false;
- this.viewport = new Vector4(0, 0, width, height);
- this.texture = new Texture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding);
- this.texture.isRenderTargetTexture = true;
- this.texture.image = {
- width: width,
- height: height,
- depth: 1
- };
- this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
- this.texture.internalFormat = options.internalFormat !== undefined ? options.internalFormat : null;
- this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
- this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
- this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false;
- this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;
- }
+ class WebGLRenderTarget extends EventDispatcher {
+ constructor(width, height, options = {}) {
+ super();
+ this.width = width;
+ this.height = height;
+ this.depth = 1;
+ this.scissor = new Vector4(0, 0, width, height);
+ this.scissorTest = false;
+ this.viewport = new Vector4(0, 0, width, height);
+ this.texture = new Texture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding);
+ this.texture.isRenderTargetTexture = true;
+ this.texture.image = {
+ width: width,
+ height: height,
+ depth: 1
+ };
+ this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
+ this.texture.internalFormat = options.internalFormat !== undefined ? options.internalFormat : null;
+ this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
+ this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
+ this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false;
+ this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;
+ }
+
+ setTexture(texture) {
+ texture.image = {
+ width: this.width,
+ height: this.height,
+ depth: this.depth
+ };
+ this.texture = texture;
+ }
+
+ setSize(width, height, depth = 1) {
+ if (this.width !== width || this.height !== height || this.depth !== depth) {
+ this.width = width;
+ this.height = height;
+ this.depth = depth;
+ this.texture.image.width = width;
+ this.texture.image.height = height;
+ this.texture.image.depth = depth;
+ this.dispose();
+ }
- setTexture(texture) {
- texture.image = {
- width: this.width,
- height: this.height,
- depth: this.depth
- };
- this.texture = texture;
- }
+ this.viewport.set(0, 0, width, height);
+ this.scissor.set(0, 0, width, height);
+ }
- setSize(width, height, depth = 1) {
- if (this.width !== width || this.height !== height || this.depth !== depth) {
- this.width = width;
- this.height = height;
- this.depth = depth;
- this.texture.image.width = width;
- this.texture.image.height = height;
- this.texture.image.depth = depth;
- this.dispose();
- }
+ clone() {
+ return new this.constructor().copy(this);
+ }
- this.viewport.set(0, 0, width, height);
- this.scissor.set(0, 0, width, height);
- }
+ copy(source) {
+ this.width = source.width;
+ this.height = source.height;
+ this.depth = source.depth;
+ this.viewport.copy(source.viewport);
+ this.texture = source.texture.clone();
+ this.texture.image = {
+ ...this.texture.image
+ }; // See #20328.
- clone() {
- return new this.constructor().copy(this);
- }
+ this.depthBuffer = source.depthBuffer;
+ this.stencilBuffer = source.stencilBuffer;
+ this.depthTexture = source.depthTexture;
+ return this;
+ }
- copy(source) {
- this.width = source.width;
- this.height = source.height;
- this.depth = source.depth;
- this.viewport.copy(source.viewport);
- this.texture = source.texture.clone();
- this.texture.image = { ...this.texture.image
- }; // See #20328.
-
- this.depthBuffer = source.depthBuffer;
- this.stencilBuffer = source.stencilBuffer;
- this.depthTexture = source.depthTexture;
- return this;
- }
+ dispose() {
+ this.dispatchEvent({
+ type: 'dispose'
+ });
+ }
- dispose() {
- this.dispatchEvent({
- type: 'dispose'
- });
- }
+ }
- }
+ WebGLRenderTarget.prototype.isWebGLRenderTarget = true;
- WebGLRenderTarget.prototype.isWebGLRenderTarget = true;
+ class WebGLMultipleRenderTargets extends WebGLRenderTarget {
+ constructor(width, height, count) {
+ super(width, height);
+ const texture = this.texture;
+ this.texture = [];
+
+ for (let i = 0; i < count; i++) {
+ this.texture[i] = texture.clone();
+ }
+ }
- class WebGLMultipleRenderTargets extends WebGLRenderTarget {
- constructor(width, height, count) {
- super(width, height);
- const texture = this.texture;
- this.texture = [];
+ setSize(width, height, depth = 1) {
+ if (this.width !== width || this.height !== height || this.depth !== depth) {
+ this.width = width;
+ this.height = height;
+ this.depth = depth;
- for (let i = 0; i < count; i++) {
- this.texture[i] = texture.clone();
- }
- }
+ for (let i = 0, il = this.texture.length; i < il; i++) {
+ this.texture[i].image.width = width;
+ this.texture[i].image.height = height;
+ this.texture[i].image.depth = depth;
+ }
- setSize(width, height, depth = 1) {
- if (this.width !== width || this.height !== height || this.depth !== depth) {
- this.width = width;
- this.height = height;
- this.depth = depth;
+ this.dispose();
+ }
- for (let i = 0, il = this.texture.length; i < il; i++) {
- this.texture[i].image.width = width;
- this.texture[i].image.height = height;
- this.texture[i].image.depth = depth;
+ this.viewport.set(0, 0, width, height);
+ this.scissor.set(0, 0, width, height);
+ return this;
}
- this.dispose();
- }
-
- this.viewport.set(0, 0, width, height);
- this.scissor.set(0, 0, width, height);
- return this;
- }
+ copy(source) {
+ this.dispose();
+ this.width = source.width;
+ this.height = source.height;
+ this.depth = source.depth;
+ this.viewport.set(0, 0, this.width, this.height);
+ this.scissor.set(0, 0, this.width, this.height);
+ this.depthBuffer = source.depthBuffer;
+ this.stencilBuffer = source.stencilBuffer;
+ this.depthTexture = source.depthTexture;
+ this.texture.length = 0;
+
+ for (let i = 0, il = source.texture.length; i < il; i++) {
+ this.texture[i] = source.texture[i].clone();
+ }
- copy(source) {
- this.dispose();
- this.width = source.width;
- this.height = source.height;
- this.depth = source.depth;
- this.viewport.set(0, 0, this.width, this.height);
- this.scissor.set(0, 0, this.width, this.height);
- this.depthBuffer = source.depthBuffer;
- this.stencilBuffer = source.stencilBuffer;
- this.depthTexture = source.depthTexture;
- this.texture.length = 0;
+ return this;
+ }
- for (let i = 0, il = source.texture.length; i < il; i++) {
- this.texture[i] = source.texture[i].clone();
}
- return this;
- }
-
- }
-
- WebGLMultipleRenderTargets.prototype.isWebGLMultipleRenderTargets = true;
+ WebGLMultipleRenderTargets.prototype.isWebGLMultipleRenderTargets = true;
- class WebGLMultisampleRenderTarget extends WebGLRenderTarget {
- constructor(width, height, options) {
- super(width, height, options);
- this.samples = 4;
- }
+ class WebGLMultisampleRenderTarget extends WebGLRenderTarget {
+ constructor(width, height, options) {
+ super(width, height, options);
+ this.samples = 4;
+ }
- copy(source) {
- super.copy.call(this, source);
- this.samples = source.samples;
- return this;
- }
+ copy(source) {
+ super.copy.call(this, source);
+ this.samples = source.samples;
+ return this;
+ }
- }
+ }
- WebGLMultisampleRenderTarget.prototype.isWebGLMultisampleRenderTarget = true;
+ WebGLMultisampleRenderTarget.prototype.isWebGLMultisampleRenderTarget = true;
- class Quaternion {
- constructor(x = 0, y = 0, z = 0, w = 1) {
- this._x = x;
- this._y = y;
- this._z = z;
- this._w = w;
- }
+ class Quaternion {
+ constructor(x = 0, y = 0, z = 0, w = 1) {
+ this._x = x;
+ this._y = y;
+ this._z = z;
+ this._w = w;
+ }
- static slerp(qa, qb, qm, t) {
- console.warn('THREE.Quaternion: Static .slerp() has been deprecated. Use qm.slerpQuaternions( qa, qb, t ) instead.');
- return qm.slerpQuaternions(qa, qb, t);
- }
+ static slerp(qa, qb, qm, t) {
+ console.warn('THREE.Quaternion: Static .slerp() has been deprecated. Use qm.slerpQuaternions( qa, qb, t ) instead.');
+ return qm.slerpQuaternions(qa, qb, t);
+ }
- static slerpFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) {
- // fuzz-free, array-based Quaternion SLERP operation
- let x0 = src0[srcOffset0 + 0],
- y0 = src0[srcOffset0 + 1],
- z0 = src0[srcOffset0 + 2],
- w0 = src0[srcOffset0 + 3];
- const x1 = src1[srcOffset1 + 0],
+ static slerpFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) {
+ // fuzz-free, array-based Quaternion SLERP operation
+ let x0 = src0[srcOffset0 + 0],
+ y0 = src0[srcOffset0 + 1],
+ z0 = src0[srcOffset0 + 2],
+ w0 = src0[srcOffset0 + 3];
+ const x1 = src1[srcOffset1 + 0],
y1 = src1[srcOffset1 + 1],
z1 = src1[srcOffset1 + 2],
w1 = src1[srcOffset1 + 3];
- if (t === 0) {
- dst[dstOffset + 0] = x0;
- dst[dstOffset + 1] = y0;
- dst[dstOffset + 2] = z0;
- dst[dstOffset + 3] = w0;
- return;
- }
+ if (t === 0) {
+ dst[dstOffset + 0] = x0;
+ dst[dstOffset + 1] = y0;
+ dst[dstOffset + 2] = z0;
+ dst[dstOffset + 3] = w0;
+ return;
+ }
- if (t === 1) {
- dst[dstOffset + 0] = x1;
- dst[dstOffset + 1] = y1;
- dst[dstOffset + 2] = z1;
- dst[dstOffset + 3] = w1;
- return;
- }
+ if (t === 1) {
+ dst[dstOffset + 0] = x1;
+ dst[dstOffset + 1] = y1;
+ dst[dstOffset + 2] = z1;
+ dst[dstOffset + 3] = w1;
+ return;
+ }
- if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) {
- let s = 1 - t;
- const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
+ if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) {
+ let s = 1 - t;
+ const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
dir = cos >= 0 ? 1 : -1,
sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems:
- if (sqrSin > Number.EPSILON) {
- const sin = Math.sqrt(sqrSin),
+ if (sqrSin > Number.EPSILON) {
+ const sin = Math.sqrt(sqrSin),
len = Math.atan2(sin, cos * dir);
- s = Math.sin(s * len) / sin;
- t = Math.sin(t * len) / sin;
- }
+ s = Math.sin(s * len) / sin;
+ t = Math.sin(t * len) / sin;
+ }
- const tDir = t * dir;
- x0 = x0 * s + x1 * tDir;
- y0 = y0 * s + y1 * tDir;
- z0 = z0 * s + z1 * tDir;
- w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp:
+ const tDir = t * dir;
+ x0 = x0 * s + x1 * tDir;
+ y0 = y0 * s + y1 * tDir;
+ z0 = z0 * s + z1 * tDir;
+ w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp:
+
+ if (s === 1 - t) {
+ const f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0);
+ x0 *= f;
+ y0 *= f;
+ z0 *= f;
+ w0 *= f;
+ }
+ }
- if (s === 1 - t) {
- const f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0);
- x0 *= f;
- y0 *= f;
- z0 *= f;
- w0 *= f;
+ dst[dstOffset] = x0;
+ dst[dstOffset + 1] = y0;
+ dst[dstOffset + 2] = z0;
+ dst[dstOffset + 3] = w0;
}
- }
-
- dst[dstOffset] = x0;
- dst[dstOffset + 1] = y0;
- dst[dstOffset + 2] = z0;
- dst[dstOffset + 3] = w0;
- }
- static multiplyQuaternionsFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1) {
- const x0 = src0[srcOffset0];
- const y0 = src0[srcOffset0 + 1];
- const z0 = src0[srcOffset0 + 2];
- const w0 = src0[srcOffset0 + 3];
- const x1 = src1[srcOffset1];
- const y1 = src1[srcOffset1 + 1];
- const z1 = src1[srcOffset1 + 2];
- const w1 = src1[srcOffset1 + 3];
- dst[dstOffset] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
- dst[dstOffset + 1] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
- dst[dstOffset + 2] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
- dst[dstOffset + 3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;
- return dst;
- }
+ static multiplyQuaternionsFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1) {
+ const x0 = src0[srcOffset0];
+ const y0 = src0[srcOffset0 + 1];
+ const z0 = src0[srcOffset0 + 2];
+ const w0 = src0[srcOffset0 + 3];
+ const x1 = src1[srcOffset1];
+ const y1 = src1[srcOffset1 + 1];
+ const z1 = src1[srcOffset1 + 2];
+ const w1 = src1[srcOffset1 + 3];
+ dst[dstOffset] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
+ dst[dstOffset + 1] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
+ dst[dstOffset + 2] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
+ dst[dstOffset + 3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;
+ return dst;
+ }
- get x() {
- return this._x;
- }
+ get x() {
+ return this._x;
+ }
- set x(value) {
- this._x = value;
+ set x(value) {
+ this._x = value;
- this._onChangeCallback();
- }
+ this._onChangeCallback();
+ }
- get y() {
- return this._y;
- }
+ get y() {
+ return this._y;
+ }
- set y(value) {
- this._y = value;
+ set y(value) {
+ this._y = value;
- this._onChangeCallback();
- }
+ this._onChangeCallback();
+ }
- get z() {
- return this._z;
- }
+ get z() {
+ return this._z;
+ }
- set z(value) {
- this._z = value;
+ set z(value) {
+ this._z = value;
- this._onChangeCallback();
- }
+ this._onChangeCallback();
+ }
- get w() {
- return this._w;
- }
+ get w() {
+ return this._w;
+ }
- set w(value) {
- this._w = value;
+ set w(value) {
+ this._w = value;
- this._onChangeCallback();
- }
+ this._onChangeCallback();
+ }
- set(x, y, z, w) {
- this._x = x;
- this._y = y;
- this._z = z;
- this._w = w;
+ set(x, y, z, w) {
+ this._x = x;
+ this._y = y;
+ this._z = z;
+ this._w = w;
- this._onChangeCallback();
+ this._onChangeCallback();
- return this;
- }
+ return this;
+ }
- clone() {
- return new this.constructor(this._x, this._y, this._z, this._w);
- }
+ clone() {
+ return new this.constructor(this._x, this._y, this._z, this._w);
+ }
- copy(quaternion) {
- this._x = quaternion.x;
- this._y = quaternion.y;
- this._z = quaternion.z;
- this._w = quaternion.w;
+ copy(quaternion) {
+ this._x = quaternion.x;
+ this._y = quaternion.y;
+ this._z = quaternion.z;
+ this._w = quaternion.w;
- this._onChangeCallback();
+ this._onChangeCallback();
- return this;
- }
+ return this;
+ }
- setFromEuler(euler, update) {
- if (!(euler && euler.isEuler)) {
- throw new Error('THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.');
- }
+ setFromEuler(euler, update) {
+ if (!(euler && euler.isEuler)) {
+ throw new Error('THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.');
+ }
- const x = euler._x,
+ const x = euler._x,
y = euler._y,
z = euler._z,
order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/
- // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
- // content/SpinCalc.m
-
- const cos = Math.cos;
- const sin = Math.sin;
- const c1 = cos(x / 2);
- const c2 = cos(y / 2);
- const c3 = cos(z / 2);
- const s1 = sin(x / 2);
- const s2 = sin(y / 2);
- const s3 = sin(z / 2);
-
- switch (order) {
- case 'XYZ':
- this._x = s1 * c2 * c3 + c1 * s2 * s3;
- this._y = c1 * s2 * c3 - s1 * c2 * s3;
- this._z = c1 * c2 * s3 + s1 * s2 * c3;
- this._w = c1 * c2 * c3 - s1 * s2 * s3;
- break;
-
- case 'YXZ':
- this._x = s1 * c2 * c3 + c1 * s2 * s3;
- this._y = c1 * s2 * c3 - s1 * c2 * s3;
- this._z = c1 * c2 * s3 - s1 * s2 * c3;
- this._w = c1 * c2 * c3 + s1 * s2 * s3;
- break;
-
- case 'ZXY':
- this._x = s1 * c2 * c3 - c1 * s2 * s3;
- this._y = c1 * s2 * c3 + s1 * c2 * s3;
- this._z = c1 * c2 * s3 + s1 * s2 * c3;
- this._w = c1 * c2 * c3 - s1 * s2 * s3;
- break;
-
- case 'ZYX':
- this._x = s1 * c2 * c3 - c1 * s2 * s3;
- this._y = c1 * s2 * c3 + s1 * c2 * s3;
- this._z = c1 * c2 * s3 - s1 * s2 * c3;
- this._w = c1 * c2 * c3 + s1 * s2 * s3;
- break;
-
- case 'YZX':
- this._x = s1 * c2 * c3 + c1 * s2 * s3;
- this._y = c1 * s2 * c3 + s1 * c2 * s3;
- this._z = c1 * c2 * s3 - s1 * s2 * c3;
- this._w = c1 * c2 * c3 - s1 * s2 * s3;
- break;
-
- case 'XZY':
- this._x = s1 * c2 * c3 - c1 * s2 * s3;
- this._y = c1 * s2 * c3 - s1 * c2 * s3;
- this._z = c1 * c2 * s3 + s1 * s2 * c3;
- this._w = c1 * c2 * c3 + s1 * s2 * s3;
- break;
-
- default:
- console.warn('THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order);
- }
-
- if (update !== false) this._onChangeCallback();
- return this;
- }
+ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
+ // content/SpinCalc.m
+
+ const cos = Math.cos;
+ const sin = Math.sin;
+ const c1 = cos(x / 2);
+ const c2 = cos(y / 2);
+ const c3 = cos(z / 2);
+ const s1 = sin(x / 2);
+ const s2 = sin(y / 2);
+ const s3 = sin(z / 2);
+
+ switch (order) {
+ case 'XYZ':
+ this._x = s1 * c2 * c3 + c1 * s2 * s3;
+ this._y = c1 * s2 * c3 - s1 * c2 * s3;
+ this._z = c1 * c2 * s3 + s1 * s2 * c3;
+ this._w = c1 * c2 * c3 - s1 * s2 * s3;
+ break;
+
+ case 'YXZ':
+ this._x = s1 * c2 * c3 + c1 * s2 * s3;
+ this._y = c1 * s2 * c3 - s1 * c2 * s3;
+ this._z = c1 * c2 * s3 - s1 * s2 * c3;
+ this._w = c1 * c2 * c3 + s1 * s2 * s3;
+ break;
- setFromAxisAngle(axis, angle) {
- // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
- // assumes axis is normalized
- const halfAngle = angle / 2,
+ case 'ZXY':
+ this._x = s1 * c2 * c3 - c1 * s2 * s3;
+ this._y = c1 * s2 * c3 + s1 * c2 * s3;
+ this._z = c1 * c2 * s3 + s1 * s2 * c3;
+ this._w = c1 * c2 * c3 - s1 * s2 * s3;
+ break;
+
+ case 'ZYX':
+ this._x = s1 * c2 * c3 - c1 * s2 * s3;
+ this._y = c1 * s2 * c3 + s1 * c2 * s3;
+ this._z = c1 * c2 * s3 - s1 * s2 * c3;
+ this._w = c1 * c2 * c3 + s1 * s2 * s3;
+ break;
+
+ case 'YZX':
+ this._x = s1 * c2 * c3 + c1 * s2 * s3;
+ this._y = c1 * s2 * c3 + s1 * c2 * s3;
+ this._z = c1 * c2 * s3 - s1 * s2 * c3;
+ this._w = c1 * c2 * c3 - s1 * s2 * s3;
+ break;
+
+ case 'XZY':
+ this._x = s1 * c2 * c3 - c1 * s2 * s3;
+ this._y = c1 * s2 * c3 - s1 * c2 * s3;
+ this._z = c1 * c2 * s3 + s1 * s2 * c3;
+ this._w = c1 * c2 * c3 + s1 * s2 * s3;
+ break;
+
+ default:
+ console.warn('THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order);
+ }
+
+ if (update !== false) this._onChangeCallback();
+ return this;
+ }
+
+ setFromAxisAngle(axis, angle) {
+ // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
+ // assumes axis is normalized
+ const halfAngle = angle / 2,
s = Math.sin(halfAngle);
- this._x = axis.x * s;
- this._y = axis.y * s;
- this._z = axis.z * s;
- this._w = Math.cos(halfAngle);
+ this._x = axis.x * s;
+ this._y = axis.y * s;
+ this._z = axis.z * s;
+ this._w = Math.cos(halfAngle);
- this._onChangeCallback();
+ this._onChangeCallback();
- return this;
- }
+ return this;
+ }
- setFromRotationMatrix(m) {
- // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
- // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
- const te = m.elements,
+ setFromRotationMatrix(m) {
+ // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
+ // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
+ const te = m.elements,
m11 = te[0],
m12 = te[4],
m13 = te[8],
m33 = te[10],
trace = m11 + m22 + m33;
- if (trace > 0) {
- const s = 0.5 / Math.sqrt(trace + 1.0);
- this._w = 0.25 / s;
- this._x = (m32 - m23) * s;
- this._y = (m13 - m31) * s;
- this._z = (m21 - m12) * s;
- } else if (m11 > m22 && m11 > m33) {
- const s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33);
- this._w = (m32 - m23) / s;
- this._x = 0.25 * s;
- this._y = (m12 + m21) / s;
- this._z = (m13 + m31) / s;
- } else if (m22 > m33) {
- const s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33);
- this._w = (m13 - m31) / s;
- this._x = (m12 + m21) / s;
- this._y = 0.25 * s;
- this._z = (m23 + m32) / s;
- } else {
- const s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22);
- this._w = (m21 - m12) / s;
- this._x = (m13 + m31) / s;
- this._y = (m23 + m32) / s;
- this._z = 0.25 * s;
- }
+ if (trace > 0) {
+ const s = 0.5 / Math.sqrt(trace + 1.0);
+ this._w = 0.25 / s;
+ this._x = (m32 - m23) * s;
+ this._y = (m13 - m31) * s;
+ this._z = (m21 - m12) * s;
+ } else if (m11 > m22 && m11 > m33) {
+ const s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33);
+ this._w = (m32 - m23) / s;
+ this._x = 0.25 * s;
+ this._y = (m12 + m21) / s;
+ this._z = (m13 + m31) / s;
+ } else if (m22 > m33) {
+ const s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33);
+ this._w = (m13 - m31) / s;
+ this._x = (m12 + m21) / s;
+ this._y = 0.25 * s;
+ this._z = (m23 + m32) / s;
+ } else {
+ const s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22);
+ this._w = (m21 - m12) / s;
+ this._x = (m13 + m31) / s;
+ this._y = (m23 + m32) / s;
+ this._z = 0.25 * s;
+ }
- this._onChangeCallback();
+ this._onChangeCallback();
- return this;
- }
+ return this;
+ }
- setFromUnitVectors(vFrom, vTo) {
- // assumes direction vectors vFrom and vTo are normalized
- let r = vFrom.dot(vTo) + 1;
+ setFromUnitVectors(vFrom, vTo) {
+ // assumes direction vectors vFrom and vTo are normalized
+ let r = vFrom.dot(vTo) + 1;
- if (r < Number.EPSILON) {
- // vFrom and vTo point in opposite directions
- r = 0;
+ if (r < Number.EPSILON) {
+ // vFrom and vTo point in opposite directions
+ r = 0;
- if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) {
- this._x = -vFrom.y;
- this._y = vFrom.x;
- this._z = 0;
- this._w = r;
- } else {
- this._x = 0;
- this._y = -vFrom.z;
- this._z = vFrom.y;
- this._w = r;
- }
- } else {
- // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
- this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
- this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
- this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
- this._w = r;
- }
+ if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) {
+ this._x = -vFrom.y;
+ this._y = vFrom.x;
+ this._z = 0;
+ this._w = r;
+ } else {
+ this._x = 0;
+ this._y = -vFrom.z;
+ this._z = vFrom.y;
+ this._w = r;
+ }
+ } else {
+ // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
+ this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
+ this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
+ this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
+ this._w = r;
+ }
- return this.normalize();
- }
+ return this.normalize();
+ }
- angleTo(q) {
- return 2 * Math.acos(Math.abs(clamp(this.dot(q), -1, 1)));
- }
+ angleTo(q) {
+ return 2 * Math.acos(Math.abs(clamp(this.dot(q), -1, 1)));
+ }
- rotateTowards(q, step) {
- const angle = this.angleTo(q);
- if (angle === 0) return this;
- const t = Math.min(1, step / angle);
- this.slerp(q, t);
- return this;
- }
+ rotateTowards(q, step) {
+ const angle = this.angleTo(q);
+ if (angle === 0) return this;
+ const t = Math.min(1, step / angle);
+ this.slerp(q, t);
+ return this;
+ }
- identity() {
- return this.set(0, 0, 0, 1);
- }
+ identity() {
+ return this.set(0, 0, 0, 1);
+ }
- invert() {
- // quaternion is assumed to have unit length
- return this.conjugate();
- }
+ invert() {
+ // quaternion is assumed to have unit length
+ return this.conjugate();
+ }
- conjugate() {
- this._x *= -1;
- this._y *= -1;
- this._z *= -1;
+ conjugate() {
+ this._x *= -1;
+ this._y *= -1;
+ this._z *= -1;
- this._onChangeCallback();
+ this._onChangeCallback();
- return this;
- }
+ return this;
+ }
- dot(v) {
- return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
- }
+ dot(v) {
+ return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
+ }
- lengthSq() {
- return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
- }
+ lengthSq() {
+ return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
+ }
- length() {
- return Math.sqrt(this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w);
- }
+ length() {
+ return Math.sqrt(this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w);
+ }
- normalize() {
- let l = this.length();
+ normalize() {
+ let l = this.length();
- if (l === 0) {
- this._x = 0;
- this._y = 0;
- this._z = 0;
- this._w = 1;
- } else {
- l = 1 / l;
- this._x = this._x * l;
- this._y = this._y * l;
- this._z = this._z * l;
- this._w = this._w * l;
- }
+ if (l === 0) {
+ this._x = 0;
+ this._y = 0;
+ this._z = 0;
+ this._w = 1;
+ } else {
+ l = 1 / l;
+ this._x = this._x * l;
+ this._y = this._y * l;
+ this._z = this._z * l;
+ this._w = this._w * l;
+ }
- this._onChangeCallback();
+ this._onChangeCallback();
- return this;
- }
+ return this;
+ }
- multiply(q, p) {
- if (p !== undefined) {
- console.warn('THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.');
- return this.multiplyQuaternions(q, p);
- }
+ multiply(q, p) {
+ if (p !== undefined) {
+ console.warn('THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.');
+ return this.multiplyQuaternions(q, p);
+ }
- return this.multiplyQuaternions(this, q);
- }
+ return this.multiplyQuaternions(this, q);
+ }
- premultiply(q) {
- return this.multiplyQuaternions(q, this);
- }
+ premultiply(q) {
+ return this.multiplyQuaternions(q, this);
+ }
- multiplyQuaternions(a, b) {
- // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
- const qax = a._x,
+ multiplyQuaternions(a, b) {
+ // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
+ const qax = a._x,
qay = a._y,
qaz = a._z,
qaw = a._w;
- const qbx = b._x,
+ const qbx = b._x,
qby = b._y,
qbz = b._z,
qbw = b._w;
- this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
- this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
- this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
- this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
+ this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
+ this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
+ this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
+ this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
- this._onChangeCallback();
+ this._onChangeCallback();
- return this;
- }
+ return this;
+ }
- slerp(qb, t) {
- if (t === 0) return this;
- if (t === 1) return this.copy(qb);
- const x = this._x,
+ slerp(qb, t) {
+ if (t === 0) return this;
+ if (t === 1) return this.copy(qb);
+ const x = this._x,
y = this._y,
z = this._z,
w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
- let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
+ let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
- if (cosHalfTheta < 0) {
- this._w = -qb._w;
- this._x = -qb._x;
- this._y = -qb._y;
- this._z = -qb._z;
- cosHalfTheta = -cosHalfTheta;
- } else {
- this.copy(qb);
- }
+ if (cosHalfTheta < 0) {
+ this._w = -qb._w;
+ this._x = -qb._x;
+ this._y = -qb._y;
+ this._z = -qb._z;
+ cosHalfTheta = -cosHalfTheta;
+ } else {
+ this.copy(qb);
+ }
- if (cosHalfTheta >= 1.0) {
- this._w = w;
- this._x = x;
- this._y = y;
- this._z = z;
- return this;
- }
+ if (cosHalfTheta >= 1.0) {
+ this._w = w;
+ this._x = x;
+ this._y = y;
+ this._z = z;
+ return this;
+ }
- const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;
+ const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;
- if (sqrSinHalfTheta <= Number.EPSILON) {
- const s = 1 - t;
- this._w = s * w + t * this._w;
- this._x = s * x + t * this._x;
- this._y = s * y + t * this._y;
- this._z = s * z + t * this._z;
- this.normalize();
+ if (sqrSinHalfTheta <= Number.EPSILON) {
+ const s = 1 - t;
+ this._w = s * w + t * this._w;
+ this._x = s * x + t * this._x;
+ this._y = s * y + t * this._y;
+ this._z = s * z + t * this._z;
+ this.normalize();
- this._onChangeCallback();
+ this._onChangeCallback();
- return this;
- }
+ return this;
+ }
- const sinHalfTheta = Math.sqrt(sqrSinHalfTheta);
- const halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta);
- const ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta,
+ const sinHalfTheta = Math.sqrt(sqrSinHalfTheta);
+ const halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta);
+ const ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta,
ratioB = Math.sin(t * halfTheta) / sinHalfTheta;
- this._w = w * ratioA + this._w * ratioB;
- this._x = x * ratioA + this._x * ratioB;
- this._y = y * ratioA + this._y * ratioB;
- this._z = z * ratioA + this._z * ratioB;
+ this._w = w * ratioA + this._w * ratioB;
+ this._x = x * ratioA + this._x * ratioB;
+ this._y = y * ratioA + this._y * ratioB;
+ this._z = z * ratioA + this._z * ratioB;
- this._onChangeCallback();
+ this._onChangeCallback();
- return this;
- }
+ return this;
+ }
- slerpQuaternions(qa, qb, t) {
- this.copy(qa).slerp(qb, t);
- }
+ slerpQuaternions(qa, qb, t) {
+ this.copy(qa).slerp(qb, t);
+ }
- equals(quaternion) {
- return quaternion._x === this._x && quaternion._y === this._y && quaternion._z === this._z && quaternion._w === this._w;
- }
+ equals(quaternion) {
+ return quaternion._x === this._x && quaternion._y === this._y && quaternion._z === this._z && quaternion._w === this._w;
+ }
- fromArray(array, offset = 0) {
- this._x = array[offset];
- this._y = array[offset + 1];
- this._z = array[offset + 2];
- this._w = array[offset + 3];
+ fromArray(array, offset = 0) {
+ this._x = array[offset];
+ this._y = array[offset + 1];
+ this._z = array[offset + 2];
+ this._w = array[offset + 3];
- this._onChangeCallback();
+ this._onChangeCallback();
- return this;
- }
+ return this;
+ }
- toArray(array = [], offset = 0) {
- array[offset] = this._x;
- array[offset + 1] = this._y;
- array[offset + 2] = this._z;
- array[offset + 3] = this._w;
- return array;
- }
+ toArray(array = [], offset = 0) {
+ array[offset] = this._x;
+ array[offset + 1] = this._y;
+ array[offset + 2] = this._z;
+ array[offset + 3] = this._w;
+ return array;
+ }
- fromBufferAttribute(attribute, index) {
- this._x = attribute.getX(index);
- this._y = attribute.getY(index);
- this._z = attribute.getZ(index);
- this._w = attribute.getW(index);
- return this;
- }
+ fromBufferAttribute(attribute, index) {
+ this._x = attribute.getX(index);
+ this._y = attribute.getY(index);
+ this._z = attribute.getZ(index);
+ this._w = attribute.getW(index);
+ return this;
+ }
- _onChange(callback) {
- this._onChangeCallback = callback;
- return this;
- }
+ _onChange(callback) {
+ this._onChangeCallback = callback;
+ return this;
+ }
- _onChangeCallback() {}
+ _onChangeCallback() {
+ }
- }
+ }
- Quaternion.prototype.isQuaternion = true;
+ Quaternion.prototype.isQuaternion = true;
- class Vector3 {
- constructor(x = 0, y = 0, z = 0) {
- this.x = x;
- this.y = y;
- this.z = z;
- }
+ class Vector3 {
+ constructor(x = 0, y = 0, z = 0) {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ }
- set(x, y, z) {
- if (z === undefined) z = this.z; // sprite.scale.set(x,y)
+ set(x, y, z) {
+ if (z === undefined) z = this.z; // sprite.scale.set(x,y)
- this.x = x;
- this.y = y;
- this.z = z;
- return this;
- }
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ return this;
+ }
- setScalar(scalar) {
- this.x = scalar;
- this.y = scalar;
- this.z = scalar;
- return this;
- }
+ setScalar(scalar) {
+ this.x = scalar;
+ this.y = scalar;
+ this.z = scalar;
+ return this;
+ }
- setX(x) {
- this.x = x;
- return this;
- }
+ setX(x) {
+ this.x = x;
+ return this;
+ }
- setY(y) {
- this.y = y;
- return this;
- }
+ setY(y) {
+ this.y = y;
+ return this;
+ }
- setZ(z) {
- this.z = z;
- return this;
- }
+ setZ(z) {
+ this.z = z;
+ return this;
+ }
- setComponent(index, value) {
- switch (index) {
- case 0:
- this.x = value;
- break;
+ setComponent(index, value) {
+ switch (index) {
+ case 0:
+ this.x = value;
+ break;
- case 1:
- this.y = value;
- break;
+ case 1:
+ this.y = value;
+ break;
- case 2:
- this.z = value;
- break;
+ case 2:
+ this.z = value;
+ break;
- default:
- throw new Error('index is out of range: ' + index);
- }
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
- return this;
- }
+ return this;
+ }
- getComponent(index) {
- switch (index) {
- case 0:
- return this.x;
+ getComponent(index) {
+ switch (index) {
+ case 0:
+ return this.x;
- case 1:
- return this.y;
+ case 1:
+ return this.y;
- case 2:
- return this.z;
+ case 2:
+ return this.z;
- default:
- throw new Error('index is out of range: ' + index);
- }
- }
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
+ }
- clone() {
- return new this.constructor(this.x, this.y, this.z);
- }
+ clone() {
+ return new this.constructor(this.x, this.y, this.z);
+ }
- copy(v) {
- this.x = v.x;
- this.y = v.y;
- this.z = v.z;
- return this;
- }
+ copy(v) {
+ this.x = v.x;
+ this.y = v.y;
+ this.z = v.z;
+ return this;
+ }
- add(v, w) {
- if (w !== undefined) {
- console.warn('THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
- return this.addVectors(v, w);
- }
+ add(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
+ return this.addVectors(v, w);
+ }
- this.x += v.x;
- this.y += v.y;
- this.z += v.z;
- return this;
- }
+ this.x += v.x;
+ this.y += v.y;
+ this.z += v.z;
+ return this;
+ }
- addScalar(s) {
- this.x += s;
- this.y += s;
- this.z += s;
- return this;
- }
+ addScalar(s) {
+ this.x += s;
+ this.y += s;
+ this.z += s;
+ return this;
+ }
- addVectors(a, b) {
- this.x = a.x + b.x;
- this.y = a.y + b.y;
- this.z = a.z + b.z;
- return this;
- }
+ addVectors(a, b) {
+ this.x = a.x + b.x;
+ this.y = a.y + b.y;
+ this.z = a.z + b.z;
+ return this;
+ }
- addScaledVector(v, s) {
- this.x += v.x * s;
- this.y += v.y * s;
- this.z += v.z * s;
- return this;
- }
+ addScaledVector(v, s) {
+ this.x += v.x * s;
+ this.y += v.y * s;
+ this.z += v.z * s;
+ return this;
+ }
- sub(v, w) {
- if (w !== undefined) {
- console.warn('THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
- return this.subVectors(v, w);
- }
+ sub(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
+ return this.subVectors(v, w);
+ }
- this.x -= v.x;
- this.y -= v.y;
- this.z -= v.z;
- return this;
- }
+ this.x -= v.x;
+ this.y -= v.y;
+ this.z -= v.z;
+ return this;
+ }
- subScalar(s) {
- this.x -= s;
- this.y -= s;
- this.z -= s;
- return this;
- }
+ subScalar(s) {
+ this.x -= s;
+ this.y -= s;
+ this.z -= s;
+ return this;
+ }
- subVectors(a, b) {
- this.x = a.x - b.x;
- this.y = a.y - b.y;
- this.z = a.z - b.z;
- return this;
- }
+ subVectors(a, b) {
+ this.x = a.x - b.x;
+ this.y = a.y - b.y;
+ this.z = a.z - b.z;
+ return this;
+ }
- multiply(v, w) {
- if (w !== undefined) {
- console.warn('THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.');
- return this.multiplyVectors(v, w);
- }
+ multiply(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.');
+ return this.multiplyVectors(v, w);
+ }
- this.x *= v.x;
- this.y *= v.y;
- this.z *= v.z;
- return this;
- }
+ this.x *= v.x;
+ this.y *= v.y;
+ this.z *= v.z;
+ return this;
+ }
- multiplyScalar(scalar) {
- this.x *= scalar;
- this.y *= scalar;
- this.z *= scalar;
- return this;
- }
+ multiplyScalar(scalar) {
+ this.x *= scalar;
+ this.y *= scalar;
+ this.z *= scalar;
+ return this;
+ }
- multiplyVectors(a, b) {
- this.x = a.x * b.x;
- this.y = a.y * b.y;
- this.z = a.z * b.z;
- return this;
- }
+ multiplyVectors(a, b) {
+ this.x = a.x * b.x;
+ this.y = a.y * b.y;
+ this.z = a.z * b.z;
+ return this;
+ }
- applyEuler(euler) {
- if (!(euler && euler.isEuler)) {
- console.error('THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.');
- }
+ applyEuler(euler) {
+ if (!(euler && euler.isEuler)) {
+ console.error('THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.');
+ }
- return this.applyQuaternion(_quaternion$4.setFromEuler(euler));
- }
+ return this.applyQuaternion(_quaternion$4.setFromEuler(euler));
+ }
- applyAxisAngle(axis, angle) {
- return this.applyQuaternion(_quaternion$4.setFromAxisAngle(axis, angle));
- }
+ applyAxisAngle(axis, angle) {
+ return this.applyQuaternion(_quaternion$4.setFromAxisAngle(axis, angle));
+ }
- applyMatrix3(m) {
- const x = this.x,
+ applyMatrix3(m) {
+ const x = this.x,
y = this.y,
z = this.z;
- const e = m.elements;
- this.x = e[0] * x + e[3] * y + e[6] * z;
- this.y = e[1] * x + e[4] * y + e[7] * z;
- this.z = e[2] * x + e[5] * y + e[8] * z;
- return this;
- }
+ const e = m.elements;
+ this.x = e[0] * x + e[3] * y + e[6] * z;
+ this.y = e[1] * x + e[4] * y + e[7] * z;
+ this.z = e[2] * x + e[5] * y + e[8] * z;
+ return this;
+ }
- applyNormalMatrix(m) {
- return this.applyMatrix3(m).normalize();
- }
+ applyNormalMatrix(m) {
+ return this.applyMatrix3(m).normalize();
+ }
- applyMatrix4(m) {
- const x = this.x,
+ applyMatrix4(m) {
+ const x = this.x,
y = this.y,
z = this.z;
- const e = m.elements;
- const w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]);
- this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w;
- this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w;
- this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w;
- return this;
- }
+ const e = m.elements;
+ const w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]);
+ this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w;
+ this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w;
+ this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w;
+ return this;
+ }
- applyQuaternion(q) {
- const x = this.x,
+ applyQuaternion(q) {
+ const x = this.x,
y = this.y,
z = this.z;
- const qx = q.x,
+ const qx = q.x,
qy = q.y,
qz = q.z,
qw = q.w; // calculate quat * vector
- const ix = qw * x + qy * z - qz * y;
- const iy = qw * y + qz * x - qx * z;
- const iz = qw * z + qx * y - qy * x;
- const iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat
+ const ix = qw * x + qy * z - qz * y;
+ const iy = qw * y + qz * x - qx * z;
+ const iz = qw * z + qx * y - qy * x;
+ const iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat
- this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
- this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
- this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
- return this;
- }
+ this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
+ this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
+ this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
+ return this;
+ }
- project(camera) {
- return this.applyMatrix4(camera.matrixWorldInverse).applyMatrix4(camera.projectionMatrix);
- }
+ project(camera) {
+ return this.applyMatrix4(camera.matrixWorldInverse).applyMatrix4(camera.projectionMatrix);
+ }
- unproject(camera) {
- return this.applyMatrix4(camera.projectionMatrixInverse).applyMatrix4(camera.matrixWorld);
- }
+ unproject(camera) {
+ return this.applyMatrix4(camera.projectionMatrixInverse).applyMatrix4(camera.matrixWorld);
+ }
- transformDirection(m) {
- // input: THREE.Matrix4 affine matrix
- // vector interpreted as a direction
- const x = this.x,
+ transformDirection(m) {
+ // input: THREE.Matrix4 affine matrix
+ // vector interpreted as a direction
+ const x = this.x,
y = this.y,
z = this.z;
- const e = m.elements;
- this.x = e[0] * x + e[4] * y + e[8] * z;
- this.y = e[1] * x + e[5] * y + e[9] * z;
- this.z = e[2] * x + e[6] * y + e[10] * z;
- return this.normalize();
- }
+ const e = m.elements;
+ this.x = e[0] * x + e[4] * y + e[8] * z;
+ this.y = e[1] * x + e[5] * y + e[9] * z;
+ this.z = e[2] * x + e[6] * y + e[10] * z;
+ return this.normalize();
+ }
- divide(v) {
- this.x /= v.x;
- this.y /= v.y;
- this.z /= v.z;
- return this;
- }
+ divide(v) {
+ this.x /= v.x;
+ this.y /= v.y;
+ this.z /= v.z;
+ return this;
+ }
- divideScalar(scalar) {
- return this.multiplyScalar(1 / scalar);
- }
+ divideScalar(scalar) {
+ return this.multiplyScalar(1 / scalar);
+ }
- min(v) {
- this.x = Math.min(this.x, v.x);
- this.y = Math.min(this.y, v.y);
- this.z = Math.min(this.z, v.z);
- return this;
- }
+ min(v) {
+ this.x = Math.min(this.x, v.x);
+ this.y = Math.min(this.y, v.y);
+ this.z = Math.min(this.z, v.z);
+ return this;
+ }
- max(v) {
- this.x = Math.max(this.x, v.x);
- this.y = Math.max(this.y, v.y);
- this.z = Math.max(this.z, v.z);
- return this;
- }
+ max(v) {
+ this.x = Math.max(this.x, v.x);
+ this.y = Math.max(this.y, v.y);
+ this.z = Math.max(this.z, v.z);
+ return this;
+ }
- clamp(min, max) {
- // assumes min < max, componentwise
- this.x = Math.max(min.x, Math.min(max.x, this.x));
- this.y = Math.max(min.y, Math.min(max.y, this.y));
- this.z = Math.max(min.z, Math.min(max.z, this.z));
- return this;
- }
+ clamp(min, max) {
+ // assumes min < max, componentwise
+ this.x = Math.max(min.x, Math.min(max.x, this.x));
+ this.y = Math.max(min.y, Math.min(max.y, this.y));
+ this.z = Math.max(min.z, Math.min(max.z, this.z));
+ return this;
+ }
- clampScalar(minVal, maxVal) {
- this.x = Math.max(minVal, Math.min(maxVal, this.x));
- this.y = Math.max(minVal, Math.min(maxVal, this.y));
- this.z = Math.max(minVal, Math.min(maxVal, this.z));
- return this;
- }
+ clampScalar(minVal, maxVal) {
+ this.x = Math.max(minVal, Math.min(maxVal, this.x));
+ this.y = Math.max(minVal, Math.min(maxVal, this.y));
+ this.z = Math.max(minVal, Math.min(maxVal, this.z));
+ return this;
+ }
- clampLength(min, max) {
- const length = this.length();
- return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
- }
+ clampLength(min, max) {
+ const length = this.length();
+ return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
+ }
- floor() {
- this.x = Math.floor(this.x);
- this.y = Math.floor(this.y);
- this.z = Math.floor(this.z);
- return this;
- }
+ floor() {
+ this.x = Math.floor(this.x);
+ this.y = Math.floor(this.y);
+ this.z = Math.floor(this.z);
+ return this;
+ }
- ceil() {
- this.x = Math.ceil(this.x);
- this.y = Math.ceil(this.y);
- this.z = Math.ceil(this.z);
- return this;
- }
+ ceil() {
+ this.x = Math.ceil(this.x);
+ this.y = Math.ceil(this.y);
+ this.z = Math.ceil(this.z);
+ return this;
+ }
- round() {
- this.x = Math.round(this.x);
- this.y = Math.round(this.y);
- this.z = Math.round(this.z);
- return this;
- }
+ round() {
+ this.x = Math.round(this.x);
+ this.y = Math.round(this.y);
+ this.z = Math.round(this.z);
+ return this;
+ }
- roundToZero() {
- this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
- this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
- this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z);
- return this;
- }
+ roundToZero() {
+ this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
+ this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
+ this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z);
+ return this;
+ }
- negate() {
- this.x = -this.x;
- this.y = -this.y;
- this.z = -this.z;
- return this;
- }
+ negate() {
+ this.x = -this.x;
+ this.y = -this.y;
+ this.z = -this.z;
+ return this;
+ }
- dot(v) {
- return this.x * v.x + this.y * v.y + this.z * v.z;
- } // TODO lengthSquared?
+ dot(v) {
+ return this.x * v.x + this.y * v.y + this.z * v.z;
+ } // TODO lengthSquared?
- lengthSq() {
- return this.x * this.x + this.y * this.y + this.z * this.z;
- }
+ lengthSq() {
+ return this.x * this.x + this.y * this.y + this.z * this.z;
+ }
- length() {
- return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
- }
+ length() {
+ return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
+ }
- manhattanLength() {
- return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z);
- }
+ manhattanLength() {
+ return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z);
+ }
- normalize() {
- return this.divideScalar(this.length() || 1);
- }
+ normalize() {
+ return this.divideScalar(this.length() || 1);
+ }
- setLength(length) {
- return this.normalize().multiplyScalar(length);
- }
+ setLength(length) {
+ return this.normalize().multiplyScalar(length);
+ }
- lerp(v, alpha) {
- this.x += (v.x - this.x) * alpha;
- this.y += (v.y - this.y) * alpha;
- this.z += (v.z - this.z) * alpha;
- return this;
- }
+ lerp(v, alpha) {
+ this.x += (v.x - this.x) * alpha;
+ this.y += (v.y - this.y) * alpha;
+ this.z += (v.z - this.z) * alpha;
+ return this;
+ }
- lerpVectors(v1, v2, alpha) {
- this.x = v1.x + (v2.x - v1.x) * alpha;
- this.y = v1.y + (v2.y - v1.y) * alpha;
- this.z = v1.z + (v2.z - v1.z) * alpha;
- return this;
- }
+ lerpVectors(v1, v2, alpha) {
+ this.x = v1.x + (v2.x - v1.x) * alpha;
+ this.y = v1.y + (v2.y - v1.y) * alpha;
+ this.z = v1.z + (v2.z - v1.z) * alpha;
+ return this;
+ }
- cross(v, w) {
- if (w !== undefined) {
- console.warn('THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.');
- return this.crossVectors(v, w);
- }
+ cross(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.');
+ return this.crossVectors(v, w);
+ }
- return this.crossVectors(this, v);
- }
+ return this.crossVectors(this, v);
+ }
- crossVectors(a, b) {
- const ax = a.x,
+ crossVectors(a, b) {
+ const ax = a.x,
ay = a.y,
az = a.z;
- const bx = b.x,
+ const bx = b.x,
by = b.y,
bz = b.z;
- this.x = ay * bz - az * by;
- this.y = az * bx - ax * bz;
- this.z = ax * by - ay * bx;
- return this;
- }
+ this.x = ay * bz - az * by;
+ this.y = az * bx - ax * bz;
+ this.z = ax * by - ay * bx;
+ return this;
+ }
- projectOnVector(v) {
- const denominator = v.lengthSq();
- if (denominator === 0) return this.set(0, 0, 0);
- const scalar = v.dot(this) / denominator;
- return this.copy(v).multiplyScalar(scalar);
- }
+ projectOnVector(v) {
+ const denominator = v.lengthSq();
+ if (denominator === 0) return this.set(0, 0, 0);
+ const scalar = v.dot(this) / denominator;
+ return this.copy(v).multiplyScalar(scalar);
+ }
- projectOnPlane(planeNormal) {
- _vector$c.copy(this).projectOnVector(planeNormal);
+ projectOnPlane(planeNormal) {
+ _vector$c.copy(this).projectOnVector(planeNormal);
- return this.sub(_vector$c);
- }
+ return this.sub(_vector$c);
+ }
- reflect(normal) {
- // reflect incident vector off plane orthogonal to normal
- // normal is assumed to have unit length
- return this.sub(_vector$c.copy(normal).multiplyScalar(2 * this.dot(normal)));
- }
+ reflect(normal) {
+ // reflect incident vector off plane orthogonal to normal
+ // normal is assumed to have unit length
+ return this.sub(_vector$c.copy(normal).multiplyScalar(2 * this.dot(normal)));
+ }
- angleTo(v) {
- const denominator = Math.sqrt(this.lengthSq() * v.lengthSq());
- if (denominator === 0) return Math.PI / 2;
- const theta = this.dot(v) / denominator; // clamp, to handle numerical problems
+ angleTo(v) {
+ const denominator = Math.sqrt(this.lengthSq() * v.lengthSq());
+ if (denominator === 0) return Math.PI / 2;
+ const theta = this.dot(v) / denominator; // clamp, to handle numerical problems
- return Math.acos(clamp(theta, -1, 1));
- }
+ return Math.acos(clamp(theta, -1, 1));
+ }
- distanceTo(v) {
- return Math.sqrt(this.distanceToSquared(v));
- }
+ distanceTo(v) {
+ return Math.sqrt(this.distanceToSquared(v));
+ }
- distanceToSquared(v) {
- const dx = this.x - v.x,
+ distanceToSquared(v) {
+ const dx = this.x - v.x,
dy = this.y - v.y,
dz = this.z - v.z;
- return dx * dx + dy * dy + dz * dz;
- }
+ return dx * dx + dy * dy + dz * dz;
+ }
- manhattanDistanceTo(v) {
- return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z);
- }
+ manhattanDistanceTo(v) {
+ return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z);
+ }
- setFromSpherical(s) {
- return this.setFromSphericalCoords(s.radius, s.phi, s.theta);
- }
+ setFromSpherical(s) {
+ return this.setFromSphericalCoords(s.radius, s.phi, s.theta);
+ }
- setFromSphericalCoords(radius, phi, theta) {
- const sinPhiRadius = Math.sin(phi) * radius;
- this.x = sinPhiRadius * Math.sin(theta);
- this.y = Math.cos(phi) * radius;
- this.z = sinPhiRadius * Math.cos(theta);
- return this;
- }
+ setFromSphericalCoords(radius, phi, theta) {
+ const sinPhiRadius = Math.sin(phi) * radius;
+ this.x = sinPhiRadius * Math.sin(theta);
+ this.y = Math.cos(phi) * radius;
+ this.z = sinPhiRadius * Math.cos(theta);
+ return this;
+ }
- setFromCylindrical(c) {
- return this.setFromCylindricalCoords(c.radius, c.theta, c.y);
- }
+ setFromCylindrical(c) {
+ return this.setFromCylindricalCoords(c.radius, c.theta, c.y);
+ }
- setFromCylindricalCoords(radius, theta, y) {
- this.x = radius * Math.sin(theta);
- this.y = y;
- this.z = radius * Math.cos(theta);
- return this;
- }
+ setFromCylindricalCoords(radius, theta, y) {
+ this.x = radius * Math.sin(theta);
+ this.y = y;
+ this.z = radius * Math.cos(theta);
+ return this;
+ }
- setFromMatrixPosition(m) {
- const e = m.elements;
- this.x = e[12];
- this.y = e[13];
- this.z = e[14];
- return this;
- }
+ setFromMatrixPosition(m) {
+ const e = m.elements;
+ this.x = e[12];
+ this.y = e[13];
+ this.z = e[14];
+ return this;
+ }
- setFromMatrixScale(m) {
- const sx = this.setFromMatrixColumn(m, 0).length();
- const sy = this.setFromMatrixColumn(m, 1).length();
- const sz = this.setFromMatrixColumn(m, 2).length();
- this.x = sx;
- this.y = sy;
- this.z = sz;
- return this;
- }
+ setFromMatrixScale(m) {
+ const sx = this.setFromMatrixColumn(m, 0).length();
+ const sy = this.setFromMatrixColumn(m, 1).length();
+ const sz = this.setFromMatrixColumn(m, 2).length();
+ this.x = sx;
+ this.y = sy;
+ this.z = sz;
+ return this;
+ }
- setFromMatrixColumn(m, index) {
- return this.fromArray(m.elements, index * 4);
- }
+ setFromMatrixColumn(m, index) {
+ return this.fromArray(m.elements, index * 4);
+ }
- setFromMatrix3Column(m, index) {
- return this.fromArray(m.elements, index * 3);
- }
+ setFromMatrix3Column(m, index) {
+ return this.fromArray(m.elements, index * 3);
+ }
- equals(v) {
- return v.x === this.x && v.y === this.y && v.z === this.z;
- }
+ equals(v) {
+ return v.x === this.x && v.y === this.y && v.z === this.z;
+ }
- fromArray(array, offset = 0) {
- this.x = array[offset];
- this.y = array[offset + 1];
- this.z = array[offset + 2];
- return this;
- }
+ fromArray(array, offset = 0) {
+ this.x = array[offset];
+ this.y = array[offset + 1];
+ this.z = array[offset + 2];
+ return this;
+ }
- toArray(array = [], offset = 0) {
- array[offset] = this.x;
- array[offset + 1] = this.y;
- array[offset + 2] = this.z;
- return array;
- }
+ toArray(array = [], offset = 0) {
+ array[offset] = this.x;
+ array[offset + 1] = this.y;
+ array[offset + 2] = this.z;
+ return array;
+ }
- fromBufferAttribute(attribute, index, offset) {
- if (offset !== undefined) {
- console.warn('THREE.Vector3: offset has been removed from .fromBufferAttribute().');
- }
+ fromBufferAttribute(attribute, index, offset) {
+ if (offset !== undefined) {
+ console.warn('THREE.Vector3: offset has been removed from .fromBufferAttribute().');
+ }
- this.x = attribute.getX(index);
- this.y = attribute.getY(index);
- this.z = attribute.getZ(index);
- return this;
- }
+ this.x = attribute.getX(index);
+ this.y = attribute.getY(index);
+ this.z = attribute.getZ(index);
+ return this;
+ }
- random() {
- this.x = Math.random();
- this.y = Math.random();
- this.z = Math.random();
- return this;
- }
+ random() {
+ this.x = Math.random();
+ this.y = Math.random();
+ this.z = Math.random();
+ return this;
+ }
- }
+ }
- Vector3.prototype.isVector3 = true;
+ Vector3.prototype.isVector3 = true;
- const _vector$c = /*@__PURE__*/new Vector3();
+ const _vector$c = /*@__PURE__*/new Vector3();
- const _quaternion$4 = /*@__PURE__*/new Quaternion();
+ const _quaternion$4 = /*@__PURE__*/new Quaternion();
- class Box3 {
- constructor(min = new Vector3(+Infinity, +Infinity, +Infinity), max = new Vector3(-Infinity, -Infinity, -Infinity)) {
- this.min = min;
- this.max = max;
- }
+ class Box3 {
+ constructor(min = new Vector3(+Infinity, +Infinity, +Infinity), max = new Vector3(-Infinity, -Infinity, -Infinity)) {
+ this.min = min;
+ this.max = max;
+ }
- set(min, max) {
- this.min.copy(min);
- this.max.copy(max);
- return this;
- }
+ set(min, max) {
+ this.min.copy(min);
+ this.max.copy(max);
+ return this;
+ }
- setFromArray(array) {
- let minX = +Infinity;
- let minY = +Infinity;
- let minZ = +Infinity;
- let maxX = -Infinity;
- let maxY = -Infinity;
- let maxZ = -Infinity;
-
- for (let i = 0, l = array.length; i < l; i += 3) {
- const x = array[i];
- const y = array[i + 1];
- const z = array[i + 2];
- if (x < minX) minX = x;
- if (y < minY) minY = y;
- if (z < minZ) minZ = z;
- if (x > maxX) maxX = x;
- if (y > maxY) maxY = y;
- if (z > maxZ) maxZ = z;
- }
-
- this.min.set(minX, minY, minZ);
- this.max.set(maxX, maxY, maxZ);
- return this;
- }
+ setFromArray(array) {
+ let minX = +Infinity;
+ let minY = +Infinity;
+ let minZ = +Infinity;
+ let maxX = -Infinity;
+ let maxY = -Infinity;
+ let maxZ = -Infinity;
+
+ for (let i = 0, l = array.length; i < l; i += 3) {
+ const x = array[i];
+ const y = array[i + 1];
+ const z = array[i + 2];
+ if (x < minX) minX = x;
+ if (y < minY) minY = y;
+ if (z < minZ) minZ = z;
+ if (x > maxX) maxX = x;
+ if (y > maxY) maxY = y;
+ if (z > maxZ) maxZ = z;
+ }
- setFromBufferAttribute(attribute) {
- let minX = +Infinity;
- let minY = +Infinity;
- let minZ = +Infinity;
- let maxX = -Infinity;
- let maxY = -Infinity;
- let maxZ = -Infinity;
-
- for (let i = 0, l = attribute.count; i < l; i++) {
- const x = attribute.getX(i);
- const y = attribute.getY(i);
- const z = attribute.getZ(i);
- if (x < minX) minX = x;
- if (y < minY) minY = y;
- if (z < minZ) minZ = z;
- if (x > maxX) maxX = x;
- if (y > maxY) maxY = y;
- if (z > maxZ) maxZ = z;
- }
-
- this.min.set(minX, minY, minZ);
- this.max.set(maxX, maxY, maxZ);
- return this;
- }
+ this.min.set(minX, minY, minZ);
+ this.max.set(maxX, maxY, maxZ);
+ return this;
+ }
- setFromPoints(points) {
- this.makeEmpty();
+ setFromBufferAttribute(attribute) {
+ let minX = +Infinity;
+ let minY = +Infinity;
+ let minZ = +Infinity;
+ let maxX = -Infinity;
+ let maxY = -Infinity;
+ let maxZ = -Infinity;
+
+ for (let i = 0, l = attribute.count; i < l; i++) {
+ const x = attribute.getX(i);
+ const y = attribute.getY(i);
+ const z = attribute.getZ(i);
+ if (x < minX) minX = x;
+ if (y < minY) minY = y;
+ if (z < minZ) minZ = z;
+ if (x > maxX) maxX = x;
+ if (y > maxY) maxY = y;
+ if (z > maxZ) maxZ = z;
+ }
- for (let i = 0, il = points.length; i < il; i++) {
- this.expandByPoint(points[i]);
- }
+ this.min.set(minX, minY, minZ);
+ this.max.set(maxX, maxY, maxZ);
+ return this;
+ }
- return this;
- }
+ setFromPoints(points) {
+ this.makeEmpty();
- setFromCenterAndSize(center, size) {
- const halfSize = _vector$b.copy(size).multiplyScalar(0.5);
+ for (let i = 0, il = points.length; i < il; i++) {
+ this.expandByPoint(points[i]);
+ }
- this.min.copy(center).sub(halfSize);
- this.max.copy(center).add(halfSize);
- return this;
- }
+ return this;
+ }
- setFromObject(object) {
- this.makeEmpty();
- return this.expandByObject(object);
- }
+ setFromCenterAndSize(center, size) {
+ const halfSize = _vector$b.copy(size).multiplyScalar(0.5);
- clone() {
- return new this.constructor().copy(this);
- }
+ this.min.copy(center).sub(halfSize);
+ this.max.copy(center).add(halfSize);
+ return this;
+ }
- copy(box) {
- this.min.copy(box.min);
- this.max.copy(box.max);
- return this;
- }
+ setFromObject(object) {
+ this.makeEmpty();
+ return this.expandByObject(object);
+ }
- makeEmpty() {
- this.min.x = this.min.y = this.min.z = +Infinity;
- this.max.x = this.max.y = this.max.z = -Infinity;
- return this;
- }
+ clone() {
+ return new this.constructor().copy(this);
+ }
- isEmpty() {
- // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
- return this.max.x < this.min.x || this.max.y < this.min.y || this.max.z < this.min.z;
- }
+ copy(box) {
+ this.min.copy(box.min);
+ this.max.copy(box.max);
+ return this;
+ }
- getCenter(target) {
- return this.isEmpty() ? target.set(0, 0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5);
- }
+ makeEmpty() {
+ this.min.x = this.min.y = this.min.z = +Infinity;
+ this.max.x = this.max.y = this.max.z = -Infinity;
+ return this;
+ }
- getSize(target) {
- return this.isEmpty() ? target.set(0, 0, 0) : target.subVectors(this.max, this.min);
- }
+ isEmpty() {
+ // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
+ return this.max.x < this.min.x || this.max.y < this.min.y || this.max.z < this.min.z;
+ }
- expandByPoint(point) {
- this.min.min(point);
- this.max.max(point);
- return this;
- }
+ getCenter(target) {
+ return this.isEmpty() ? target.set(0, 0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5);
+ }
- expandByVector(vector) {
- this.min.sub(vector);
- this.max.add(vector);
- return this;
- }
+ getSize(target) {
+ return this.isEmpty() ? target.set(0, 0, 0) : target.subVectors(this.max, this.min);
+ }
- expandByScalar(scalar) {
- this.min.addScalar(-scalar);
- this.max.addScalar(scalar);
- return this;
- }
+ expandByPoint(point) {
+ this.min.min(point);
+ this.max.max(point);
+ return this;
+ }
- expandByObject(object) {
- // Computes the world-axis-aligned bounding box of an object (including its children),
- // accounting for both the object's, and children's, world transforms
- object.updateWorldMatrix(false, false);
- const geometry = object.geometry;
+ expandByVector(vector) {
+ this.min.sub(vector);
+ this.max.add(vector);
+ return this;
+ }
- if (geometry !== undefined) {
- if (geometry.boundingBox === null) {
- geometry.computeBoundingBox();
+ expandByScalar(scalar) {
+ this.min.addScalar(-scalar);
+ this.max.addScalar(scalar);
+ return this;
}
- _box$3.copy(geometry.boundingBox);
+ expandByObject(object) {
+ // Computes the world-axis-aligned bounding box of an object (including its children),
+ // accounting for both the object's, and children's, world transforms
+ object.updateWorldMatrix(false, false);
+ const geometry = object.geometry;
- _box$3.applyMatrix4(object.matrixWorld);
+ if (geometry !== undefined) {
+ if (geometry.boundingBox === null) {
+ geometry.computeBoundingBox();
+ }
- this.union(_box$3);
- }
+ _box$3.copy(geometry.boundingBox);
- const children = object.children;
+ _box$3.applyMatrix4(object.matrixWorld);
- for (let i = 0, l = children.length; i < l; i++) {
- this.expandByObject(children[i]);
- }
+ this.union(_box$3);
+ }
- return this;
- }
+ const children = object.children;
- containsPoint(point) {
- return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true;
- }
+ for (let i = 0, l = children.length; i < l; i++) {
+ this.expandByObject(children[i]);
+ }
- containsBox(box) {
- return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z;
- }
+ return this;
+ }
- getParameter(point, target) {
- // This can potentially have a divide by zero if the box
- // has a size dimension of 0.
- return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y), (point.z - this.min.z) / (this.max.z - this.min.z));
- }
+ containsPoint(point) {
+ return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true;
+ }
- intersectsBox(box) {
- // using 6 splitting planes to rule out intersections.
- return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true;
- }
+ containsBox(box) {
+ return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z;
+ }
- intersectsSphere(sphere) {
- // Find the point on the AABB closest to the sphere center.
- this.clampPoint(sphere.center, _vector$b); // If that point is inside the sphere, the AABB and sphere intersect.
+ getParameter(point, target) {
+ // This can potentially have a divide by zero if the box
+ // has a size dimension of 0.
+ return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y), (point.z - this.min.z) / (this.max.z - this.min.z));
+ }
- return _vector$b.distanceToSquared(sphere.center) <= sphere.radius * sphere.radius;
- }
+ intersectsBox(box) {
+ // using 6 splitting planes to rule out intersections.
+ return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true;
+ }
- intersectsPlane(plane) {
- // We compute the minimum and maximum dot product values. If those values
- // are on the same side (back or front) of the plane, then there is no intersection.
- let min, max;
+ intersectsSphere(sphere) {
+ // Find the point on the AABB closest to the sphere center.
+ this.clampPoint(sphere.center, _vector$b); // If that point is inside the sphere, the AABB and sphere intersect.
- if (plane.normal.x > 0) {
- min = plane.normal.x * this.min.x;
- max = plane.normal.x * this.max.x;
- } else {
- min = plane.normal.x * this.max.x;
- max = plane.normal.x * this.min.x;
- }
+ return _vector$b.distanceToSquared(sphere.center) <= sphere.radius * sphere.radius;
+ }
- if (plane.normal.y > 0) {
- min += plane.normal.y * this.min.y;
- max += plane.normal.y * this.max.y;
- } else {
- min += plane.normal.y * this.max.y;
- max += plane.normal.y * this.min.y;
- }
+ intersectsPlane(plane) {
+ // We compute the minimum and maximum dot product values. If those values
+ // are on the same side (back or front) of the plane, then there is no intersection.
+ let min, max;
- if (plane.normal.z > 0) {
- min += plane.normal.z * this.min.z;
- max += plane.normal.z * this.max.z;
- } else {
- min += plane.normal.z * this.max.z;
- max += plane.normal.z * this.min.z;
- }
+ if (plane.normal.x > 0) {
+ min = plane.normal.x * this.min.x;
+ max = plane.normal.x * this.max.x;
+ } else {
+ min = plane.normal.x * this.max.x;
+ max = plane.normal.x * this.min.x;
+ }
- return min <= -plane.constant && max >= -plane.constant;
- }
+ if (plane.normal.y > 0) {
+ min += plane.normal.y * this.min.y;
+ max += plane.normal.y * this.max.y;
+ } else {
+ min += plane.normal.y * this.max.y;
+ max += plane.normal.y * this.min.y;
+ }
- intersectsTriangle(triangle) {
- if (this.isEmpty()) {
- return false;
- } // compute box center and extents
+ if (plane.normal.z > 0) {
+ min += plane.normal.z * this.min.z;
+ max += plane.normal.z * this.max.z;
+ } else {
+ min += plane.normal.z * this.max.z;
+ max += plane.normal.z * this.min.z;
+ }
+ return min <= -plane.constant && max >= -plane.constant;
+ }
- this.getCenter(_center);
+ intersectsTriangle(triangle) {
+ if (this.isEmpty()) {
+ return false;
+ } // compute box center and extents
- _extents.subVectors(this.max, _center); // translate triangle to aabb origin
+ this.getCenter(_center);
- _v0$2.subVectors(triangle.a, _center);
+ _extents.subVectors(this.max, _center); // translate triangle to aabb origin
- _v1$7.subVectors(triangle.b, _center);
- _v2$3.subVectors(triangle.c, _center); // compute edge vectors for triangle
+ _v0$2.subVectors(triangle.a, _center);
+ _v1$7.subVectors(triangle.b, _center);
- _f0.subVectors(_v1$7, _v0$2);
+ _v2$3.subVectors(triangle.c, _center); // compute edge vectors for triangle
- _f1.subVectors(_v2$3, _v1$7);
- _f2.subVectors(_v0$2, _v2$3); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
- // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
- // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
+ _f0.subVectors(_v1$7, _v0$2);
+ _f1.subVectors(_v2$3, _v1$7);
- let axes = [0, -_f0.z, _f0.y, 0, -_f1.z, _f1.y, 0, -_f2.z, _f2.y, _f0.z, 0, -_f0.x, _f1.z, 0, -_f1.x, _f2.z, 0, -_f2.x, -_f0.y, _f0.x, 0, -_f1.y, _f1.x, 0, -_f2.y, _f2.x, 0];
+ _f2.subVectors(_v0$2, _v2$3); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
+ // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
+ // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
- if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) {
- return false;
- } // test 3 face normals from the aabb
+ let axes = [0, -_f0.z, _f0.y, 0, -_f1.z, _f1.y, 0, -_f2.z, _f2.y, _f0.z, 0, -_f0.x, _f1.z, 0, -_f1.x, _f2.z, 0, -_f2.x, -_f0.y, _f0.x, 0, -_f1.y, _f1.x, 0, -_f2.y, _f2.x, 0];
- axes = [1, 0, 0, 0, 1, 0, 0, 0, 1];
+ if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) {
+ return false;
+ } // test 3 face normals from the aabb
- if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) {
- return false;
- } // finally testing the face normal of the triangle
- // use already existing triangle edge vectors here
+ axes = [1, 0, 0, 0, 1, 0, 0, 0, 1];
- _triangleNormal.crossVectors(_f0, _f1);
+ if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) {
+ return false;
+ } // finally testing the face normal of the triangle
+ // use already existing triangle edge vectors here
- axes = [_triangleNormal.x, _triangleNormal.y, _triangleNormal.z];
- return satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents);
- }
- clampPoint(point, target) {
- return target.copy(point).clamp(this.min, this.max);
- }
+ _triangleNormal.crossVectors(_f0, _f1);
- distanceToPoint(point) {
- const clampedPoint = _vector$b.copy(point).clamp(this.min, this.max);
+ axes = [_triangleNormal.x, _triangleNormal.y, _triangleNormal.z];
+ return satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents);
+ }
- return clampedPoint.sub(point).length();
- }
+ clampPoint(point, target) {
+ return target.copy(point).clamp(this.min, this.max);
+ }
- getBoundingSphere(target) {
- this.getCenter(target.center);
- target.radius = this.getSize(_vector$b).length() * 0.5;
- return target;
- }
+ distanceToPoint(point) {
+ const clampedPoint = _vector$b.copy(point).clamp(this.min, this.max);
- intersect(box) {
- this.min.max(box.min);
- this.max.min(box.max); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
+ return clampedPoint.sub(point).length();
+ }
- if (this.isEmpty()) this.makeEmpty();
- return this;
- }
+ getBoundingSphere(target) {
+ this.getCenter(target.center);
+ target.radius = this.getSize(_vector$b).length() * 0.5;
+ return target;
+ }
- union(box) {
- this.min.min(box.min);
- this.max.max(box.max);
- return this;
- }
+ intersect(box) {
+ this.min.max(box.min);
+ this.max.min(box.max); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
- applyMatrix4(matrix) {
- // transform of empty box is an empty box.
- if (this.isEmpty()) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below
+ if (this.isEmpty()) this.makeEmpty();
+ return this;
+ }
- _points[0].set(this.min.x, this.min.y, this.min.z).applyMatrix4(matrix); // 000
+ union(box) {
+ this.min.min(box.min);
+ this.max.max(box.max);
+ return this;
+ }
+ applyMatrix4(matrix) {
+ // transform of empty box is an empty box.
+ if (this.isEmpty()) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below
- _points[1].set(this.min.x, this.min.y, this.max.z).applyMatrix4(matrix); // 001
+ _points[0].set(this.min.x, this.min.y, this.min.z).applyMatrix4(matrix); // 000
- _points[2].set(this.min.x, this.max.y, this.min.z).applyMatrix4(matrix); // 010
+ _points[1].set(this.min.x, this.min.y, this.max.z).applyMatrix4(matrix); // 001
- _points[3].set(this.min.x, this.max.y, this.max.z).applyMatrix4(matrix); // 011
+ _points[2].set(this.min.x, this.max.y, this.min.z).applyMatrix4(matrix); // 010
- _points[4].set(this.max.x, this.min.y, this.min.z).applyMatrix4(matrix); // 100
+ _points[3].set(this.min.x, this.max.y, this.max.z).applyMatrix4(matrix); // 011
- _points[5].set(this.max.x, this.min.y, this.max.z).applyMatrix4(matrix); // 101
+ _points[4].set(this.max.x, this.min.y, this.min.z).applyMatrix4(matrix); // 100
- _points[6].set(this.max.x, this.max.y, this.min.z).applyMatrix4(matrix); // 110
+ _points[5].set(this.max.x, this.min.y, this.max.z).applyMatrix4(matrix); // 101
- _points[7].set(this.max.x, this.max.y, this.max.z).applyMatrix4(matrix); // 111
+ _points[6].set(this.max.x, this.max.y, this.min.z).applyMatrix4(matrix); // 110
- this.setFromPoints(_points);
- return this;
- }
+ _points[7].set(this.max.x, this.max.y, this.max.z).applyMatrix4(matrix); // 111
- translate(offset) {
- this.min.add(offset);
- this.max.add(offset);
- return this;
- }
- equals(box) {
- return box.min.equals(this.min) && box.max.equals(this.max);
- }
+ this.setFromPoints(_points);
+ return this;
+ }
- }
+ translate(offset) {
+ this.min.add(offset);
+ this.max.add(offset);
+ return this;
+ }
- Box3.prototype.isBox3 = true;
- const _points = [/*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3()];
+ equals(box) {
+ return box.min.equals(this.min) && box.max.equals(this.max);
+ }
- const _vector$b = /*@__PURE__*/new Vector3();
+ }
- const _box$3 = /*@__PURE__*/new Box3(); // triangle centered vertices
+ Box3.prototype.isBox3 = true;
+ const _points = [/*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3()];
+ const _vector$b = /*@__PURE__*/new Vector3();
- const _v0$2 = /*@__PURE__*/new Vector3();
+ const _box$3 = /*@__PURE__*/new Box3(); // triangle centered vertices
- const _v1$7 = /*@__PURE__*/new Vector3();
- const _v2$3 = /*@__PURE__*/new Vector3(); // triangle edge vectors
+ const _v0$2 = /*@__PURE__*/new Vector3();
+ const _v1$7 = /*@__PURE__*/new Vector3();
- const _f0 = /*@__PURE__*/new Vector3();
+ const _v2$3 = /*@__PURE__*/new Vector3(); // triangle edge vectors
- const _f1 = /*@__PURE__*/new Vector3();
- const _f2 = /*@__PURE__*/new Vector3();
+ const _f0 = /*@__PURE__*/new Vector3();
- const _center = /*@__PURE__*/new Vector3();
+ const _f1 = /*@__PURE__*/new Vector3();
- const _extents = /*@__PURE__*/new Vector3();
+ const _f2 = /*@__PURE__*/new Vector3();
- const _triangleNormal = /*@__PURE__*/new Vector3();
+ const _center = /*@__PURE__*/new Vector3();
- const _testAxis = /*@__PURE__*/new Vector3();
+ const _extents = /*@__PURE__*/new Vector3();
- function satForAxes(axes, v0, v1, v2, extents) {
- for (let i = 0, j = axes.length - 3; i <= j; i += 3) {
- _testAxis.fromArray(axes, i); // project the aabb onto the seperating axis
+ const _triangleNormal = /*@__PURE__*/new Vector3();
+ const _testAxis = /*@__PURE__*/new Vector3();
- const r = extents.x * Math.abs(_testAxis.x) + extents.y * Math.abs(_testAxis.y) + extents.z * Math.abs(_testAxis.z); // project all 3 vertices of the triangle onto the seperating axis
+ function satForAxes(axes, v0, v1, v2, extents) {
+ for (let i = 0, j = axes.length - 3; i <= j; i += 3) {
+ _testAxis.fromArray(axes, i); // project the aabb onto the seperating axis
- const p0 = v0.dot(_testAxis);
- const p1 = v1.dot(_testAxis);
- const p2 = v2.dot(_testAxis); // actual test, basically see if either of the most extreme of the triangle points intersects r
- if (Math.max(-Math.max(p0, p1, p2), Math.min(p0, p1, p2)) > r) {
- // points of the projected triangle are outside the projected half-length of the aabb
- // the axis is seperating and we can exit
- return false;
- }
- }
+ const r = extents.x * Math.abs(_testAxis.x) + extents.y * Math.abs(_testAxis.y) + extents.z * Math.abs(_testAxis.z); // project all 3 vertices of the triangle onto the seperating axis
- return true;
- }
+ const p0 = v0.dot(_testAxis);
+ const p1 = v1.dot(_testAxis);
+ const p2 = v2.dot(_testAxis); // actual test, basically see if either of the most extreme of the triangle points intersects r
- const _box$2 = /*@__PURE__*/new Box3();
+ if (Math.max(-Math.max(p0, p1, p2), Math.min(p0, p1, p2)) > r) {
+ // points of the projected triangle are outside the projected half-length of the aabb
+ // the axis is seperating and we can exit
+ return false;
+ }
+ }
- const _v1$6 = /*@__PURE__*/new Vector3();
+ return true;
+ }
- const _toFarthestPoint = /*@__PURE__*/new Vector3();
+ const _box$2 = /*@__PURE__*/new Box3();
- const _toPoint = /*@__PURE__*/new Vector3();
+ const _v1$6 = /*@__PURE__*/new Vector3();
- class Sphere {
- constructor(center = new Vector3(), radius = -1) {
- this.center = center;
- this.radius = radius;
- }
+ const _toFarthestPoint = /*@__PURE__*/new Vector3();
- set(center, radius) {
- this.center.copy(center);
- this.radius = radius;
- return this;
- }
+ const _toPoint = /*@__PURE__*/new Vector3();
- setFromPoints(points, optionalCenter) {
- const center = this.center;
+ class Sphere {
+ constructor(center = new Vector3(), radius = -1) {
+ this.center = center;
+ this.radius = radius;
+ }
- if (optionalCenter !== undefined) {
- center.copy(optionalCenter);
- } else {
- _box$2.setFromPoints(points).getCenter(center);
- }
+ set(center, radius) {
+ this.center.copy(center);
+ this.radius = radius;
+ return this;
+ }
- let maxRadiusSq = 0;
+ setFromPoints(points, optionalCenter) {
+ const center = this.center;
- for (let i = 0, il = points.length; i < il; i++) {
- maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(points[i]));
- }
+ if (optionalCenter !== undefined) {
+ center.copy(optionalCenter);
+ } else {
+ _box$2.setFromPoints(points).getCenter(center);
+ }
- this.radius = Math.sqrt(maxRadiusSq);
- return this;
- }
+ let maxRadiusSq = 0;
- copy(sphere) {
- this.center.copy(sphere.center);
- this.radius = sphere.radius;
- return this;
- }
+ for (let i = 0, il = points.length; i < il; i++) {
+ maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(points[i]));
+ }
- isEmpty() {
- return this.radius < 0;
- }
+ this.radius = Math.sqrt(maxRadiusSq);
+ return this;
+ }
- makeEmpty() {
- this.center.set(0, 0, 0);
- this.radius = -1;
- return this;
- }
+ copy(sphere) {
+ this.center.copy(sphere.center);
+ this.radius = sphere.radius;
+ return this;
+ }
- containsPoint(point) {
- return point.distanceToSquared(this.center) <= this.radius * this.radius;
- }
+ isEmpty() {
+ return this.radius < 0;
+ }
- distanceToPoint(point) {
- return point.distanceTo(this.center) - this.radius;
- }
+ makeEmpty() {
+ this.center.set(0, 0, 0);
+ this.radius = -1;
+ return this;
+ }
- intersectsSphere(sphere) {
- const radiusSum = this.radius + sphere.radius;
- return sphere.center.distanceToSquared(this.center) <= radiusSum * radiusSum;
- }
+ containsPoint(point) {
+ return point.distanceToSquared(this.center) <= this.radius * this.radius;
+ }
- intersectsBox(box) {
- return box.intersectsSphere(this);
- }
+ distanceToPoint(point) {
+ return point.distanceTo(this.center) - this.radius;
+ }
- intersectsPlane(plane) {
- return Math.abs(plane.distanceToPoint(this.center)) <= this.radius;
- }
+ intersectsSphere(sphere) {
+ const radiusSum = this.radius + sphere.radius;
+ return sphere.center.distanceToSquared(this.center) <= radiusSum * radiusSum;
+ }
- clampPoint(point, target) {
- const deltaLengthSq = this.center.distanceToSquared(point);
- target.copy(point);
+ intersectsBox(box) {
+ return box.intersectsSphere(this);
+ }
- if (deltaLengthSq > this.radius * this.radius) {
- target.sub(this.center).normalize();
- target.multiplyScalar(this.radius).add(this.center);
- }
+ intersectsPlane(plane) {
+ return Math.abs(plane.distanceToPoint(this.center)) <= this.radius;
+ }
- return target;
- }
+ clampPoint(point, target) {
+ const deltaLengthSq = this.center.distanceToSquared(point);
+ target.copy(point);
- getBoundingBox(target) {
- if (this.isEmpty()) {
- // Empty sphere produces empty bounding box
- target.makeEmpty();
- return target;
- }
+ if (deltaLengthSq > this.radius * this.radius) {
+ target.sub(this.center).normalize();
+ target.multiplyScalar(this.radius).add(this.center);
+ }
- target.set(this.center, this.center);
- target.expandByScalar(this.radius);
- return target;
- }
+ return target;
+ }
- applyMatrix4(matrix) {
- this.center.applyMatrix4(matrix);
- this.radius = this.radius * matrix.getMaxScaleOnAxis();
- return this;
- }
+ getBoundingBox(target) {
+ if (this.isEmpty()) {
+ // Empty sphere produces empty bounding box
+ target.makeEmpty();
+ return target;
+ }
- translate(offset) {
- this.center.add(offset);
- return this;
- }
+ target.set(this.center, this.center);
+ target.expandByScalar(this.radius);
+ return target;
+ }
- expandByPoint(point) {
- // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L649-L671
- _toPoint.subVectors(point, this.center);
+ applyMatrix4(matrix) {
+ this.center.applyMatrix4(matrix);
+ this.radius = this.radius * matrix.getMaxScaleOnAxis();
+ return this;
+ }
- const lengthSq = _toPoint.lengthSq();
+ translate(offset) {
+ this.center.add(offset);
+ return this;
+ }
- if (lengthSq > this.radius * this.radius) {
- const length = Math.sqrt(lengthSq);
- const missingRadiusHalf = (length - this.radius) * 0.5; // Nudge this sphere towards the target point. Add half the missing distance to radius,
- // and the other half to position. This gives a tighter enclosure, instead of if
- // the whole missing distance were just added to radius.
+ expandByPoint(point) {
+ // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L649-L671
+ _toPoint.subVectors(point, this.center);
- this.center.add(_toPoint.multiplyScalar(missingRadiusHalf / length));
- this.radius += missingRadiusHalf;
- }
+ const lengthSq = _toPoint.lengthSq();
- return this;
- }
+ if (lengthSq > this.radius * this.radius) {
+ const length = Math.sqrt(lengthSq);
+ const missingRadiusHalf = (length - this.radius) * 0.5; // Nudge this sphere towards the target point. Add half the missing distance to radius,
+ // and the other half to position. This gives a tighter enclosure, instead of if
+ // the whole missing distance were just added to radius.
- union(sphere) {
- // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L759-L769
- // To enclose another sphere into this sphere, we only need to enclose two points:
- // 1) Enclose the farthest point on the other sphere into this sphere.
- // 2) Enclose the opposite point of the farthest point into this sphere.
- _toFarthestPoint.subVectors(sphere.center, this.center).normalize().multiplyScalar(sphere.radius);
+ this.center.add(_toPoint.multiplyScalar(missingRadiusHalf / length));
+ this.radius += missingRadiusHalf;
+ }
- this.expandByPoint(_v1$6.copy(sphere.center).add(_toFarthestPoint));
- this.expandByPoint(_v1$6.copy(sphere.center).sub(_toFarthestPoint));
- return this;
- }
+ return this;
+ }
- equals(sphere) {
- return sphere.center.equals(this.center) && sphere.radius === this.radius;
- }
+ union(sphere) {
+ // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L759-L769
+ // To enclose another sphere into this sphere, we only need to enclose two points:
+ // 1) Enclose the farthest point on the other sphere into this sphere.
+ // 2) Enclose the opposite point of the farthest point into this sphere.
+ _toFarthestPoint.subVectors(sphere.center, this.center).normalize().multiplyScalar(sphere.radius);
- clone() {
- return new this.constructor().copy(this);
- }
+ this.expandByPoint(_v1$6.copy(sphere.center).add(_toFarthestPoint));
+ this.expandByPoint(_v1$6.copy(sphere.center).sub(_toFarthestPoint));
+ return this;
+ }
- }
+ equals(sphere) {
+ return sphere.center.equals(this.center) && sphere.radius === this.radius;
+ }
- const _vector$a = /*@__PURE__*/new Vector3();
+ clone() {
+ return new this.constructor().copy(this);
+ }
- const _segCenter = /*@__PURE__*/new Vector3();
+ }
- const _segDir = /*@__PURE__*/new Vector3();
+ const _vector$a = /*@__PURE__*/new Vector3();
- const _diff = /*@__PURE__*/new Vector3();
+ const _segCenter = /*@__PURE__*/new Vector3();
- const _edge1 = /*@__PURE__*/new Vector3();
+ const _segDir = /*@__PURE__*/new Vector3();
- const _edge2 = /*@__PURE__*/new Vector3();
+ const _diff = /*@__PURE__*/new Vector3();
- const _normal$1 = /*@__PURE__*/new Vector3();
+ const _edge1 = /*@__PURE__*/new Vector3();
- class Ray {
- constructor(origin = new Vector3(), direction = new Vector3(0, 0, -1)) {
- this.origin = origin;
- this.direction = direction;
- }
+ const _edge2 = /*@__PURE__*/new Vector3();
- set(origin, direction) {
- this.origin.copy(origin);
- this.direction.copy(direction);
- return this;
- }
+ const _normal$1 = /*@__PURE__*/new Vector3();
- copy(ray) {
- this.origin.copy(ray.origin);
- this.direction.copy(ray.direction);
- return this;
- }
+ class Ray {
+ constructor(origin = new Vector3(), direction = new Vector3(0, 0, -1)) {
+ this.origin = origin;
+ this.direction = direction;
+ }
- at(t, target) {
- return target.copy(this.direction).multiplyScalar(t).add(this.origin);
- }
+ set(origin, direction) {
+ this.origin.copy(origin);
+ this.direction.copy(direction);
+ return this;
+ }
- lookAt(v) {
- this.direction.copy(v).sub(this.origin).normalize();
- return this;
- }
+ copy(ray) {
+ this.origin.copy(ray.origin);
+ this.direction.copy(ray.direction);
+ return this;
+ }
- recast(t) {
- this.origin.copy(this.at(t, _vector$a));
- return this;
- }
+ at(t, target) {
+ return target.copy(this.direction).multiplyScalar(t).add(this.origin);
+ }
- closestPointToPoint(point, target) {
- target.subVectors(point, this.origin);
- const directionDistance = target.dot(this.direction);
+ lookAt(v) {
+ this.direction.copy(v).sub(this.origin).normalize();
+ return this;
+ }
- if (directionDistance < 0) {
- return target.copy(this.origin);
- }
+ recast(t) {
+ this.origin.copy(this.at(t, _vector$a));
+ return this;
+ }
- return target.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);
- }
+ closestPointToPoint(point, target) {
+ target.subVectors(point, this.origin);
+ const directionDistance = target.dot(this.direction);
- distanceToPoint(point) {
- return Math.sqrt(this.distanceSqToPoint(point));
- }
+ if (directionDistance < 0) {
+ return target.copy(this.origin);
+ }
- distanceSqToPoint(point) {
- const directionDistance = _vector$a.subVectors(point, this.origin).dot(this.direction); // point behind the ray
+ return target.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);
+ }
+ distanceToPoint(point) {
+ return Math.sqrt(this.distanceSqToPoint(point));
+ }
- if (directionDistance < 0) {
- return this.origin.distanceToSquared(point);
- }
+ distanceSqToPoint(point) {
+ const directionDistance = _vector$a.subVectors(point, this.origin).dot(this.direction); // point behind the ray
- _vector$a.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);
- return _vector$a.distanceToSquared(point);
- }
+ if (directionDistance < 0) {
+ return this.origin.distanceToSquared(point);
+ }
+
+ _vector$a.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);
+
+ return _vector$a.distanceToSquared(point);
+ }
- distanceSqToSegment(v0, v1, optionalPointOnRay, optionalPointOnSegment) {
- // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
- // It returns the min distance between the ray and the segment
- // defined by v0 and v1
- // It can also set two optional targets :
- // - The closest point on the ray
- // - The closest point on the segment
- _segCenter.copy(v0).add(v1).multiplyScalar(0.5);
+ distanceSqToSegment(v0, v1, optionalPointOnRay, optionalPointOnSegment) {
+ // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
+ // It returns the min distance between the ray and the segment
+ // defined by v0 and v1
+ // It can also set two optional targets :
+ // - The closest point on the ray
+ // - The closest point on the segment
+ _segCenter.copy(v0).add(v1).multiplyScalar(0.5);
- _segDir.copy(v1).sub(v0).normalize();
+ _segDir.copy(v1).sub(v0).normalize();
- _diff.copy(this.origin).sub(_segCenter);
+ _diff.copy(this.origin).sub(_segCenter);
- const segExtent = v0.distanceTo(v1) * 0.5;
- const a01 = -this.direction.dot(_segDir);
+ const segExtent = v0.distanceTo(v1) * 0.5;
+ const a01 = -this.direction.dot(_segDir);
- const b0 = _diff.dot(this.direction);
+ const b0 = _diff.dot(this.direction);
- const b1 = -_diff.dot(_segDir);
+ const b1 = -_diff.dot(_segDir);
- const c = _diff.lengthSq();
+ const c = _diff.lengthSq();
- const det = Math.abs(1 - a01 * a01);
- let s0, s1, sqrDist, extDet;
+ const det = Math.abs(1 - a01 * a01);
+ let s0, s1, sqrDist, extDet;
- if (det > 0) {
- // The ray and segment are not parallel.
- s0 = a01 * b1 - b0;
- s1 = a01 * b0 - b1;
- extDet = segExtent * det;
+ if (det > 0) {
+ // The ray and segment are not parallel.
+ s0 = a01 * b1 - b0;
+ s1 = a01 * b0 - b1;
+ extDet = segExtent * det;
- if (s0 >= 0) {
- if (s1 >= -extDet) {
- if (s1 <= extDet) {
- // region 0
- // Minimum at interior points of ray and segment.
- const invDet = 1 / det;
- s0 *= invDet;
- s1 *= invDet;
- sqrDist = s0 * (s0 + a01 * s1 + 2 * b0) + s1 * (a01 * s0 + s1 + 2 * b1) + c;
+ if (s0 >= 0) {
+ if (s1 >= -extDet) {
+ if (s1 <= extDet) {
+ // region 0
+ // Minimum at interior points of ray and segment.
+ const invDet = 1 / det;
+ s0 *= invDet;
+ s1 *= invDet;
+ sqrDist = s0 * (s0 + a01 * s1 + 2 * b0) + s1 * (a01 * s0 + s1 + 2 * b1) + c;
+ } else {
+ // region 1
+ s1 = segExtent;
+ s0 = Math.max(0, -(a01 * s1 + b0));
+ sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
+ }
+ } else {
+ // region 5
+ s1 = -segExtent;
+ s0 = Math.max(0, -(a01 * s1 + b0));
+ sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
+ }
} else {
- // region 1
- s1 = segExtent;
- s0 = Math.max(0, -(a01 * s1 + b0));
- sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
+ if (s1 <= -extDet) {
+ // region 4
+ s0 = Math.max(0, -(-a01 * segExtent + b0));
+ s1 = s0 > 0 ? -segExtent : Math.min(Math.max(-segExtent, -b1), segExtent);
+ sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
+ } else if (s1 <= extDet) {
+ // region 3
+ s0 = 0;
+ s1 = Math.min(Math.max(-segExtent, -b1), segExtent);
+ sqrDist = s1 * (s1 + 2 * b1) + c;
+ } else {
+ // region 2
+ s0 = Math.max(0, -(a01 * segExtent + b0));
+ s1 = s0 > 0 ? segExtent : Math.min(Math.max(-segExtent, -b1), segExtent);
+ sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
+ }
}
} else {
- // region 5
- s1 = -segExtent;
+ // Ray and segment are parallel.
+ s1 = a01 > 0 ? -segExtent : segExtent;
s0 = Math.max(0, -(a01 * s1 + b0));
sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
}
- } else {
- if (s1 <= -extDet) {
- // region 4
- s0 = Math.max(0, -(-a01 * segExtent + b0));
- s1 = s0 > 0 ? -segExtent : Math.min(Math.max(-segExtent, -b1), segExtent);
- sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
- } else if (s1 <= extDet) {
- // region 3
- s0 = 0;
- s1 = Math.min(Math.max(-segExtent, -b1), segExtent);
- sqrDist = s1 * (s1 + 2 * b1) + c;
- } else {
- // region 2
- s0 = Math.max(0, -(a01 * segExtent + b0));
- s1 = s0 > 0 ? segExtent : Math.min(Math.max(-segExtent, -b1), segExtent);
- sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
- }
- }
- } else {
- // Ray and segment are parallel.
- s1 = a01 > 0 ? -segExtent : segExtent;
- s0 = Math.max(0, -(a01 * s1 + b0));
- sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
- }
- if (optionalPointOnRay) {
- optionalPointOnRay.copy(this.direction).multiplyScalar(s0).add(this.origin);
- }
+ if (optionalPointOnRay) {
+ optionalPointOnRay.copy(this.direction).multiplyScalar(s0).add(this.origin);
+ }
- if (optionalPointOnSegment) {
- optionalPointOnSegment.copy(_segDir).multiplyScalar(s1).add(_segCenter);
- }
+ if (optionalPointOnSegment) {
+ optionalPointOnSegment.copy(_segDir).multiplyScalar(s1).add(_segCenter);
+ }
- return sqrDist;
- }
+ return sqrDist;
+ }
- intersectSphere(sphere, target) {
- _vector$a.subVectors(sphere.center, this.origin);
+ intersectSphere(sphere, target) {
+ _vector$a.subVectors(sphere.center, this.origin);
- const tca = _vector$a.dot(this.direction);
+ const tca = _vector$a.dot(this.direction);
- const d2 = _vector$a.dot(_vector$a) - tca * tca;
- const radius2 = sphere.radius * sphere.radius;
- if (d2 > radius2) return null;
- const thc = Math.sqrt(radius2 - d2); // t0 = first intersect point - entrance on front of sphere
+ const d2 = _vector$a.dot(_vector$a) - tca * tca;
+ const radius2 = sphere.radius * sphere.radius;
+ if (d2 > radius2) return null;
+ const thc = Math.sqrt(radius2 - d2); // t0 = first intersect point - entrance on front of sphere
- const t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere
+ const t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere
- const t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null
+ const t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null
- if (t0 < 0 && t1 < 0) return null; // test to see if t0 is behind the ray:
- // if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
- // in order to always return an intersect point that is in front of the ray.
+ if (t0 < 0 && t1 < 0) return null; // test to see if t0 is behind the ray:
+ // if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
+ // in order to always return an intersect point that is in front of the ray.
- if (t0 < 0) return this.at(t1, target); // else t0 is in front of the ray, so return the first collision point scaled by t0
+ if (t0 < 0) return this.at(t1, target); // else t0 is in front of the ray, so return the first collision point scaled by t0
- return this.at(t0, target);
- }
+ return this.at(t0, target);
+ }
- intersectsSphere(sphere) {
- return this.distanceSqToPoint(sphere.center) <= sphere.radius * sphere.radius;
- }
+ intersectsSphere(sphere) {
+ return this.distanceSqToPoint(sphere.center) <= sphere.radius * sphere.radius;
+ }
- distanceToPlane(plane) {
- const denominator = plane.normal.dot(this.direction);
+ distanceToPlane(plane) {
+ const denominator = plane.normal.dot(this.direction);
- if (denominator === 0) {
- // line is coplanar, return origin
- if (plane.distanceToPoint(this.origin) === 0) {
- return 0;
- } // Null is preferable to undefined since undefined means.... it is undefined
+ if (denominator === 0) {
+ // line is coplanar, return origin
+ if (plane.distanceToPoint(this.origin) === 0) {
+ return 0;
+ } // Null is preferable to undefined since undefined means.... it is undefined
- return null;
- }
+ return null;
+ }
- const t = -(this.origin.dot(plane.normal) + plane.constant) / denominator; // Return if the ray never intersects the plane
+ const t = -(this.origin.dot(plane.normal) + plane.constant) / denominator; // Return if the ray never intersects the plane
- return t >= 0 ? t : null;
- }
+ return t >= 0 ? t : null;
+ }
- intersectPlane(plane, target) {
- const t = this.distanceToPlane(plane);
+ intersectPlane(plane, target) {
+ const t = this.distanceToPlane(plane);
- if (t === null) {
- return null;
- }
+ if (t === null) {
+ return null;
+ }
- return this.at(t, target);
- }
+ return this.at(t, target);
+ }
- intersectsPlane(plane) {
- // check if the ray lies on the plane first
- const distToPoint = plane.distanceToPoint(this.origin);
+ intersectsPlane(plane) {
+ // check if the ray lies on the plane first
+ const distToPoint = plane.distanceToPoint(this.origin);
- if (distToPoint === 0) {
- return true;
- }
+ if (distToPoint === 0) {
+ return true;
+ }
- const denominator = plane.normal.dot(this.direction);
+ const denominator = plane.normal.dot(this.direction);
- if (denominator * distToPoint < 0) {
- return true;
- } // ray origin is behind the plane (and is pointing behind it)
+ if (denominator * distToPoint < 0) {
+ return true;
+ } // ray origin is behind the plane (and is pointing behind it)
- return false;
- }
+ return false;
+ }
- intersectBox(box, target) {
- let tmin, tmax, tymin, tymax, tzmin, tzmax;
- const invdirx = 1 / this.direction.x,
+ intersectBox(box, target) {
+ let tmin, tmax, tymin, tymax, tzmin, tzmax;
+ const invdirx = 1 / this.direction.x,
invdiry = 1 / this.direction.y,
invdirz = 1 / this.direction.z;
- const origin = this.origin;
+ const origin = this.origin;
- if (invdirx >= 0) {
- tmin = (box.min.x - origin.x) * invdirx;
- tmax = (box.max.x - origin.x) * invdirx;
- } else {
- tmin = (box.max.x - origin.x) * invdirx;
- tmax = (box.min.x - origin.x) * invdirx;
- }
+ if (invdirx >= 0) {
+ tmin = (box.min.x - origin.x) * invdirx;
+ tmax = (box.max.x - origin.x) * invdirx;
+ } else {
+ tmin = (box.max.x - origin.x) * invdirx;
+ tmax = (box.min.x - origin.x) * invdirx;
+ }
- if (invdiry >= 0) {
- tymin = (box.min.y - origin.y) * invdiry;
- tymax = (box.max.y - origin.y) * invdiry;
- } else {
- tymin = (box.max.y - origin.y) * invdiry;
- tymax = (box.min.y - origin.y) * invdiry;
- }
+ if (invdiry >= 0) {
+ tymin = (box.min.y - origin.y) * invdiry;
+ tymax = (box.max.y - origin.y) * invdiry;
+ } else {
+ tymin = (box.max.y - origin.y) * invdiry;
+ tymax = (box.min.y - origin.y) * invdiry;
+ }
- if (tmin > tymax || tymin > tmax) return null; // These lines also handle the case where tmin or tmax is NaN
- // (result of 0 * Infinity). x !== x returns true if x is NaN
+ if (tmin > tymax || tymin > tmax) return null; // These lines also handle the case where tmin or tmax is NaN
+ // (result of 0 * Infinity). x !== x returns true if x is NaN
- if (tymin > tmin || tmin !== tmin) tmin = tymin;
- if (tymax < tmax || tmax !== tmax) tmax = tymax;
+ if (tymin > tmin || tmin !== tmin) tmin = tymin;
+ if (tymax < tmax || tmax !== tmax) tmax = tymax;
- if (invdirz >= 0) {
- tzmin = (box.min.z - origin.z) * invdirz;
- tzmax = (box.max.z - origin.z) * invdirz;
- } else {
- tzmin = (box.max.z - origin.z) * invdirz;
- tzmax = (box.min.z - origin.z) * invdirz;
- }
+ if (invdirz >= 0) {
+ tzmin = (box.min.z - origin.z) * invdirz;
+ tzmax = (box.max.z - origin.z) * invdirz;
+ } else {
+ tzmin = (box.max.z - origin.z) * invdirz;
+ tzmax = (box.min.z - origin.z) * invdirz;
+ }
- if (tmin > tzmax || tzmin > tmax) return null;
- if (tzmin > tmin || tmin !== tmin) tmin = tzmin;
- if (tzmax < tmax || tmax !== tmax) tmax = tzmax; //return point closest to the ray (positive side)
+ if (tmin > tzmax || tzmin > tmax) return null;
+ if (tzmin > tmin || tmin !== tmin) tmin = tzmin;
+ if (tzmax < tmax || tmax !== tmax) tmax = tzmax; //return point closest to the ray (positive side)
- if (tmax < 0) return null;
- return this.at(tmin >= 0 ? tmin : tmax, target);
- }
+ if (tmax < 0) return null;
+ return this.at(tmin >= 0 ? tmin : tmax, target);
+ }
- intersectsBox(box) {
- return this.intersectBox(box, _vector$a) !== null;
- }
+ intersectsBox(box) {
+ return this.intersectBox(box, _vector$a) !== null;
+ }
- intersectTriangle(a, b, c, backfaceCulling, target) {
- // Compute the offset origin, edges, and normal.
- // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
- _edge1.subVectors(b, a);
+ intersectTriangle(a, b, c, backfaceCulling, target) {
+ // Compute the offset origin, edges, and normal.
+ // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
+ _edge1.subVectors(b, a);
- _edge2.subVectors(c, a);
+ _edge2.subVectors(c, a);
- _normal$1.crossVectors(_edge1, _edge2); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
- // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
- // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
- // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
- // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
+ _normal$1.crossVectors(_edge1, _edge2); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
+ // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
+ // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
+ // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
+ // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
- let DdN = this.direction.dot(_normal$1);
- let sign;
+ let DdN = this.direction.dot(_normal$1);
+ let sign;
- if (DdN > 0) {
- if (backfaceCulling) return null;
- sign = 1;
- } else if (DdN < 0) {
- sign = -1;
- DdN = -DdN;
- } else {
- return null;
- }
+ if (DdN > 0) {
+ if (backfaceCulling) return null;
+ sign = 1;
+ } else if (DdN < 0) {
+ sign = -1;
+ DdN = -DdN;
+ } else {
+ return null;
+ }
- _diff.subVectors(this.origin, a);
+ _diff.subVectors(this.origin, a);
- const DdQxE2 = sign * this.direction.dot(_edge2.crossVectors(_diff, _edge2)); // b1 < 0, no intersection
+ const DdQxE2 = sign * this.direction.dot(_edge2.crossVectors(_diff, _edge2)); // b1 < 0, no intersection
- if (DdQxE2 < 0) {
- return null;
- }
+ if (DdQxE2 < 0) {
+ return null;
+ }
- const DdE1xQ = sign * this.direction.dot(_edge1.cross(_diff)); // b2 < 0, no intersection
+ const DdE1xQ = sign * this.direction.dot(_edge1.cross(_diff)); // b2 < 0, no intersection
- if (DdE1xQ < 0) {
- return null;
- } // b1+b2 > 1, no intersection
+ if (DdE1xQ < 0) {
+ return null;
+ } // b1+b2 > 1, no intersection
- if (DdQxE2 + DdE1xQ > DdN) {
- return null;
- } // Line intersects triangle, check if ray does.
+ if (DdQxE2 + DdE1xQ > DdN) {
+ return null;
+ } // Line intersects triangle, check if ray does.
- const QdN = -sign * _diff.dot(_normal$1); // t < 0, no intersection
+ const QdN = -sign * _diff.dot(_normal$1); // t < 0, no intersection
- if (QdN < 0) {
- return null;
- } // Ray intersects triangle.
+ if (QdN < 0) {
+ return null;
+ } // Ray intersects triangle.
- return this.at(QdN / DdN, target);
- }
+ return this.at(QdN / DdN, target);
+ }
- applyMatrix4(matrix4) {
- this.origin.applyMatrix4(matrix4);
- this.direction.transformDirection(matrix4);
- return this;
- }
+ applyMatrix4(matrix4) {
+ this.origin.applyMatrix4(matrix4);
+ this.direction.transformDirection(matrix4);
+ return this;
+ }
- equals(ray) {
- return ray.origin.equals(this.origin) && ray.direction.equals(this.direction);
- }
+ equals(ray) {
+ return ray.origin.equals(this.origin) && ray.direction.equals(this.direction);
+ }
- clone() {
- return new this.constructor().copy(this);
- }
+ clone() {
+ return new this.constructor().copy(this);
+ }
- }
-
- class Matrix4 {
- constructor() {
- this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1];
-
- if (arguments.length > 0) {
- console.error('THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.');
}
- }
- set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) {
- const te = this.elements;
- te[0] = n11;
- te[4] = n12;
- te[8] = n13;
- te[12] = n14;
- te[1] = n21;
- te[5] = n22;
- te[9] = n23;
- te[13] = n24;
- te[2] = n31;
- te[6] = n32;
- te[10] = n33;
- te[14] = n34;
- te[3] = n41;
- te[7] = n42;
- te[11] = n43;
- te[15] = n44;
- return this;
- }
+ class Matrix4 {
+ constructor() {
+ this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1];
- identity() {
- this.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
- return this;
- }
+ if (arguments.length > 0) {
+ console.error('THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.');
+ }
+ }
- clone() {
- return new Matrix4().fromArray(this.elements);
- }
+ set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) {
+ const te = this.elements;
+ te[0] = n11;
+ te[4] = n12;
+ te[8] = n13;
+ te[12] = n14;
+ te[1] = n21;
+ te[5] = n22;
+ te[9] = n23;
+ te[13] = n24;
+ te[2] = n31;
+ te[6] = n32;
+ te[10] = n33;
+ te[14] = n34;
+ te[3] = n41;
+ te[7] = n42;
+ te[11] = n43;
+ te[15] = n44;
+ return this;
+ }
- copy(m) {
- const te = this.elements;
- const me = m.elements;
- te[0] = me[0];
- te[1] = me[1];
- te[2] = me[2];
- te[3] = me[3];
- te[4] = me[4];
- te[5] = me[5];
- te[6] = me[6];
- te[7] = me[7];
- te[8] = me[8];
- te[9] = me[9];
- te[10] = me[10];
- te[11] = me[11];
- te[12] = me[12];
- te[13] = me[13];
- te[14] = me[14];
- te[15] = me[15];
- return this;
- }
+ identity() {
+ this.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
+ return this;
+ }
+
+ clone() {
+ return new Matrix4().fromArray(this.elements);
+ }
+
+ copy(m) {
+ const te = this.elements;
+ const me = m.elements;
+ te[0] = me[0];
+ te[1] = me[1];
+ te[2] = me[2];
+ te[3] = me[3];
+ te[4] = me[4];
+ te[5] = me[5];
+ te[6] = me[6];
+ te[7] = me[7];
+ te[8] = me[8];
+ te[9] = me[9];
+ te[10] = me[10];
+ te[11] = me[11];
+ te[12] = me[12];
+ te[13] = me[13];
+ te[14] = me[14];
+ te[15] = me[15];
+ return this;
+ }
- copyPosition(m) {
- const te = this.elements,
+ copyPosition(m) {
+ const te = this.elements,
me = m.elements;
- te[12] = me[12];
- te[13] = me[13];
- te[14] = me[14];
- return this;
- }
+ te[12] = me[12];
+ te[13] = me[13];
+ te[14] = me[14];
+ return this;
+ }
- setFromMatrix3(m) {
- const me = m.elements;
- this.set(me[0], me[3], me[6], 0, me[1], me[4], me[7], 0, me[2], me[5], me[8], 0, 0, 0, 0, 1);
- return this;
- }
+ setFromMatrix3(m) {
+ const me = m.elements;
+ this.set(me[0], me[3], me[6], 0, me[1], me[4], me[7], 0, me[2], me[5], me[8], 0, 0, 0, 0, 1);
+ return this;
+ }
- extractBasis(xAxis, yAxis, zAxis) {
- xAxis.setFromMatrixColumn(this, 0);
- yAxis.setFromMatrixColumn(this, 1);
- zAxis.setFromMatrixColumn(this, 2);
- return this;
- }
+ extractBasis(xAxis, yAxis, zAxis) {
+ xAxis.setFromMatrixColumn(this, 0);
+ yAxis.setFromMatrixColumn(this, 1);
+ zAxis.setFromMatrixColumn(this, 2);
+ return this;
+ }
- makeBasis(xAxis, yAxis, zAxis) {
- this.set(xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1);
- return this;
- }
+ makeBasis(xAxis, yAxis, zAxis) {
+ this.set(xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1);
+ return this;
+ }
- extractRotation(m) {
- // this method does not support reflection matrices
- const te = this.elements;
- const me = m.elements;
-
- const scaleX = 1 / _v1$5.setFromMatrixColumn(m, 0).length();
-
- const scaleY = 1 / _v1$5.setFromMatrixColumn(m, 1).length();
-
- const scaleZ = 1 / _v1$5.setFromMatrixColumn(m, 2).length();
-
- te[0] = me[0] * scaleX;
- te[1] = me[1] * scaleX;
- te[2] = me[2] * scaleX;
- te[3] = 0;
- te[4] = me[4] * scaleY;
- te[5] = me[5] * scaleY;
- te[6] = me[6] * scaleY;
- te[7] = 0;
- te[8] = me[8] * scaleZ;
- te[9] = me[9] * scaleZ;
- te[10] = me[10] * scaleZ;
- te[11] = 0;
- te[12] = 0;
- te[13] = 0;
- te[14] = 0;
- te[15] = 1;
- return this;
- }
+ extractRotation(m) {
+ // this method does not support reflection matrices
+ const te = this.elements;
+ const me = m.elements;
+
+ const scaleX = 1 / _v1$5.setFromMatrixColumn(m, 0).length();
+
+ const scaleY = 1 / _v1$5.setFromMatrixColumn(m, 1).length();
+
+ const scaleZ = 1 / _v1$5.setFromMatrixColumn(m, 2).length();
+
+ te[0] = me[0] * scaleX;
+ te[1] = me[1] * scaleX;
+ te[2] = me[2] * scaleX;
+ te[3] = 0;
+ te[4] = me[4] * scaleY;
+ te[5] = me[5] * scaleY;
+ te[6] = me[6] * scaleY;
+ te[7] = 0;
+ te[8] = me[8] * scaleZ;
+ te[9] = me[9] * scaleZ;
+ te[10] = me[10] * scaleZ;
+ te[11] = 0;
+ te[12] = 0;
+ te[13] = 0;
+ te[14] = 0;
+ te[15] = 1;
+ return this;
+ }
- makeRotationFromEuler(euler) {
- if (!(euler && euler.isEuler)) {
- console.error('THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.');
- }
+ makeRotationFromEuler(euler) {
+ if (!(euler && euler.isEuler)) {
+ console.error('THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.');
+ }
- const te = this.elements;
- const x = euler.x,
+ const te = this.elements;
+ const x = euler.x,
y = euler.y,
z = euler.z;
- const a = Math.cos(x),
+ const a = Math.cos(x),
b = Math.sin(x);
- const c = Math.cos(y),
+ const c = Math.cos(y),
d = Math.sin(y);
- const e = Math.cos(z),
+ const e = Math.cos(z),
f = Math.sin(z);
- if (euler.order === 'XYZ') {
- const ae = a * e,
+ if (euler.order === 'XYZ') {
+ const ae = a * e,
af = a * f,
be = b * e,
bf = b * f;
- te[0] = c * e;
- te[4] = -c * f;
- te[8] = d;
- te[1] = af + be * d;
- te[5] = ae - bf * d;
- te[9] = -b * c;
- te[2] = bf - ae * d;
- te[6] = be + af * d;
- te[10] = a * c;
- } else if (euler.order === 'YXZ') {
- const ce = c * e,
+ te[0] = c * e;
+ te[4] = -c * f;
+ te[8] = d;
+ te[1] = af + be * d;
+ te[5] = ae - bf * d;
+ te[9] = -b * c;
+ te[2] = bf - ae * d;
+ te[6] = be + af * d;
+ te[10] = a * c;
+ } else if (euler.order === 'YXZ') {
+ const ce = c * e,
cf = c * f,
de = d * e,
df = d * f;
- te[0] = ce + df * b;
- te[4] = de * b - cf;
- te[8] = a * d;
- te[1] = a * f;
- te[5] = a * e;
- te[9] = -b;
- te[2] = cf * b - de;
- te[6] = df + ce * b;
- te[10] = a * c;
- } else if (euler.order === 'ZXY') {
- const ce = c * e,
+ te[0] = ce + df * b;
+ te[4] = de * b - cf;
+ te[8] = a * d;
+ te[1] = a * f;
+ te[5] = a * e;
+ te[9] = -b;
+ te[2] = cf * b - de;
+ te[6] = df + ce * b;
+ te[10] = a * c;
+ } else if (euler.order === 'ZXY') {
+ const ce = c * e,
cf = c * f,
de = d * e,
df = d * f;
- te[0] = ce - df * b;
- te[4] = -a * f;
- te[8] = de + cf * b;
- te[1] = cf + de * b;
- te[5] = a * e;
- te[9] = df - ce * b;
- te[2] = -a * d;
- te[6] = b;
- te[10] = a * c;
- } else if (euler.order === 'ZYX') {
- const ae = a * e,
+ te[0] = ce - df * b;
+ te[4] = -a * f;
+ te[8] = de + cf * b;
+ te[1] = cf + de * b;
+ te[5] = a * e;
+ te[9] = df - ce * b;
+ te[2] = -a * d;
+ te[6] = b;
+ te[10] = a * c;
+ } else if (euler.order === 'ZYX') {
+ const ae = a * e,
af = a * f,
be = b * e,
bf = b * f;
- te[0] = c * e;
- te[4] = be * d - af;
- te[8] = ae * d + bf;
- te[1] = c * f;
- te[5] = bf * d + ae;
- te[9] = af * d - be;
- te[2] = -d;
- te[6] = b * c;
- te[10] = a * c;
- } else if (euler.order === 'YZX') {
- const ac = a * c,
+ te[0] = c * e;
+ te[4] = be * d - af;
+ te[8] = ae * d + bf;
+ te[1] = c * f;
+ te[5] = bf * d + ae;
+ te[9] = af * d - be;
+ te[2] = -d;
+ te[6] = b * c;
+ te[10] = a * c;
+ } else if (euler.order === 'YZX') {
+ const ac = a * c,
ad = a * d,
bc = b * c,
bd = b * d;
- te[0] = c * e;
- te[4] = bd - ac * f;
- te[8] = bc * f + ad;
- te[1] = f;
- te[5] = a * e;
- te[9] = -b * e;
- te[2] = -d * e;
- te[6] = ad * f + bc;
- te[10] = ac - bd * f;
- } else if (euler.order === 'XZY') {
- const ac = a * c,
+ te[0] = c * e;
+ te[4] = bd - ac * f;
+ te[8] = bc * f + ad;
+ te[1] = f;
+ te[5] = a * e;
+ te[9] = -b * e;
+ te[2] = -d * e;
+ te[6] = ad * f + bc;
+ te[10] = ac - bd * f;
+ } else if (euler.order === 'XZY') {
+ const ac = a * c,
ad = a * d,
bc = b * c,
bd = b * d;
- te[0] = c * e;
- te[4] = -f;
- te[8] = d * e;
- te[1] = ac * f + bd;
- te[5] = a * e;
- te[9] = ad * f - bc;
- te[2] = bc * f - ad;
- te[6] = b * e;
- te[10] = bd * f + ac;
- } // bottom row
-
-
- te[3] = 0;
- te[7] = 0;
- te[11] = 0; // last column
-
- te[12] = 0;
- te[13] = 0;
- te[14] = 0;
- te[15] = 1;
- return this;
- }
+ te[0] = c * e;
+ te[4] = -f;
+ te[8] = d * e;
+ te[1] = ac * f + bd;
+ te[5] = a * e;
+ te[9] = ad * f - bc;
+ te[2] = bc * f - ad;
+ te[6] = b * e;
+ te[10] = bd * f + ac;
+ } // bottom row
+
+
+ te[3] = 0;
+ te[7] = 0;
+ te[11] = 0; // last column
+
+ te[12] = 0;
+ te[13] = 0;
+ te[14] = 0;
+ te[15] = 1;
+ return this;
+ }
- makeRotationFromQuaternion(q) {
- return this.compose(_zero, q, _one);
- }
+ makeRotationFromQuaternion(q) {
+ return this.compose(_zero, q, _one);
+ }
- lookAt(eye, target, up) {
- const te = this.elements;
+ lookAt(eye, target, up) {
+ const te = this.elements;
- _z.subVectors(eye, target);
+ _z.subVectors(eye, target);
- if (_z.lengthSq() === 0) {
- // eye and target are in the same position
- _z.z = 1;
- }
+ if (_z.lengthSq() === 0) {
+ // eye and target are in the same position
+ _z.z = 1;
+ }
- _z.normalize();
+ _z.normalize();
- _x.crossVectors(up, _z);
+ _x.crossVectors(up, _z);
- if (_x.lengthSq() === 0) {
- // up and z are parallel
- if (Math.abs(up.z) === 1) {
- _z.x += 0.0001;
- } else {
- _z.z += 0.0001;
- }
+ if (_x.lengthSq() === 0) {
+ // up and z are parallel
+ if (Math.abs(up.z) === 1) {
+ _z.x += 0.0001;
+ } else {
+ _z.z += 0.0001;
+ }
- _z.normalize();
+ _z.normalize();
- _x.crossVectors(up, _z);
- }
+ _x.crossVectors(up, _z);
+ }
- _x.normalize();
+ _x.normalize();
- _y.crossVectors(_z, _x);
+ _y.crossVectors(_z, _x);
- te[0] = _x.x;
- te[4] = _y.x;
- te[8] = _z.x;
- te[1] = _x.y;
- te[5] = _y.y;
- te[9] = _z.y;
- te[2] = _x.z;
- te[6] = _y.z;
- te[10] = _z.z;
- return this;
- }
+ te[0] = _x.x;
+ te[4] = _y.x;
+ te[8] = _z.x;
+ te[1] = _x.y;
+ te[5] = _y.y;
+ te[9] = _z.y;
+ te[2] = _x.z;
+ te[6] = _y.z;
+ te[10] = _z.z;
+ return this;
+ }
- multiply(m, n) {
- if (n !== undefined) {
- console.warn('THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.');
- return this.multiplyMatrices(m, n);
- }
+ multiply(m, n) {
+ if (n !== undefined) {
+ console.warn('THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.');
+ return this.multiplyMatrices(m, n);
+ }
- return this.multiplyMatrices(this, m);
- }
+ return this.multiplyMatrices(this, m);
+ }
- premultiply(m) {
- return this.multiplyMatrices(m, this);
- }
+ premultiply(m) {
+ return this.multiplyMatrices(m, this);
+ }
- multiplyMatrices(a, b) {
- const ae = a.elements;
- const be = b.elements;
- const te = this.elements;
- const a11 = ae[0],
+ multiplyMatrices(a, b) {
+ const ae = a.elements;
+ const be = b.elements;
+ const te = this.elements;
+ const a11 = ae[0],
a12 = ae[4],
a13 = ae[8],
a14 = ae[12];
- const a21 = ae[1],
+ const a21 = ae[1],
a22 = ae[5],
a23 = ae[9],
a24 = ae[13];
- const a31 = ae[2],
+ const a31 = ae[2],
a32 = ae[6],
a33 = ae[10],
a34 = ae[14];
- const a41 = ae[3],
+ const a41 = ae[3],
a42 = ae[7],
a43 = ae[11],
a44 = ae[15];
- const b11 = be[0],
+ const b11 = be[0],
b12 = be[4],
b13 = be[8],
b14 = be[12];
- const b21 = be[1],
+ const b21 = be[1],
b22 = be[5],
b23 = be[9],
b24 = be[13];
- const b31 = be[2],
+ const b31 = be[2],
b32 = be[6],
b33 = be[10],
b34 = be[14];
- const b41 = be[3],
+ const b41 = be[3],
b42 = be[7],
b43 = be[11],
b44 = be[15];
- te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
- te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
- te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
- te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
- te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
- te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
- te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
- te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
- te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
- te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
- te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
- te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
- te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
- te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
- te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
- te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
- return this;
- }
+ te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
+ te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
+ te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
+ te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
+ te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
+ te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
+ te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
+ te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
+ te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
+ te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
+ te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
+ te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
+ te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
+ te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
+ te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
+ te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
+ return this;
+ }
- multiplyScalar(s) {
- const te = this.elements;
- te[0] *= s;
- te[4] *= s;
- te[8] *= s;
- te[12] *= s;
- te[1] *= s;
- te[5] *= s;
- te[9] *= s;
- te[13] *= s;
- te[2] *= s;
- te[6] *= s;
- te[10] *= s;
- te[14] *= s;
- te[3] *= s;
- te[7] *= s;
- te[11] *= s;
- te[15] *= s;
- return this;
- }
+ multiplyScalar(s) {
+ const te = this.elements;
+ te[0] *= s;
+ te[4] *= s;
+ te[8] *= s;
+ te[12] *= s;
+ te[1] *= s;
+ te[5] *= s;
+ te[9] *= s;
+ te[13] *= s;
+ te[2] *= s;
+ te[6] *= s;
+ te[10] *= s;
+ te[14] *= s;
+ te[3] *= s;
+ te[7] *= s;
+ te[11] *= s;
+ te[15] *= s;
+ return this;
+ }
- determinant() {
- const te = this.elements;
- const n11 = te[0],
+ determinant() {
+ const te = this.elements;
+ const n11 = te[0],
n12 = te[4],
n13 = te[8],
n14 = te[12];
- const n21 = te[1],
+ const n21 = te[1],
n22 = te[5],
n23 = te[9],
n24 = te[13];
- const n31 = te[2],
+ const n31 = te[2],
n32 = te[6],
n33 = te[10],
n34 = te[14];
- const n41 = te[3],
+ const n41 = te[3],
n42 = te[7],
n43 = te[11],
n44 = te[15]; //TODO: make this more efficient
- //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
-
- return n41 * (+n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (+n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (+n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31);
- }
-
- transpose() {
- const te = this.elements;
- let tmp;
- tmp = te[1];
- te[1] = te[4];
- te[4] = tmp;
- tmp = te[2];
- te[2] = te[8];
- te[8] = tmp;
- tmp = te[6];
- te[6] = te[9];
- te[9] = tmp;
- tmp = te[3];
- te[3] = te[12];
- te[12] = tmp;
- tmp = te[7];
- te[7] = te[13];
- te[13] = tmp;
- tmp = te[11];
- te[11] = te[14];
- te[14] = tmp;
- return this;
- }
+ //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
+
+ return n41 * (+n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (+n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (+n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31);
+ }
+
+ transpose() {
+ const te = this.elements;
+ let tmp;
+ tmp = te[1];
+ te[1] = te[4];
+ te[4] = tmp;
+ tmp = te[2];
+ te[2] = te[8];
+ te[8] = tmp;
+ tmp = te[6];
+ te[6] = te[9];
+ te[9] = tmp;
+ tmp = te[3];
+ te[3] = te[12];
+ te[12] = tmp;
+ tmp = te[7];
+ te[7] = te[13];
+ te[13] = tmp;
+ tmp = te[11];
+ te[11] = te[14];
+ te[14] = tmp;
+ return this;
+ }
- setPosition(x, y, z) {
- const te = this.elements;
+ setPosition(x, y, z) {
+ const te = this.elements;
- if (x.isVector3) {
- te[12] = x.x;
- te[13] = x.y;
- te[14] = x.z;
- } else {
- te[12] = x;
- te[13] = y;
- te[14] = z;
- }
+ if (x.isVector3) {
+ te[12] = x.x;
+ te[13] = x.y;
+ te[14] = x.z;
+ } else {
+ te[12] = x;
+ te[13] = y;
+ te[14] = z;
+ }
- return this;
- }
+ return this;
+ }
- invert() {
- // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
- const te = this.elements,
+ invert() {
+ // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
+ const te = this.elements,
n11 = te[0],
n21 = te[1],
n31 = te[2],
t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
- const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
- if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
- const detInv = 1 / det;
- te[0] = t11 * detInv;
- te[1] = (n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44) * detInv;
- te[2] = (n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44) * detInv;
- te[3] = (n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43) * detInv;
- te[4] = t12 * detInv;
- te[5] = (n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44) * detInv;
- te[6] = (n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44) * detInv;
- te[7] = (n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43) * detInv;
- te[8] = t13 * detInv;
- te[9] = (n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44) * detInv;
- te[10] = (n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44) * detInv;
- te[11] = (n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43) * detInv;
- te[12] = t14 * detInv;
- te[13] = (n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34) * detInv;
- te[14] = (n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34) * detInv;
- te[15] = (n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33) * detInv;
- return this;
- }
+ const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
+ if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
+ const detInv = 1 / det;
+ te[0] = t11 * detInv;
+ te[1] = (n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44) * detInv;
+ te[2] = (n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44) * detInv;
+ te[3] = (n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43) * detInv;
+ te[4] = t12 * detInv;
+ te[5] = (n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44) * detInv;
+ te[6] = (n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44) * detInv;
+ te[7] = (n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43) * detInv;
+ te[8] = t13 * detInv;
+ te[9] = (n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44) * detInv;
+ te[10] = (n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44) * detInv;
+ te[11] = (n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43) * detInv;
+ te[12] = t14 * detInv;
+ te[13] = (n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34) * detInv;
+ te[14] = (n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34) * detInv;
+ te[15] = (n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33) * detInv;
+ return this;
+ }
- scale(v) {
- const te = this.elements;
- const x = v.x,
+ scale(v) {
+ const te = this.elements;
+ const x = v.x,
y = v.y,
z = v.z;
- te[0] *= x;
- te[4] *= y;
- te[8] *= z;
- te[1] *= x;
- te[5] *= y;
- te[9] *= z;
- te[2] *= x;
- te[6] *= y;
- te[10] *= z;
- te[3] *= x;
- te[7] *= y;
- te[11] *= z;
- return this;
- }
+ te[0] *= x;
+ te[4] *= y;
+ te[8] *= z;
+ te[1] *= x;
+ te[5] *= y;
+ te[9] *= z;
+ te[2] *= x;
+ te[6] *= y;
+ te[10] *= z;
+ te[3] *= x;
+ te[7] *= y;
+ te[11] *= z;
+ return this;
+ }
- getMaxScaleOnAxis() {
- const te = this.elements;
- const scaleXSq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2];
- const scaleYSq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6];
- const scaleZSq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10];
- return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq));
- }
+ getMaxScaleOnAxis() {
+ const te = this.elements;
+ const scaleXSq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2];
+ const scaleYSq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6];
+ const scaleZSq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10];
+ return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq));
+ }
- makeTranslation(x, y, z) {
- this.set(1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1);
- return this;
- }
+ makeTranslation(x, y, z) {
+ this.set(1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1);
+ return this;
+ }
- makeRotationX(theta) {
- const c = Math.cos(theta),
+ makeRotationX(theta) {
+ const c = Math.cos(theta),
s = Math.sin(theta);
- this.set(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1);
- return this;
- }
+ this.set(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1);
+ return this;
+ }
- makeRotationY(theta) {
- const c = Math.cos(theta),
+ makeRotationY(theta) {
+ const c = Math.cos(theta),
s = Math.sin(theta);
- this.set(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1);
- return this;
- }
+ this.set(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1);
+ return this;
+ }
- makeRotationZ(theta) {
- const c = Math.cos(theta),
+ makeRotationZ(theta) {
+ const c = Math.cos(theta),
s = Math.sin(theta);
- this.set(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
- return this;
- }
+ this.set(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
+ return this;
+ }
- makeRotationAxis(axis, angle) {
- // Based on http://www.gamedev.net/reference/articles/article1199.asp
- const c = Math.cos(angle);
- const s = Math.sin(angle);
- const t = 1 - c;
- const x = axis.x,
+ makeRotationAxis(axis, angle) {
+ // Based on http://www.gamedev.net/reference/articles/article1199.asp
+ const c = Math.cos(angle);
+ const s = Math.sin(angle);
+ const t = 1 - c;
+ const x = axis.x,
y = axis.y,
z = axis.z;
- const tx = t * x,
+ const tx = t * x,
ty = t * y;
- this.set(tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1);
- return this;
- }
+ this.set(tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1);
+ return this;
+ }
- makeScale(x, y, z) {
- this.set(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1);
- return this;
- }
+ makeScale(x, y, z) {
+ this.set(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1);
+ return this;
+ }
- makeShear(xy, xz, yx, yz, zx, zy) {
- this.set(1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1);
- return this;
- }
+ makeShear(xy, xz, yx, yz, zx, zy) {
+ this.set(1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1);
+ return this;
+ }
- compose(position, quaternion, scale) {
- const te = this.elements;
- const x = quaternion._x,
+ compose(position, quaternion, scale) {
+ const te = this.elements;
+ const x = quaternion._x,
y = quaternion._y,
z = quaternion._z,
w = quaternion._w;
- const x2 = x + x,
+ const x2 = x + x,
y2 = y + y,
z2 = z + z;
- const xx = x * x2,
+ const xx = x * x2,
xy = x * y2,
xz = x * z2;
- const yy = y * y2,
+ const yy = y * y2,
yz = y * z2,
zz = z * z2;
- const wx = w * x2,
+ const wx = w * x2,
wy = w * y2,
wz = w * z2;
- const sx = scale.x,
+ const sx = scale.x,
sy = scale.y,
sz = scale.z;
- te[0] = (1 - (yy + zz)) * sx;
- te[1] = (xy + wz) * sx;
- te[2] = (xz - wy) * sx;
- te[3] = 0;
- te[4] = (xy - wz) * sy;
- te[5] = (1 - (xx + zz)) * sy;
- te[6] = (yz + wx) * sy;
- te[7] = 0;
- te[8] = (xz + wy) * sz;
- te[9] = (yz - wx) * sz;
- te[10] = (1 - (xx + yy)) * sz;
- te[11] = 0;
- te[12] = position.x;
- te[13] = position.y;
- te[14] = position.z;
- te[15] = 1;
- return this;
- }
+ te[0] = (1 - (yy + zz)) * sx;
+ te[1] = (xy + wz) * sx;
+ te[2] = (xz - wy) * sx;
+ te[3] = 0;
+ te[4] = (xy - wz) * sy;
+ te[5] = (1 - (xx + zz)) * sy;
+ te[6] = (yz + wx) * sy;
+ te[7] = 0;
+ te[8] = (xz + wy) * sz;
+ te[9] = (yz - wx) * sz;
+ te[10] = (1 - (xx + yy)) * sz;
+ te[11] = 0;
+ te[12] = position.x;
+ te[13] = position.y;
+ te[14] = position.z;
+ te[15] = 1;
+ return this;
+ }
- decompose(position, quaternion, scale) {
- const te = this.elements;
-
- let sx = _v1$5.set(te[0], te[1], te[2]).length();
-
- const sy = _v1$5.set(te[4], te[5], te[6]).length();
-
- const sz = _v1$5.set(te[8], te[9], te[10]).length(); // if determine is negative, we need to invert one scale
-
-
- const det = this.determinant();
- if (det < 0) sx = -sx;
- position.x = te[12];
- position.y = te[13];
- position.z = te[14]; // scale the rotation part
-
- _m1$2.copy(this);
-
- const invSX = 1 / sx;
- const invSY = 1 / sy;
- const invSZ = 1 / sz;
- _m1$2.elements[0] *= invSX;
- _m1$2.elements[1] *= invSX;
- _m1$2.elements[2] *= invSX;
- _m1$2.elements[4] *= invSY;
- _m1$2.elements[5] *= invSY;
- _m1$2.elements[6] *= invSY;
- _m1$2.elements[8] *= invSZ;
- _m1$2.elements[9] *= invSZ;
- _m1$2.elements[10] *= invSZ;
- quaternion.setFromRotationMatrix(_m1$2);
- scale.x = sx;
- scale.y = sy;
- scale.z = sz;
- return this;
- }
+ decompose(position, quaternion, scale) {
+ const te = this.elements;
- makePerspective(left, right, top, bottom, near, far) {
- if (far === undefined) {
- console.warn('THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.');
- }
-
- const te = this.elements;
- const x = 2 * near / (right - left);
- const y = 2 * near / (top - bottom);
- const a = (right + left) / (right - left);
- const b = (top + bottom) / (top - bottom);
- const c = -(far + near) / (far - near);
- const d = -2 * far * near / (far - near);
- te[0] = x;
- te[4] = 0;
- te[8] = a;
- te[12] = 0;
- te[1] = 0;
- te[5] = y;
- te[9] = b;
- te[13] = 0;
- te[2] = 0;
- te[6] = 0;
- te[10] = c;
- te[14] = d;
- te[3] = 0;
- te[7] = 0;
- te[11] = -1;
- te[15] = 0;
- return this;
- }
+ let sx = _v1$5.set(te[0], te[1], te[2]).length();
- makeOrthographic(left, right, top, bottom, near, far) {
- const te = this.elements;
- const w = 1.0 / (right - left);
- const h = 1.0 / (top - bottom);
- const p = 1.0 / (far - near);
- const x = (right + left) * w;
- const y = (top + bottom) * h;
- const z = (far + near) * p;
- te[0] = 2 * w;
- te[4] = 0;
- te[8] = 0;
- te[12] = -x;
- te[1] = 0;
- te[5] = 2 * h;
- te[9] = 0;
- te[13] = -y;
- te[2] = 0;
- te[6] = 0;
- te[10] = -2 * p;
- te[14] = -z;
- te[3] = 0;
- te[7] = 0;
- te[11] = 0;
- te[15] = 1;
- return this;
- }
+ const sy = _v1$5.set(te[4], te[5], te[6]).length();
- equals(matrix) {
- const te = this.elements;
- const me = matrix.elements;
+ const sz = _v1$5.set(te[8], te[9], te[10]).length(); // if determine is negative, we need to invert one scale
- for (let i = 0; i < 16; i++) {
- if (te[i] !== me[i]) return false;
- }
- return true;
- }
+ const det = this.determinant();
+ if (det < 0) sx = -sx;
+ position.x = te[12];
+ position.y = te[13];
+ position.z = te[14]; // scale the rotation part
- fromArray(array, offset = 0) {
- for (let i = 0; i < 16; i++) {
- this.elements[i] = array[i + offset];
- }
+ _m1$2.copy(this);
- return this;
- }
+ const invSX = 1 / sx;
+ const invSY = 1 / sy;
+ const invSZ = 1 / sz;
+ _m1$2.elements[0] *= invSX;
+ _m1$2.elements[1] *= invSX;
+ _m1$2.elements[2] *= invSX;
+ _m1$2.elements[4] *= invSY;
+ _m1$2.elements[5] *= invSY;
+ _m1$2.elements[6] *= invSY;
+ _m1$2.elements[8] *= invSZ;
+ _m1$2.elements[9] *= invSZ;
+ _m1$2.elements[10] *= invSZ;
+ quaternion.setFromRotationMatrix(_m1$2);
+ scale.x = sx;
+ scale.y = sy;
+ scale.z = sz;
+ return this;
+ }
- toArray(array = [], offset = 0) {
- const te = this.elements;
- array[offset] = te[0];
- array[offset + 1] = te[1];
- array[offset + 2] = te[2];
- array[offset + 3] = te[3];
- array[offset + 4] = te[4];
- array[offset + 5] = te[5];
- array[offset + 6] = te[6];
- array[offset + 7] = te[7];
- array[offset + 8] = te[8];
- array[offset + 9] = te[9];
- array[offset + 10] = te[10];
- array[offset + 11] = te[11];
- array[offset + 12] = te[12];
- array[offset + 13] = te[13];
- array[offset + 14] = te[14];
- array[offset + 15] = te[15];
- return array;
- }
+ makePerspective(left, right, top, bottom, near, far) {
+ if (far === undefined) {
+ console.warn('THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.');
+ }
- }
+ const te = this.elements;
+ const x = 2 * near / (right - left);
+ const y = 2 * near / (top - bottom);
+ const a = (right + left) / (right - left);
+ const b = (top + bottom) / (top - bottom);
+ const c = -(far + near) / (far - near);
+ const d = -2 * far * near / (far - near);
+ te[0] = x;
+ te[4] = 0;
+ te[8] = a;
+ te[12] = 0;
+ te[1] = 0;
+ te[5] = y;
+ te[9] = b;
+ te[13] = 0;
+ te[2] = 0;
+ te[6] = 0;
+ te[10] = c;
+ te[14] = d;
+ te[3] = 0;
+ te[7] = 0;
+ te[11] = -1;
+ te[15] = 0;
+ return this;
+ }
+
+ makeOrthographic(left, right, top, bottom, near, far) {
+ const te = this.elements;
+ const w = 1.0 / (right - left);
+ const h = 1.0 / (top - bottom);
+ const p = 1.0 / (far - near);
+ const x = (right + left) * w;
+ const y = (top + bottom) * h;
+ const z = (far + near) * p;
+ te[0] = 2 * w;
+ te[4] = 0;
+ te[8] = 0;
+ te[12] = -x;
+ te[1] = 0;
+ te[5] = 2 * h;
+ te[9] = 0;
+ te[13] = -y;
+ te[2] = 0;
+ te[6] = 0;
+ te[10] = -2 * p;
+ te[14] = -z;
+ te[3] = 0;
+ te[7] = 0;
+ te[11] = 0;
+ te[15] = 1;
+ return this;
+ }
+
+ equals(matrix) {
+ const te = this.elements;
+ const me = matrix.elements;
+
+ for (let i = 0; i < 16; i++) {
+ if (te[i] !== me[i]) return false;
+ }
+
+ return true;
+ }
- Matrix4.prototype.isMatrix4 = true;
+ fromArray(array, offset = 0) {
+ for (let i = 0; i < 16; i++) {
+ this.elements[i] = array[i + offset];
+ }
- const _v1$5 = /*@__PURE__*/new Vector3();
+ return this;
+ }
- const _m1$2 = /*@__PURE__*/new Matrix4();
+ toArray(array = [], offset = 0) {
+ const te = this.elements;
+ array[offset] = te[0];
+ array[offset + 1] = te[1];
+ array[offset + 2] = te[2];
+ array[offset + 3] = te[3];
+ array[offset + 4] = te[4];
+ array[offset + 5] = te[5];
+ array[offset + 6] = te[6];
+ array[offset + 7] = te[7];
+ array[offset + 8] = te[8];
+ array[offset + 9] = te[9];
+ array[offset + 10] = te[10];
+ array[offset + 11] = te[11];
+ array[offset + 12] = te[12];
+ array[offset + 13] = te[13];
+ array[offset + 14] = te[14];
+ array[offset + 15] = te[15];
+ return array;
+ }
- const _zero = /*@__PURE__*/new Vector3(0, 0, 0);
+ }
- const _one = /*@__PURE__*/new Vector3(1, 1, 1);
+ Matrix4.prototype.isMatrix4 = true;
- const _x = /*@__PURE__*/new Vector3();
+ const _v1$5 = /*@__PURE__*/new Vector3();
- const _y = /*@__PURE__*/new Vector3();
+ const _m1$2 = /*@__PURE__*/new Matrix4();
- const _z = /*@__PURE__*/new Vector3();
+ const _zero = /*@__PURE__*/new Vector3(0, 0, 0);
- const _matrix$1 = /*@__PURE__*/new Matrix4();
+ const _one = /*@__PURE__*/new Vector3(1, 1, 1);
- const _quaternion$3 = /*@__PURE__*/new Quaternion();
+ const _x = /*@__PURE__*/new Vector3();
- class Euler {
- constructor(x = 0, y = 0, z = 0, order = Euler.DefaultOrder) {
- this._x = x;
- this._y = y;
- this._z = z;
- this._order = order;
- }
+ const _y = /*@__PURE__*/new Vector3();
- get x() {
- return this._x;
- }
+ const _z = /*@__PURE__*/new Vector3();
- set x(value) {
- this._x = value;
+ const _matrix$1 = /*@__PURE__*/new Matrix4();
- this._onChangeCallback();
- }
+ const _quaternion$3 = /*@__PURE__*/new Quaternion();
- get y() {
- return this._y;
- }
+ class Euler {
+ constructor(x = 0, y = 0, z = 0, order = Euler.DefaultOrder) {
+ this._x = x;
+ this._y = y;
+ this._z = z;
+ this._order = order;
+ }
+
+ get x() {
+ return this._x;
+ }
- set y(value) {
- this._y = value;
+ set x(value) {
+ this._x = value;
- this._onChangeCallback();
- }
+ this._onChangeCallback();
+ }
- get z() {
- return this._z;
- }
+ get y() {
+ return this._y;
+ }
- set z(value) {
- this._z = value;
+ set y(value) {
+ this._y = value;
- this._onChangeCallback();
- }
+ this._onChangeCallback();
+ }
- get order() {
- return this._order;
- }
+ get z() {
+ return this._z;
+ }
- set order(value) {
- this._order = value;
+ set z(value) {
+ this._z = value;
- this._onChangeCallback();
- }
+ this._onChangeCallback();
+ }
+
+ get order() {
+ return this._order;
+ }
- set(x, y, z, order = this._order) {
- this._x = x;
- this._y = y;
- this._z = z;
- this._order = order;
+ set order(value) {
+ this._order = value;
- this._onChangeCallback();
+ this._onChangeCallback();
+ }
- return this;
- }
+ set(x, y, z, order = this._order) {
+ this._x = x;
+ this._y = y;
+ this._z = z;
+ this._order = order;
- clone() {
- return new this.constructor(this._x, this._y, this._z, this._order);
- }
+ this._onChangeCallback();
- copy(euler) {
- this._x = euler._x;
- this._y = euler._y;
- this._z = euler._z;
- this._order = euler._order;
+ return this;
+ }
- this._onChangeCallback();
+ clone() {
+ return new this.constructor(this._x, this._y, this._z, this._order);
+ }
- return this;
- }
+ copy(euler) {
+ this._x = euler._x;
+ this._y = euler._y;
+ this._z = euler._z;
+ this._order = euler._order;
- setFromRotationMatrix(m, order = this._order, update = true) {
- // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
- const te = m.elements;
- const m11 = te[0],
+ this._onChangeCallback();
+
+ return this;
+ }
+
+ setFromRotationMatrix(m, order = this._order, update = true) {
+ // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
+ const te = m.elements;
+ const m11 = te[0],
m12 = te[4],
m13 = te[8];
- const m21 = te[1],
+ const m21 = te[1],
m22 = te[5],
m23 = te[9];
- const m31 = te[2],
+ const m31 = te[2],
m32 = te[6],
m33 = te[10];
- switch (order) {
- case 'XYZ':
- this._y = Math.asin(clamp(m13, -1, 1));
+ switch (order) {
+ case 'XYZ':
+ this._y = Math.asin(clamp(m13, -1, 1));
- if (Math.abs(m13) < 0.9999999) {
- this._x = Math.atan2(-m23, m33);
- this._z = Math.atan2(-m12, m11);
- } else {
- this._x = Math.atan2(m32, m22);
- this._z = 0;
- }
+ if (Math.abs(m13) < 0.9999999) {
+ this._x = Math.atan2(-m23, m33);
+ this._z = Math.atan2(-m12, m11);
+ } else {
+ this._x = Math.atan2(m32, m22);
+ this._z = 0;
+ }
- break;
+ break;
- case 'YXZ':
- this._x = Math.asin(-clamp(m23, -1, 1));
+ case 'YXZ':
+ this._x = Math.asin(-clamp(m23, -1, 1));
- if (Math.abs(m23) < 0.9999999) {
- this._y = Math.atan2(m13, m33);
- this._z = Math.atan2(m21, m22);
- } else {
- this._y = Math.atan2(-m31, m11);
- this._z = 0;
- }
+ if (Math.abs(m23) < 0.9999999) {
+ this._y = Math.atan2(m13, m33);
+ this._z = Math.atan2(m21, m22);
+ } else {
+ this._y = Math.atan2(-m31, m11);
+ this._z = 0;
+ }
- break;
+ break;
- case 'ZXY':
- this._x = Math.asin(clamp(m32, -1, 1));
+ case 'ZXY':
+ this._x = Math.asin(clamp(m32, -1, 1));
- if (Math.abs(m32) < 0.9999999) {
- this._y = Math.atan2(-m31, m33);
- this._z = Math.atan2(-m12, m22);
- } else {
- this._y = 0;
- this._z = Math.atan2(m21, m11);
- }
+ if (Math.abs(m32) < 0.9999999) {
+ this._y = Math.atan2(-m31, m33);
+ this._z = Math.atan2(-m12, m22);
+ } else {
+ this._y = 0;
+ this._z = Math.atan2(m21, m11);
+ }
- break;
+ break;
- case 'ZYX':
- this._y = Math.asin(-clamp(m31, -1, 1));
+ case 'ZYX':
+ this._y = Math.asin(-clamp(m31, -1, 1));
- if (Math.abs(m31) < 0.9999999) {
- this._x = Math.atan2(m32, m33);
- this._z = Math.atan2(m21, m11);
- } else {
- this._x = 0;
- this._z = Math.atan2(-m12, m22);
- }
+ if (Math.abs(m31) < 0.9999999) {
+ this._x = Math.atan2(m32, m33);
+ this._z = Math.atan2(m21, m11);
+ } else {
+ this._x = 0;
+ this._z = Math.atan2(-m12, m22);
+ }
- break;
+ break;
- case 'YZX':
- this._z = Math.asin(clamp(m21, -1, 1));
+ case 'YZX':
+ this._z = Math.asin(clamp(m21, -1, 1));
- if (Math.abs(m21) < 0.9999999) {
- this._x = Math.atan2(-m23, m22);
- this._y = Math.atan2(-m31, m11);
- } else {
- this._x = 0;
- this._y = Math.atan2(m13, m33);
- }
+ if (Math.abs(m21) < 0.9999999) {
+ this._x = Math.atan2(-m23, m22);
+ this._y = Math.atan2(-m31, m11);
+ } else {
+ this._x = 0;
+ this._y = Math.atan2(m13, m33);
+ }
- break;
+ break;
- case 'XZY':
- this._z = Math.asin(-clamp(m12, -1, 1));
+ case 'XZY':
+ this._z = Math.asin(-clamp(m12, -1, 1));
- if (Math.abs(m12) < 0.9999999) {
- this._x = Math.atan2(m32, m22);
- this._y = Math.atan2(m13, m11);
- } else {
- this._x = Math.atan2(-m23, m33);
- this._y = 0;
- }
+ if (Math.abs(m12) < 0.9999999) {
+ this._x = Math.atan2(m32, m22);
+ this._y = Math.atan2(m13, m11);
+ } else {
+ this._x = Math.atan2(-m23, m33);
+ this._y = 0;
+ }
- break;
+ break;
- default:
- console.warn('THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order);
- }
+ default:
+ console.warn('THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order);
+ }
- this._order = order;
- if (update === true) this._onChangeCallback();
- return this;
- }
+ this._order = order;
+ if (update === true) this._onChangeCallback();
+ return this;
+ }
- setFromQuaternion(q, order, update) {
- _matrix$1.makeRotationFromQuaternion(q);
+ setFromQuaternion(q, order, update) {
+ _matrix$1.makeRotationFromQuaternion(q);
- return this.setFromRotationMatrix(_matrix$1, order, update);
- }
+ return this.setFromRotationMatrix(_matrix$1, order, update);
+ }
- setFromVector3(v, order = this._order) {
- return this.set(v.x, v.y, v.z, order);
- }
+ setFromVector3(v, order = this._order) {
+ return this.set(v.x, v.y, v.z, order);
+ }
- reorder(newOrder) {
- // WARNING: this discards revolution information -bhouston
- _quaternion$3.setFromEuler(this);
+ reorder(newOrder) {
+ // WARNING: this discards revolution information -bhouston
+ _quaternion$3.setFromEuler(this);
- return this.setFromQuaternion(_quaternion$3, newOrder);
- }
+ return this.setFromQuaternion(_quaternion$3, newOrder);
+ }
- equals(euler) {
- return euler._x === this._x && euler._y === this._y && euler._z === this._z && euler._order === this._order;
- }
+ equals(euler) {
+ return euler._x === this._x && euler._y === this._y && euler._z === this._z && euler._order === this._order;
+ }
- fromArray(array) {
- this._x = array[0];
- this._y = array[1];
- this._z = array[2];
- if (array[3] !== undefined) this._order = array[3];
+ fromArray(array) {
+ this._x = array[0];
+ this._y = array[1];
+ this._z = array[2];
+ if (array[3] !== undefined) this._order = array[3];
- this._onChangeCallback();
+ this._onChangeCallback();
- return this;
- }
+ return this;
+ }
- toArray(array = [], offset = 0) {
- array[offset] = this._x;
- array[offset + 1] = this._y;
- array[offset + 2] = this._z;
- array[offset + 3] = this._order;
- return array;
- }
+ toArray(array = [], offset = 0) {
+ array[offset] = this._x;
+ array[offset + 1] = this._y;
+ array[offset + 2] = this._z;
+ array[offset + 3] = this._order;
+ return array;
+ }
- toVector3(optionalResult) {
- if (optionalResult) {
- return optionalResult.set(this._x, this._y, this._z);
- } else {
- return new Vector3(this._x, this._y, this._z);
- }
- }
+ toVector3(optionalResult) {
+ if (optionalResult) {
+ return optionalResult.set(this._x, this._y, this._z);
+ } else {
+ return new Vector3(this._x, this._y, this._z);
+ }
+ }
- _onChange(callback) {
- this._onChangeCallback = callback;
- return this;
- }
+ _onChange(callback) {
+ this._onChangeCallback = callback;
+ return this;
+ }
- _onChangeCallback() {}
+ _onChangeCallback() {
+ }
- }
+ }
- Euler.prototype.isEuler = true;
- Euler.DefaultOrder = 'XYZ';
- Euler.RotationOrders = ['XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX'];
+ Euler.prototype.isEuler = true;
+ Euler.DefaultOrder = 'XYZ';
+ Euler.RotationOrders = ['XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX'];
- class Layers {
- constructor() {
- this.mask = 1 | 0;
- }
+ class Layers {
+ constructor() {
+ this.mask = 1 | 0;
+ }
- set(channel) {
- this.mask = 1 << channel | 0;
- }
+ set(channel) {
+ this.mask = 1 << channel | 0;
+ }
- enable(channel) {
- this.mask |= 1 << channel | 0;
- }
+ enable(channel) {
+ this.mask |= 1 << channel | 0;
+ }
- enableAll() {
- this.mask = 0xffffffff | 0;
- }
+ enableAll() {
+ this.mask = 0xffffffff | 0;
+ }
- toggle(channel) {
- this.mask ^= 1 << channel | 0;
- }
+ toggle(channel) {
+ this.mask ^= 1 << channel | 0;
+ }
- disable(channel) {
- this.mask &= ~(1 << channel | 0);
- }
+ disable(channel) {
+ this.mask &= ~(1 << channel | 0);
+ }
- disableAll() {
- this.mask = 0;
- }
+ disableAll() {
+ this.mask = 0;
+ }
- test(layers) {
- return (this.mask & layers.mask) !== 0;
- }
+ test(layers) {
+ return (this.mask & layers.mask) !== 0;
+ }
- }
+ }
- let _object3DId = 0;
+ let _object3DId = 0;
- const _v1$4 = /*@__PURE__*/new Vector3();
+ const _v1$4 = /*@__PURE__*/new Vector3();
- const _q1 = /*@__PURE__*/new Quaternion();
+ const _q1 = /*@__PURE__*/new Quaternion();
- const _m1$1 = /*@__PURE__*/new Matrix4();
+ const _m1$1 = /*@__PURE__*/new Matrix4();
- const _target = /*@__PURE__*/new Vector3();
+ const _target = /*@__PURE__*/new Vector3();
- const _position$3 = /*@__PURE__*/new Vector3();
+ const _position$3 = /*@__PURE__*/new Vector3();
- const _scale$2 = /*@__PURE__*/new Vector3();
+ const _scale$2 = /*@__PURE__*/new Vector3();
- const _quaternion$2 = /*@__PURE__*/new Quaternion();
+ const _quaternion$2 = /*@__PURE__*/new Quaternion();
- const _xAxis = /*@__PURE__*/new Vector3(1, 0, 0);
+ const _xAxis = /*@__PURE__*/new Vector3(1, 0, 0);
- const _yAxis = /*@__PURE__*/new Vector3(0, 1, 0);
+ const _yAxis = /*@__PURE__*/new Vector3(0, 1, 0);
- const _zAxis = /*@__PURE__*/new Vector3(0, 0, 1);
+ const _zAxis = /*@__PURE__*/new Vector3(0, 0, 1);
- const _addedEvent = {
- type: 'added'
- };
- const _removedEvent = {
- type: 'removed'
- };
+ const _addedEvent = {
+ type: 'added'
+ };
+ const _removedEvent = {
+ type: 'removed'
+ };
- class Object3D extends EventDispatcher {
- constructor() {
- super();
- Object.defineProperty(this, 'id', {
- value: _object3DId++
- });
- this.uuid = generateUUID();
- this.name = '';
- this.type = 'Object3D';
- this.parent = null;
- this.children = [];
- this.up = Object3D.DefaultUp.clone();
- const position = new Vector3();
- const rotation = new Euler();
- const quaternion = new Quaternion();
- const scale = new Vector3(1, 1, 1);
+ class Object3D extends EventDispatcher {
+ constructor() {
+ super();
+ Object.defineProperty(this, 'id', {
+ value: _object3DId++
+ });
+ this.uuid = generateUUID();
+ this.name = '';
+ this.type = 'Object3D';
+ this.parent = null;
+ this.children = [];
+ this.up = Object3D.DefaultUp.clone();
+ const position = new Vector3();
+ const rotation = new Euler();
+ const quaternion = new Quaternion();
+ const scale = new Vector3(1, 1, 1);
+
+ function onRotationChange() {
+ quaternion.setFromEuler(rotation, false);
+ }
- function onRotationChange() {
- quaternion.setFromEuler(rotation, false);
- }
-
- function onQuaternionChange() {
- rotation.setFromQuaternion(quaternion, undefined, false);
- }
-
- rotation._onChange(onRotationChange);
-
- quaternion._onChange(onQuaternionChange);
+ function onQuaternionChange() {
+ rotation.setFromQuaternion(quaternion, undefined, false);
+ }
- Object.defineProperties(this, {
- position: {
- configurable: true,
- enumerable: true,
- value: position
- },
- rotation: {
- configurable: true,
- enumerable: true,
- value: rotation
- },
- quaternion: {
- configurable: true,
- enumerable: true,
- value: quaternion
- },
- scale: {
- configurable: true,
- enumerable: true,
- value: scale
- },
- modelViewMatrix: {
- value: new Matrix4()
- },
- normalMatrix: {
- value: new Matrix3()
+ rotation._onChange(onRotationChange);
+
+ quaternion._onChange(onQuaternionChange);
+
+ Object.defineProperties(this, {
+ position: {
+ configurable: true,
+ enumerable: true,
+ value: position
+ },
+ rotation: {
+ configurable: true,
+ enumerable: true,
+ value: rotation
+ },
+ quaternion: {
+ configurable: true,
+ enumerable: true,
+ value: quaternion
+ },
+ scale: {
+ configurable: true,
+ enumerable: true,
+ value: scale
+ },
+ modelViewMatrix: {
+ value: new Matrix4()
+ },
+ normalMatrix: {
+ value: new Matrix3()
+ }
+ });
+ this.matrix = new Matrix4();
+ this.matrixWorld = new Matrix4();
+ this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
+ this.matrixWorldNeedsUpdate = false;
+ this.layers = new Layers();
+ this.visible = true;
+ this.castShadow = false;
+ this.receiveShadow = false;
+ this.frustumCulled = true;
+ this.renderOrder = 0;
+ this.animations = [];
+ this.userData = {};
}
- });
- this.matrix = new Matrix4();
- this.matrixWorld = new Matrix4();
- this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
- this.matrixWorldNeedsUpdate = false;
- this.layers = new Layers();
- this.visible = true;
- this.castShadow = false;
- this.receiveShadow = false;
- this.frustumCulled = true;
- this.renderOrder = 0;
- this.animations = [];
- this.userData = {};
- }
- onBeforeRender() {}
-
- onAfterRender() {}
+ onBeforeRender() {
+ }
- applyMatrix4(matrix) {
- if (this.matrixAutoUpdate) this.updateMatrix();
- this.matrix.premultiply(matrix);
- this.matrix.decompose(this.position, this.quaternion, this.scale);
- }
+ onAfterRender() {
+ }
- applyQuaternion(q) {
- this.quaternion.premultiply(q);
- return this;
- }
+ applyMatrix4(matrix) {
+ if (this.matrixAutoUpdate) this.updateMatrix();
+ this.matrix.premultiply(matrix);
+ this.matrix.decompose(this.position, this.quaternion, this.scale);
+ }
- setRotationFromAxisAngle(axis, angle) {
- // assumes axis is normalized
- this.quaternion.setFromAxisAngle(axis, angle);
- }
+ applyQuaternion(q) {
+ this.quaternion.premultiply(q);
+ return this;
+ }
- setRotationFromEuler(euler) {
- this.quaternion.setFromEuler(euler, true);
- }
+ setRotationFromAxisAngle(axis, angle) {
+ // assumes axis is normalized
+ this.quaternion.setFromAxisAngle(axis, angle);
+ }
- setRotationFromMatrix(m) {
- // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
- this.quaternion.setFromRotationMatrix(m);
- }
+ setRotationFromEuler(euler) {
+ this.quaternion.setFromEuler(euler, true);
+ }
- setRotationFromQuaternion(q) {
- // assumes q is normalized
- this.quaternion.copy(q);
- }
+ setRotationFromMatrix(m) {
+ // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
+ this.quaternion.setFromRotationMatrix(m);
+ }
- rotateOnAxis(axis, angle) {
- // rotate object on axis in object space
- // axis is assumed to be normalized
- _q1.setFromAxisAngle(axis, angle);
+ setRotationFromQuaternion(q) {
+ // assumes q is normalized
+ this.quaternion.copy(q);
+ }
- this.quaternion.multiply(_q1);
- return this;
- }
+ rotateOnAxis(axis, angle) {
+ // rotate object on axis in object space
+ // axis is assumed to be normalized
+ _q1.setFromAxisAngle(axis, angle);
- rotateOnWorldAxis(axis, angle) {
- // rotate object on axis in world space
- // axis is assumed to be normalized
- // method assumes no rotated parent
- _q1.setFromAxisAngle(axis, angle);
+ this.quaternion.multiply(_q1);
+ return this;
+ }
- this.quaternion.premultiply(_q1);
- return this;
- }
+ rotateOnWorldAxis(axis, angle) {
+ // rotate object on axis in world space
+ // axis is assumed to be normalized
+ // method assumes no rotated parent
+ _q1.setFromAxisAngle(axis, angle);
- rotateX(angle) {
- return this.rotateOnAxis(_xAxis, angle);
- }
+ this.quaternion.premultiply(_q1);
+ return this;
+ }
- rotateY(angle) {
- return this.rotateOnAxis(_yAxis, angle);
- }
+ rotateX(angle) {
+ return this.rotateOnAxis(_xAxis, angle);
+ }
- rotateZ(angle) {
- return this.rotateOnAxis(_zAxis, angle);
- }
+ rotateY(angle) {
+ return this.rotateOnAxis(_yAxis, angle);
+ }
- translateOnAxis(axis, distance) {
- // translate object by distance along axis in object space
- // axis is assumed to be normalized
- _v1$4.copy(axis).applyQuaternion(this.quaternion);
+ rotateZ(angle) {
+ return this.rotateOnAxis(_zAxis, angle);
+ }
- this.position.add(_v1$4.multiplyScalar(distance));
- return this;
- }
+ translateOnAxis(axis, distance) {
+ // translate object by distance along axis in object space
+ // axis is assumed to be normalized
+ _v1$4.copy(axis).applyQuaternion(this.quaternion);
- translateX(distance) {
- return this.translateOnAxis(_xAxis, distance);
- }
+ this.position.add(_v1$4.multiplyScalar(distance));
+ return this;
+ }
- translateY(distance) {
- return this.translateOnAxis(_yAxis, distance);
- }
+ translateX(distance) {
+ return this.translateOnAxis(_xAxis, distance);
+ }
- translateZ(distance) {
- return this.translateOnAxis(_zAxis, distance);
- }
+ translateY(distance) {
+ return this.translateOnAxis(_yAxis, distance);
+ }
- localToWorld(vector) {
- return vector.applyMatrix4(this.matrixWorld);
- }
+ translateZ(distance) {
+ return this.translateOnAxis(_zAxis, distance);
+ }
- worldToLocal(vector) {
- return vector.applyMatrix4(_m1$1.copy(this.matrixWorld).invert());
- }
+ localToWorld(vector) {
+ return vector.applyMatrix4(this.matrixWorld);
+ }
- lookAt(x, y, z) {
- // This method does not support objects having non-uniformly-scaled parent(s)
- if (x.isVector3) {
- _target.copy(x);
- } else {
- _target.set(x, y, z);
- }
+ worldToLocal(vector) {
+ return vector.applyMatrix4(_m1$1.copy(this.matrixWorld).invert());
+ }
- const parent = this.parent;
- this.updateWorldMatrix(true, false);
+ lookAt(x, y, z) {
+ // This method does not support objects having non-uniformly-scaled parent(s)
+ if (x.isVector3) {
+ _target.copy(x);
+ } else {
+ _target.set(x, y, z);
+ }
- _position$3.setFromMatrixPosition(this.matrixWorld);
+ const parent = this.parent;
+ this.updateWorldMatrix(true, false);
- if (this.isCamera || this.isLight) {
- _m1$1.lookAt(_position$3, _target, this.up);
- } else {
- _m1$1.lookAt(_target, _position$3, this.up);
- }
+ _position$3.setFromMatrixPosition(this.matrixWorld);
- this.quaternion.setFromRotationMatrix(_m1$1);
+ if (this.isCamera || this.isLight) {
+ _m1$1.lookAt(_position$3, _target, this.up);
+ } else {
+ _m1$1.lookAt(_target, _position$3, this.up);
+ }
- if (parent) {
- _m1$1.extractRotation(parent.matrixWorld);
+ this.quaternion.setFromRotationMatrix(_m1$1);
- _q1.setFromRotationMatrix(_m1$1);
+ if (parent) {
+ _m1$1.extractRotation(parent.matrixWorld);
- this.quaternion.premultiply(_q1.invert());
- }
- }
+ _q1.setFromRotationMatrix(_m1$1);
- add(object) {
- if (arguments.length > 1) {
- for (let i = 0; i < arguments.length; i++) {
- this.add(arguments[i]);
+ this.quaternion.premultiply(_q1.invert());
+ }
}
- return this;
- }
+ add(object) {
+ if (arguments.length > 1) {
+ for (let i = 0; i < arguments.length; i++) {
+ this.add(arguments[i]);
+ }
- if (object === this) {
- console.error('THREE.Object3D.add: object can\'t be added as a child of itself.', object);
- return this;
- }
+ return this;
+ }
- if (object && object.isObject3D) {
- if (object.parent !== null) {
- object.parent.remove(object);
- }
+ if (object === this) {
+ console.error('THREE.Object3D.add: object can\'t be added as a child of itself.', object);
+ return this;
+ }
- object.parent = this;
- this.children.push(object);
- object.dispatchEvent(_addedEvent);
- } else {
- console.error('THREE.Object3D.add: object not an instance of THREE.Object3D.', object);
- }
+ if (object && object.isObject3D) {
+ if (object.parent !== null) {
+ object.parent.remove(object);
+ }
- return this;
- }
+ object.parent = this;
+ this.children.push(object);
+ object.dispatchEvent(_addedEvent);
+ } else {
+ console.error('THREE.Object3D.add: object not an instance of THREE.Object3D.', object);
+ }
- remove(object) {
- if (arguments.length > 1) {
- for (let i = 0; i < arguments.length; i++) {
- this.remove(arguments[i]);
+ return this;
}
- return this;
- }
-
- const index = this.children.indexOf(object);
-
- if (index !== -1) {
- object.parent = null;
- this.children.splice(index, 1);
- object.dispatchEvent(_removedEvent);
- }
+ remove(object) {
+ if (arguments.length > 1) {
+ for (let i = 0; i < arguments.length; i++) {
+ this.remove(arguments[i]);
+ }
- return this;
- }
+ return this;
+ }
- removeFromParent() {
- const parent = this.parent;
+ const index = this.children.indexOf(object);
- if (parent !== null) {
- parent.remove(this);
- }
+ if (index !== -1) {
+ object.parent = null;
+ this.children.splice(index, 1);
+ object.dispatchEvent(_removedEvent);
+ }
- return this;
- }
+ return this;
+ }
- clear() {
- for (let i = 0; i < this.children.length; i++) {
- const object = this.children[i];
- object.parent = null;
- object.dispatchEvent(_removedEvent);
- }
+ removeFromParent() {
+ const parent = this.parent;
- this.children.length = 0;
- return this;
- }
+ if (parent !== null) {
+ parent.remove(this);
+ }
- attach(object) {
- // adds object as a child of this, while maintaining the object's world transform
- this.updateWorldMatrix(true, false);
+ return this;
+ }
- _m1$1.copy(this.matrixWorld).invert();
+ clear() {
+ for (let i = 0; i < this.children.length; i++) {
+ const object = this.children[i];
+ object.parent = null;
+ object.dispatchEvent(_removedEvent);
+ }
- if (object.parent !== null) {
- object.parent.updateWorldMatrix(true, false);
+ this.children.length = 0;
+ return this;
+ }
- _m1$1.multiply(object.parent.matrixWorld);
- }
+ attach(object) {
+ // adds object as a child of this, while maintaining the object's world transform
+ this.updateWorldMatrix(true, false);
- object.applyMatrix4(_m1$1);
- this.add(object);
- object.updateWorldMatrix(false, true);
- return this;
- }
+ _m1$1.copy(this.matrixWorld).invert();
- getObjectById(id) {
- return this.getObjectByProperty('id', id);
- }
+ if (object.parent !== null) {
+ object.parent.updateWorldMatrix(true, false);
- getObjectByName(name) {
- return this.getObjectByProperty('name', name);
- }
+ _m1$1.multiply(object.parent.matrixWorld);
+ }
- getObjectByProperty(name, value) {
- if (this[name] === value) return this;
+ object.applyMatrix4(_m1$1);
+ this.add(object);
+ object.updateWorldMatrix(false, true);
+ return this;
+ }
- for (let i = 0, l = this.children.length; i < l; i++) {
- const child = this.children[i];
- const object = child.getObjectByProperty(name, value);
+ getObjectById(id) {
+ return this.getObjectByProperty('id', id);
+ }
- if (object !== undefined) {
- return object;
+ getObjectByName(name) {
+ return this.getObjectByProperty('name', name);
}
- }
- return undefined;
- }
+ getObjectByProperty(name, value) {
+ if (this[name] === value) return this;
- getWorldPosition(target) {
- this.updateWorldMatrix(true, false);
- return target.setFromMatrixPosition(this.matrixWorld);
- }
+ for (let i = 0, l = this.children.length; i < l; i++) {
+ const child = this.children[i];
+ const object = child.getObjectByProperty(name, value);
- getWorldQuaternion(target) {
- this.updateWorldMatrix(true, false);
- this.matrixWorld.decompose(_position$3, target, _scale$2);
- return target;
- }
+ if (object !== undefined) {
+ return object;
+ }
+ }
- getWorldScale(target) {
- this.updateWorldMatrix(true, false);
- this.matrixWorld.decompose(_position$3, _quaternion$2, target);
- return target;
- }
+ return undefined;
+ }
- getWorldDirection(target) {
- this.updateWorldMatrix(true, false);
- const e = this.matrixWorld.elements;
- return target.set(e[8], e[9], e[10]).normalize();
- }
+ getWorldPosition(target) {
+ this.updateWorldMatrix(true, false);
+ return target.setFromMatrixPosition(this.matrixWorld);
+ }
- raycast() {}
+ getWorldQuaternion(target) {
+ this.updateWorldMatrix(true, false);
+ this.matrixWorld.decompose(_position$3, target, _scale$2);
+ return target;
+ }
- traverse(callback) {
- callback(this);
- const children = this.children;
+ getWorldScale(target) {
+ this.updateWorldMatrix(true, false);
+ this.matrixWorld.decompose(_position$3, _quaternion$2, target);
+ return target;
+ }
- for (let i = 0, l = children.length; i < l; i++) {
- children[i].traverse(callback);
- }
- }
+ getWorldDirection(target) {
+ this.updateWorldMatrix(true, false);
+ const e = this.matrixWorld.elements;
+ return target.set(e[8], e[9], e[10]).normalize();
+ }
- traverseVisible(callback) {
- if (this.visible === false) return;
- callback(this);
- const children = this.children;
+ raycast() {
+ }
- for (let i = 0, l = children.length; i < l; i++) {
- children[i].traverseVisible(callback);
- }
- }
+ traverse(callback) {
+ callback(this);
+ const children = this.children;
- traverseAncestors(callback) {
- const parent = this.parent;
+ for (let i = 0, l = children.length; i < l; i++) {
+ children[i].traverse(callback);
+ }
+ }
- if (parent !== null) {
- callback(parent);
- parent.traverseAncestors(callback);
- }
- }
+ traverseVisible(callback) {
+ if (this.visible === false) return;
+ callback(this);
+ const children = this.children;
- updateMatrix() {
- this.matrix.compose(this.position, this.quaternion, this.scale);
- this.matrixWorldNeedsUpdate = true;
- }
+ for (let i = 0, l = children.length; i < l; i++) {
+ children[i].traverseVisible(callback);
+ }
+ }
- updateMatrixWorld(force) {
- if (this.matrixAutoUpdate) this.updateMatrix();
+ traverseAncestors(callback) {
+ const parent = this.parent;
- if (this.matrixWorldNeedsUpdate || force) {
- if (this.parent === null) {
- this.matrixWorld.copy(this.matrix);
- } else {
- this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix);
+ if (parent !== null) {
+ callback(parent);
+ parent.traverseAncestors(callback);
+ }
}
- this.matrixWorldNeedsUpdate = false;
- force = true;
- } // update children
+ updateMatrix() {
+ this.matrix.compose(this.position, this.quaternion, this.scale);
+ this.matrixWorldNeedsUpdate = true;
+ }
+ updateMatrixWorld(force) {
+ if (this.matrixAutoUpdate) this.updateMatrix();
- const children = this.children;
+ if (this.matrixWorldNeedsUpdate || force) {
+ if (this.parent === null) {
+ this.matrixWorld.copy(this.matrix);
+ } else {
+ this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix);
+ }
- for (let i = 0, l = children.length; i < l; i++) {
- children[i].updateMatrixWorld(force);
- }
- }
+ this.matrixWorldNeedsUpdate = false;
+ force = true;
+ } // update children
- updateWorldMatrix(updateParents, updateChildren) {
- const parent = this.parent;
- if (updateParents === true && parent !== null) {
- parent.updateWorldMatrix(true, false);
- }
+ const children = this.children;
- if (this.matrixAutoUpdate) this.updateMatrix();
+ for (let i = 0, l = children.length; i < l; i++) {
+ children[i].updateMatrixWorld(force);
+ }
+ }
- if (this.parent === null) {
- this.matrixWorld.copy(this.matrix);
- } else {
- this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix);
- } // update children
+ updateWorldMatrix(updateParents, updateChildren) {
+ const parent = this.parent;
+ if (updateParents === true && parent !== null) {
+ parent.updateWorldMatrix(true, false);
+ }
- if (updateChildren === true) {
- const children = this.children;
+ if (this.matrixAutoUpdate) this.updateMatrix();
- for (let i = 0, l = children.length; i < l; i++) {
- children[i].updateWorldMatrix(false, true);
- }
- }
- }
+ if (this.parent === null) {
+ this.matrixWorld.copy(this.matrix);
+ } else {
+ this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix);
+ } // update children
- toJSON(meta) {
- // meta is a string when called from JSON.stringify
- const isRootObject = meta === undefined || typeof meta === 'string';
- const output = {}; // meta is a hash used to collect geometries, materials.
- // not providing it implies that this is the root object
- // being serialized.
-
- if (isRootObject) {
- // initialize meta obj
- meta = {
- geometries: {},
- materials: {},
- textures: {},
- images: {},
- shapes: {},
- skeletons: {},
- animations: {}
- };
- output.metadata = {
- version: 4.5,
- type: 'Object',
- generator: 'Object3D.toJSON'
- };
- } // standard Object3D serialization
-
-
- const object = {};
- object.uuid = this.uuid;
- object.type = this.type;
- if (this.name !== '') object.name = this.name;
- if (this.castShadow === true) object.castShadow = true;
- if (this.receiveShadow === true) object.receiveShadow = true;
- if (this.visible === false) object.visible = false;
- if (this.frustumCulled === false) object.frustumCulled = false;
- if (this.renderOrder !== 0) object.renderOrder = this.renderOrder;
- if (JSON.stringify(this.userData) !== '{}') object.userData = this.userData;
- object.layers = this.layers.mask;
- object.matrix = this.matrix.toArray();
- if (this.matrixAutoUpdate === false) object.matrixAutoUpdate = false; // object specific properties
-
- if (this.isInstancedMesh) {
- object.type = 'InstancedMesh';
- object.count = this.count;
- object.instanceMatrix = this.instanceMatrix.toJSON();
- if (this.instanceColor !== null) object.instanceColor = this.instanceColor.toJSON();
- } //
+ if (updateChildren === true) {
+ const children = this.children;
- function serialize(library, element) {
- if (library[element.uuid] === undefined) {
- library[element.uuid] = element.toJSON(meta);
+ for (let i = 0, l = children.length; i < l; i++) {
+ children[i].updateWorldMatrix(false, true);
+ }
+ }
}
- return element.uuid;
- }
+ toJSON(meta) {
+ // meta is a string when called from JSON.stringify
+ const isRootObject = meta === undefined || typeof meta === 'string';
+ const output = {}; // meta is a hash used to collect geometries, materials.
+ // not providing it implies that this is the root object
+ // being serialized.
+
+ if (isRootObject) {
+ // initialize meta obj
+ meta = {
+ geometries: {},
+ materials: {},
+ textures: {},
+ images: {},
+ shapes: {},
+ skeletons: {},
+ animations: {}
+ };
+ output.metadata = {
+ version: 4.5,
+ type: 'Object',
+ generator: 'Object3D.toJSON'
+ };
+ } // standard Object3D serialization
+
+
+ const object = {};
+ object.uuid = this.uuid;
+ object.type = this.type;
+ if (this.name !== '') object.name = this.name;
+ if (this.castShadow === true) object.castShadow = true;
+ if (this.receiveShadow === true) object.receiveShadow = true;
+ if (this.visible === false) object.visible = false;
+ if (this.frustumCulled === false) object.frustumCulled = false;
+ if (this.renderOrder !== 0) object.renderOrder = this.renderOrder;
+ if (JSON.stringify(this.userData) !== '{}') object.userData = this.userData;
+ object.layers = this.layers.mask;
+ object.matrix = this.matrix.toArray();
+ if (this.matrixAutoUpdate === false) object.matrixAutoUpdate = false; // object specific properties
+
+ if (this.isInstancedMesh) {
+ object.type = 'InstancedMesh';
+ object.count = this.count;
+ object.instanceMatrix = this.instanceMatrix.toJSON();
+ if (this.instanceColor !== null) object.instanceColor = this.instanceColor.toJSON();
+ } //
+
+
+ function serialize(library, element) {
+ if (library[element.uuid] === undefined) {
+ library[element.uuid] = element.toJSON(meta);
+ }
- if (this.isScene) {
- if (this.background) {
- if (this.background.isColor) {
- object.background = this.background.toJSON();
- } else if (this.background.isTexture) {
- object.background = this.background.toJSON(meta).uuid;
+ return element.uuid;
}
- }
- if (this.environment && this.environment.isTexture) {
- object.environment = this.environment.toJSON(meta).uuid;
- }
- } else if (this.isMesh || this.isLine || this.isPoints) {
- object.geometry = serialize(meta.geometries, this.geometry);
- const parameters = this.geometry.parameters;
+ if (this.isScene) {
+ if (this.background) {
+ if (this.background.isColor) {
+ object.background = this.background.toJSON();
+ } else if (this.background.isTexture) {
+ object.background = this.background.toJSON(meta).uuid;
+ }
+ }
+
+ if (this.environment && this.environment.isTexture) {
+ object.environment = this.environment.toJSON(meta).uuid;
+ }
+ } else if (this.isMesh || this.isLine || this.isPoints) {
+ object.geometry = serialize(meta.geometries, this.geometry);
+ const parameters = this.geometry.parameters;
- if (parameters !== undefined && parameters.shapes !== undefined) {
- const shapes = parameters.shapes;
+ if (parameters !== undefined && parameters.shapes !== undefined) {
+ const shapes = parameters.shapes;
- if (Array.isArray(shapes)) {
- for (let i = 0, l = shapes.length; i < l; i++) {
- const shape = shapes[i];
- serialize(meta.shapes, shape);
+ if (Array.isArray(shapes)) {
+ for (let i = 0, l = shapes.length; i < l; i++) {
+ const shape = shapes[i];
+ serialize(meta.shapes, shape);
+ }
+ } else {
+ serialize(meta.shapes, shapes);
+ }
}
- } else {
- serialize(meta.shapes, shapes);
}
- }
- }
- if (this.isSkinnedMesh) {
- object.bindMode = this.bindMode;
- object.bindMatrix = this.bindMatrix.toArray();
+ if (this.isSkinnedMesh) {
+ object.bindMode = this.bindMode;
+ object.bindMatrix = this.bindMatrix.toArray();
- if (this.skeleton !== undefined) {
- serialize(meta.skeletons, this.skeleton);
- object.skeleton = this.skeleton.uuid;
- }
- }
+ if (this.skeleton !== undefined) {
+ serialize(meta.skeletons, this.skeleton);
+ object.skeleton = this.skeleton.uuid;
+ }
+ }
- if (this.material !== undefined) {
- if (Array.isArray(this.material)) {
- const uuids = [];
+ if (this.material !== undefined) {
+ if (Array.isArray(this.material)) {
+ const uuids = [];
- for (let i = 0, l = this.material.length; i < l; i++) {
- uuids.push(serialize(meta.materials, this.material[i]));
- }
+ for (let i = 0, l = this.material.length; i < l; i++) {
+ uuids.push(serialize(meta.materials, this.material[i]));
+ }
- object.material = uuids;
- } else {
- object.material = serialize(meta.materials, this.material);
- }
- } //
+ object.material = uuids;
+ } else {
+ object.material = serialize(meta.materials, this.material);
+ }
+ } //
- if (this.children.length > 0) {
- object.children = [];
+ if (this.children.length > 0) {
+ object.children = [];
- for (let i = 0; i < this.children.length; i++) {
- object.children.push(this.children[i].toJSON(meta).object);
- }
- } //
+ for (let i = 0; i < this.children.length; i++) {
+ object.children.push(this.children[i].toJSON(meta).object);
+ }
+ } //
- if (this.animations.length > 0) {
- object.animations = [];
+ if (this.animations.length > 0) {
+ object.animations = [];
- for (let i = 0; i < this.animations.length; i++) {
- const animation = this.animations[i];
- object.animations.push(serialize(meta.animations, animation));
- }
- }
+ for (let i = 0; i < this.animations.length; i++) {
+ const animation = this.animations[i];
+ object.animations.push(serialize(meta.animations, animation));
+ }
+ }
- if (isRootObject) {
- const geometries = extractFromCache(meta.geometries);
- const materials = extractFromCache(meta.materials);
- const textures = extractFromCache(meta.textures);
- const images = extractFromCache(meta.images);
- const shapes = extractFromCache(meta.shapes);
- const skeletons = extractFromCache(meta.skeletons);
- const animations = extractFromCache(meta.animations);
- if (geometries.length > 0) output.geometries = geometries;
- if (materials.length > 0) output.materials = materials;
- if (textures.length > 0) output.textures = textures;
- if (images.length > 0) output.images = images;
- if (shapes.length > 0) output.shapes = shapes;
- if (skeletons.length > 0) output.skeletons = skeletons;
- if (animations.length > 0) output.animations = animations;
- }
+ if (isRootObject) {
+ const geometries = extractFromCache(meta.geometries);
+ const materials = extractFromCache(meta.materials);
+ const textures = extractFromCache(meta.textures);
+ const images = extractFromCache(meta.images);
+ const shapes = extractFromCache(meta.shapes);
+ const skeletons = extractFromCache(meta.skeletons);
+ const animations = extractFromCache(meta.animations);
+ if (geometries.length > 0) output.geometries = geometries;
+ if (materials.length > 0) output.materials = materials;
+ if (textures.length > 0) output.textures = textures;
+ if (images.length > 0) output.images = images;
+ if (shapes.length > 0) output.shapes = shapes;
+ if (skeletons.length > 0) output.skeletons = skeletons;
+ if (animations.length > 0) output.animations = animations;
+ }
- output.object = object;
- return output; // extract data from the cache hash
- // remove metadata on each item
- // and return as array
+ output.object = object;
+ return output; // extract data from the cache hash
+ // remove metadata on each item
+ // and return as array
- function extractFromCache(cache) {
- const values = [];
+ function extractFromCache(cache) {
+ const values = [];
- for (const key in cache) {
- const data = cache[key];
- delete data.metadata;
- values.push(data);
- }
+ for (const key in cache) {
+ const data = cache[key];
+ delete data.metadata;
+ values.push(data);
+ }
- return values;
- }
- }
+ return values;
+ }
+ }
- clone(recursive) {
- return new this.constructor().copy(this, recursive);
- }
+ clone(recursive) {
+ return new this.constructor().copy(this, recursive);
+ }
+
+ copy(source, recursive = true) {
+ this.name = source.name;
+ this.up.copy(source.up);
+ this.position.copy(source.position);
+ this.rotation.order = source.rotation.order;
+ this.quaternion.copy(source.quaternion);
+ this.scale.copy(source.scale);
+ this.matrix.copy(source.matrix);
+ this.matrixWorld.copy(source.matrixWorld);
+ this.matrixAutoUpdate = source.matrixAutoUpdate;
+ this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
+ this.layers.mask = source.layers.mask;
+ this.visible = source.visible;
+ this.castShadow = source.castShadow;
+ this.receiveShadow = source.receiveShadow;
+ this.frustumCulled = source.frustumCulled;
+ this.renderOrder = source.renderOrder;
+ this.userData = JSON.parse(JSON.stringify(source.userData));
+
+ if (recursive === true) {
+ for (let i = 0; i < source.children.length; i++) {
+ const child = source.children[i];
+ this.add(child.clone());
+ }
+ }
- copy(source, recursive = true) {
- this.name = source.name;
- this.up.copy(source.up);
- this.position.copy(source.position);
- this.rotation.order = source.rotation.order;
- this.quaternion.copy(source.quaternion);
- this.scale.copy(source.scale);
- this.matrix.copy(source.matrix);
- this.matrixWorld.copy(source.matrixWorld);
- this.matrixAutoUpdate = source.matrixAutoUpdate;
- this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
- this.layers.mask = source.layers.mask;
- this.visible = source.visible;
- this.castShadow = source.castShadow;
- this.receiveShadow = source.receiveShadow;
- this.frustumCulled = source.frustumCulled;
- this.renderOrder = source.renderOrder;
- this.userData = JSON.parse(JSON.stringify(source.userData));
-
- if (recursive === true) {
- for (let i = 0; i < source.children.length; i++) {
- const child = source.children[i];
- this.add(child.clone());
- }
- }
-
- return this;
- }
+ return this;
+ }
- }
+ }
- Object3D.DefaultUp = new Vector3(0, 1, 0);
- Object3D.DefaultMatrixAutoUpdate = true;
- Object3D.prototype.isObject3D = true;
+ Object3D.DefaultUp = new Vector3(0, 1, 0);
+ Object3D.DefaultMatrixAutoUpdate = true;
+ Object3D.prototype.isObject3D = true;
- const _v0$1 = /*@__PURE__*/new Vector3();
+ const _v0$1 = /*@__PURE__*/new Vector3();
- const _v1$3 = /*@__PURE__*/new Vector3();
+ const _v1$3 = /*@__PURE__*/new Vector3();
- const _v2$2 = /*@__PURE__*/new Vector3();
+ const _v2$2 = /*@__PURE__*/new Vector3();
- const _v3$1 = /*@__PURE__*/new Vector3();
+ const _v3$1 = /*@__PURE__*/new Vector3();
- const _vab = /*@__PURE__*/new Vector3();
+ const _vab = /*@__PURE__*/new Vector3();
- const _vac = /*@__PURE__*/new Vector3();
+ const _vac = /*@__PURE__*/new Vector3();
- const _vbc = /*@__PURE__*/new Vector3();
+ const _vbc = /*@__PURE__*/new Vector3();
- const _vap = /*@__PURE__*/new Vector3();
+ const _vap = /*@__PURE__*/new Vector3();
- const _vbp = /*@__PURE__*/new Vector3();
+ const _vbp = /*@__PURE__*/new Vector3();
- const _vcp = /*@__PURE__*/new Vector3();
+ const _vcp = /*@__PURE__*/new Vector3();
- class Triangle {
- constructor(a = new Vector3(), b = new Vector3(), c = new Vector3()) {
- this.a = a;
- this.b = b;
- this.c = c;
- }
+ class Triangle {
+ constructor(a = new Vector3(), b = new Vector3(), c = new Vector3()) {
+ this.a = a;
+ this.b = b;
+ this.c = c;
+ }
- static getNormal(a, b, c, target) {
- target.subVectors(c, b);
+ static getNormal(a, b, c, target) {
+ target.subVectors(c, b);
- _v0$1.subVectors(a, b);
+ _v0$1.subVectors(a, b);
- target.cross(_v0$1);
- const targetLengthSq = target.lengthSq();
+ target.cross(_v0$1);
+ const targetLengthSq = target.lengthSq();
- if (targetLengthSq > 0) {
- return target.multiplyScalar(1 / Math.sqrt(targetLengthSq));
- }
+ if (targetLengthSq > 0) {
+ return target.multiplyScalar(1 / Math.sqrt(targetLengthSq));
+ }
- return target.set(0, 0, 0);
- } // static/instance method to calculate barycentric coordinates
- // based on: http://www.blackpawn.com/texts/pointinpoly/default.html
+ return target.set(0, 0, 0);
+ } // static/instance method to calculate barycentric coordinates
+ // based on: http://www.blackpawn.com/texts/pointinpoly/default.html
- static getBarycoord(point, a, b, c, target) {
- _v0$1.subVectors(c, a);
+ static getBarycoord(point, a, b, c, target) {
+ _v0$1.subVectors(c, a);
- _v1$3.subVectors(b, a);
+ _v1$3.subVectors(b, a);
- _v2$2.subVectors(point, a);
+ _v2$2.subVectors(point, a);
- const dot00 = _v0$1.dot(_v0$1);
+ const dot00 = _v0$1.dot(_v0$1);
- const dot01 = _v0$1.dot(_v1$3);
+ const dot01 = _v0$1.dot(_v1$3);
- const dot02 = _v0$1.dot(_v2$2);
+ const dot02 = _v0$1.dot(_v2$2);
- const dot11 = _v1$3.dot(_v1$3);
+ const dot11 = _v1$3.dot(_v1$3);
- const dot12 = _v1$3.dot(_v2$2);
+ const dot12 = _v1$3.dot(_v2$2);
- const denom = dot00 * dot11 - dot01 * dot01; // collinear or singular triangle
+ const denom = dot00 * dot11 - dot01 * dot01; // collinear or singular triangle
- if (denom === 0) {
- // arbitrary location outside of triangle?
- // not sure if this is the best idea, maybe should be returning undefined
- return target.set(-2, -1, -1);
- }
+ if (denom === 0) {
+ // arbitrary location outside of triangle?
+ // not sure if this is the best idea, maybe should be returning undefined
+ return target.set(-2, -1, -1);
+ }
- const invDenom = 1 / denom;
- const u = (dot11 * dot02 - dot01 * dot12) * invDenom;
- const v = (dot00 * dot12 - dot01 * dot02) * invDenom; // barycentric coordinates must always sum to 1
+ const invDenom = 1 / denom;
+ const u = (dot11 * dot02 - dot01 * dot12) * invDenom;
+ const v = (dot00 * dot12 - dot01 * dot02) * invDenom; // barycentric coordinates must always sum to 1
- return target.set(1 - u - v, v, u);
- }
+ return target.set(1 - u - v, v, u);
+ }
- static containsPoint(point, a, b, c) {
- this.getBarycoord(point, a, b, c, _v3$1);
- return _v3$1.x >= 0 && _v3$1.y >= 0 && _v3$1.x + _v3$1.y <= 1;
- }
+ static containsPoint(point, a, b, c) {
+ this.getBarycoord(point, a, b, c, _v3$1);
+ return _v3$1.x >= 0 && _v3$1.y >= 0 && _v3$1.x + _v3$1.y <= 1;
+ }
- static getUV(point, p1, p2, p3, uv1, uv2, uv3, target) {
- this.getBarycoord(point, p1, p2, p3, _v3$1);
- target.set(0, 0);
- target.addScaledVector(uv1, _v3$1.x);
- target.addScaledVector(uv2, _v3$1.y);
- target.addScaledVector(uv3, _v3$1.z);
- return target;
- }
+ static getUV(point, p1, p2, p3, uv1, uv2, uv3, target) {
+ this.getBarycoord(point, p1, p2, p3, _v3$1);
+ target.set(0, 0);
+ target.addScaledVector(uv1, _v3$1.x);
+ target.addScaledVector(uv2, _v3$1.y);
+ target.addScaledVector(uv3, _v3$1.z);
+ return target;
+ }
- static isFrontFacing(a, b, c, direction) {
- _v0$1.subVectors(c, b);
+ static isFrontFacing(a, b, c, direction) {
+ _v0$1.subVectors(c, b);
- _v1$3.subVectors(a, b); // strictly front facing
+ _v1$3.subVectors(a, b); // strictly front facing
- return _v0$1.cross(_v1$3).dot(direction) < 0 ? true : false;
- }
+ return _v0$1.cross(_v1$3).dot(direction) < 0 ? true : false;
+ }
- set(a, b, c) {
- this.a.copy(a);
- this.b.copy(b);
- this.c.copy(c);
- return this;
- }
+ set(a, b, c) {
+ this.a.copy(a);
+ this.b.copy(b);
+ this.c.copy(c);
+ return this;
+ }
- setFromPointsAndIndices(points, i0, i1, i2) {
- this.a.copy(points[i0]);
- this.b.copy(points[i1]);
- this.c.copy(points[i2]);
- return this;
- }
+ setFromPointsAndIndices(points, i0, i1, i2) {
+ this.a.copy(points[i0]);
+ this.b.copy(points[i1]);
+ this.c.copy(points[i2]);
+ return this;
+ }
- clone() {
- return new this.constructor().copy(this);
- }
+ clone() {
+ return new this.constructor().copy(this);
+ }
- copy(triangle) {
- this.a.copy(triangle.a);
- this.b.copy(triangle.b);
- this.c.copy(triangle.c);
- return this;
- }
+ copy(triangle) {
+ this.a.copy(triangle.a);
+ this.b.copy(triangle.b);
+ this.c.copy(triangle.c);
+ return this;
+ }
- getArea() {
- _v0$1.subVectors(this.c, this.b);
+ getArea() {
+ _v0$1.subVectors(this.c, this.b);
- _v1$3.subVectors(this.a, this.b);
+ _v1$3.subVectors(this.a, this.b);
- return _v0$1.cross(_v1$3).length() * 0.5;
- }
+ return _v0$1.cross(_v1$3).length() * 0.5;
+ }
- getMidpoint(target) {
- return target.addVectors(this.a, this.b).add(this.c).multiplyScalar(1 / 3);
- }
+ getMidpoint(target) {
+ return target.addVectors(this.a, this.b).add(this.c).multiplyScalar(1 / 3);
+ }
- getNormal(target) {
- return Triangle.getNormal(this.a, this.b, this.c, target);
- }
+ getNormal(target) {
+ return Triangle.getNormal(this.a, this.b, this.c, target);
+ }
- getPlane(target) {
- return target.setFromCoplanarPoints(this.a, this.b, this.c);
- }
+ getPlane(target) {
+ return target.setFromCoplanarPoints(this.a, this.b, this.c);
+ }
- getBarycoord(point, target) {
- return Triangle.getBarycoord(point, this.a, this.b, this.c, target);
- }
+ getBarycoord(point, target) {
+ return Triangle.getBarycoord(point, this.a, this.b, this.c, target);
+ }
- getUV(point, uv1, uv2, uv3, target) {
- return Triangle.getUV(point, this.a, this.b, this.c, uv1, uv2, uv3, target);
- }
+ getUV(point, uv1, uv2, uv3, target) {
+ return Triangle.getUV(point, this.a, this.b, this.c, uv1, uv2, uv3, target);
+ }
- containsPoint(point) {
- return Triangle.containsPoint(point, this.a, this.b, this.c);
- }
+ containsPoint(point) {
+ return Triangle.containsPoint(point, this.a, this.b, this.c);
+ }
- isFrontFacing(direction) {
- return Triangle.isFrontFacing(this.a, this.b, this.c, direction);
- }
+ isFrontFacing(direction) {
+ return Triangle.isFrontFacing(this.a, this.b, this.c, direction);
+ }
- intersectsBox(box) {
- return box.intersectsTriangle(this);
- }
+ intersectsBox(box) {
+ return box.intersectsTriangle(this);
+ }
- closestPointToPoint(p, target) {
- const a = this.a,
+ closestPointToPoint(p, target) {
+ const a = this.a,
b = this.b,
c = this.c;
- let v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson,
- // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
- // under the accompanying license; see chapter 5.1.5 for detailed explanation.
- // basically, we're distinguishing which of the voronoi regions of the triangle
- // the point lies in with the minimum amount of redundant computation.
+ let v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson,
+ // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
+ // under the accompanying license; see chapter 5.1.5 for detailed explanation.
+ // basically, we're distinguishing which of the voronoi regions of the triangle
+ // the point lies in with the minimum amount of redundant computation.
- _vab.subVectors(b, a);
+ _vab.subVectors(b, a);
- _vac.subVectors(c, a);
+ _vac.subVectors(c, a);
- _vap.subVectors(p, a);
+ _vap.subVectors(p, a);
- const d1 = _vab.dot(_vap);
+ const d1 = _vab.dot(_vap);
- const d2 = _vac.dot(_vap);
+ const d2 = _vac.dot(_vap);
- if (d1 <= 0 && d2 <= 0) {
- // vertex region of A; barycentric coords (1, 0, 0)
- return target.copy(a);
- }
+ if (d1 <= 0 && d2 <= 0) {
+ // vertex region of A; barycentric coords (1, 0, 0)
+ return target.copy(a);
+ }
- _vbp.subVectors(p, b);
+ _vbp.subVectors(p, b);
- const d3 = _vab.dot(_vbp);
+ const d3 = _vab.dot(_vbp);
- const d4 = _vac.dot(_vbp);
+ const d4 = _vac.dot(_vbp);
- if (d3 >= 0 && d4 <= d3) {
- // vertex region of B; barycentric coords (0, 1, 0)
- return target.copy(b);
- }
+ if (d3 >= 0 && d4 <= d3) {
+ // vertex region of B; barycentric coords (0, 1, 0)
+ return target.copy(b);
+ }
- const vc = d1 * d4 - d3 * d2;
+ const vc = d1 * d4 - d3 * d2;
- if (vc <= 0 && d1 >= 0 && d3 <= 0) {
- v = d1 / (d1 - d3); // edge region of AB; barycentric coords (1-v, v, 0)
+ if (vc <= 0 && d1 >= 0 && d3 <= 0) {
+ v = d1 / (d1 - d3); // edge region of AB; barycentric coords (1-v, v, 0)
- return target.copy(a).addScaledVector(_vab, v);
- }
-
- _vcp.subVectors(p, c);
-
- const d5 = _vab.dot(_vcp);
-
- const d6 = _vac.dot(_vcp);
-
- if (d6 >= 0 && d5 <= d6) {
- // vertex region of C; barycentric coords (0, 0, 1)
- return target.copy(c);
- }
+ return target.copy(a).addScaledVector(_vab, v);
+ }
- const vb = d5 * d2 - d1 * d6;
+ _vcp.subVectors(p, c);
- if (vb <= 0 && d2 >= 0 && d6 <= 0) {
- w = d2 / (d2 - d6); // edge region of AC; barycentric coords (1-w, 0, w)
+ const d5 = _vab.dot(_vcp);
- return target.copy(a).addScaledVector(_vac, w);
- }
+ const d6 = _vac.dot(_vcp);
- const va = d3 * d6 - d5 * d4;
+ if (d6 >= 0 && d5 <= d6) {
+ // vertex region of C; barycentric coords (0, 0, 1)
+ return target.copy(c);
+ }
- if (va <= 0 && d4 - d3 >= 0 && d5 - d6 >= 0) {
- _vbc.subVectors(c, b);
+ const vb = d5 * d2 - d1 * d6;
- w = (d4 - d3) / (d4 - d3 + (d5 - d6)); // edge region of BC; barycentric coords (0, 1-w, w)
+ if (vb <= 0 && d2 >= 0 && d6 <= 0) {
+ w = d2 / (d2 - d6); // edge region of AC; barycentric coords (1-w, 0, w)
- return target.copy(b).addScaledVector(_vbc, w); // edge region of BC
- } // face region
+ return target.copy(a).addScaledVector(_vac, w);
+ }
+ const va = d3 * d6 - d5 * d4;
- const denom = 1 / (va + vb + vc); // u = va * denom
+ if (va <= 0 && d4 - d3 >= 0 && d5 - d6 >= 0) {
+ _vbc.subVectors(c, b);
- v = vb * denom;
- w = vc * denom;
- return target.copy(a).addScaledVector(_vab, v).addScaledVector(_vac, w);
- }
+ w = (d4 - d3) / (d4 - d3 + (d5 - d6)); // edge region of BC; barycentric coords (0, 1-w, w)
- equals(triangle) {
- return triangle.a.equals(this.a) && triangle.b.equals(this.b) && triangle.c.equals(this.c);
- }
+ return target.copy(b).addScaledVector(_vbc, w); // edge region of BC
+ } // face region
- }
- let materialId = 0;
+ const denom = 1 / (va + vb + vc); // u = va * denom
- class Material extends EventDispatcher {
- constructor() {
- super();
- Object.defineProperty(this, 'id', {
- value: materialId++
- });
- this.uuid = generateUUID();
- this.name = '';
- this.type = 'Material';
- this.fog = true;
- this.blending = NormalBlending;
- this.side = FrontSide;
- this.vertexColors = false;
- this.opacity = 1;
- this.format = RGBAFormat;
- this.transparent = false;
- this.blendSrc = SrcAlphaFactor;
- this.blendDst = OneMinusSrcAlphaFactor;
- this.blendEquation = AddEquation;
- this.blendSrcAlpha = null;
- this.blendDstAlpha = null;
- this.blendEquationAlpha = null;
- this.depthFunc = LessEqualDepth;
- this.depthTest = true;
- this.depthWrite = true;
- this.stencilWriteMask = 0xff;
- this.stencilFunc = AlwaysStencilFunc;
- this.stencilRef = 0;
- this.stencilFuncMask = 0xff;
- this.stencilFail = KeepStencilOp;
- this.stencilZFail = KeepStencilOp;
- this.stencilZPass = KeepStencilOp;
- this.stencilWrite = false;
- this.clippingPlanes = null;
- this.clipIntersection = false;
- this.clipShadows = false;
- this.shadowSide = null;
- this.colorWrite = true;
- this.precision = null; // override the renderer's default precision for this material
-
- this.polygonOffset = false;
- this.polygonOffsetFactor = 0;
- this.polygonOffsetUnits = 0;
- this.dithering = false;
- this.alphaToCoverage = false;
- this.premultipliedAlpha = false;
- this.visible = true;
- this.toneMapped = true;
- this.userData = {};
- this.version = 0;
- this._alphaTest = 0;
- }
+ v = vb * denom;
+ w = vc * denom;
+ return target.copy(a).addScaledVector(_vab, v).addScaledVector(_vac, w);
+ }
- get alphaTest() {
- return this._alphaTest;
- }
+ equals(triangle) {
+ return triangle.a.equals(this.a) && triangle.b.equals(this.b) && triangle.c.equals(this.c);
+ }
- set alphaTest(value) {
- if (this._alphaTest > 0 !== value > 0) {
- this.version++;
}
- this._alphaTest = value;
- }
-
- onBuild() {}
-
- onBeforeCompile() {}
-
- customProgramCacheKey() {
- return this.onBeforeCompile.toString();
- }
-
- setValues(values) {
- if (values === undefined) return;
-
- for (const key in values) {
- const newValue = values[key];
-
- if (newValue === undefined) {
- console.warn('THREE.Material: \'' + key + '\' parameter is undefined.');
- continue;
- } // for backward compatability if shading is set in the constructor
+ let materialId = 0;
+ class Material extends EventDispatcher {
+ constructor() {
+ super();
+ Object.defineProperty(this, 'id', {
+ value: materialId++
+ });
+ this.uuid = generateUUID();
+ this.name = '';
+ this.type = 'Material';
+ this.fog = true;
+ this.blending = NormalBlending;
+ this.side = FrontSide;
+ this.vertexColors = false;
+ this.opacity = 1;
+ this.format = RGBAFormat;
+ this.transparent = false;
+ this.blendSrc = SrcAlphaFactor;
+ this.blendDst = OneMinusSrcAlphaFactor;
+ this.blendEquation = AddEquation;
+ this.blendSrcAlpha = null;
+ this.blendDstAlpha = null;
+ this.blendEquationAlpha = null;
+ this.depthFunc = LessEqualDepth;
+ this.depthTest = true;
+ this.depthWrite = true;
+ this.stencilWriteMask = 0xff;
+ this.stencilFunc = AlwaysStencilFunc;
+ this.stencilRef = 0;
+ this.stencilFuncMask = 0xff;
+ this.stencilFail = KeepStencilOp;
+ this.stencilZFail = KeepStencilOp;
+ this.stencilZPass = KeepStencilOp;
+ this.stencilWrite = false;
+ this.clippingPlanes = null;
+ this.clipIntersection = false;
+ this.clipShadows = false;
+ this.shadowSide = null;
+ this.colorWrite = true;
+ this.precision = null; // override the renderer's default precision for this material
+
+ this.polygonOffset = false;
+ this.polygonOffsetFactor = 0;
+ this.polygonOffsetUnits = 0;
+ this.dithering = false;
+ this.alphaToCoverage = false;
+ this.premultipliedAlpha = false;
+ this.visible = true;
+ this.toneMapped = true;
+ this.userData = {};
+ this.version = 0;
+ this._alphaTest = 0;
+ }
+
+ get alphaTest() {
+ return this._alphaTest;
+ }
+
+ set alphaTest(value) {
+ if (this._alphaTest > 0 !== value > 0) {
+ this.version++;
+ }
- if (key === 'shading') {
- console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
- this.flatShading = newValue === FlatShading ? true : false;
- continue;
+ this._alphaTest = value;
}
- const currentValue = this[key];
-
- if (currentValue === undefined) {
- console.warn('THREE.' + this.type + ': \'' + key + '\' is not a property of this material.');
- continue;
+ onBuild() {
}
- if (currentValue && currentValue.isColor) {
- currentValue.set(newValue);
- } else if (currentValue && currentValue.isVector3 && newValue && newValue.isVector3) {
- currentValue.copy(newValue);
- } else {
- this[key] = newValue;
+ onBeforeCompile() {
}
- }
- }
-
- toJSON(meta) {
- const isRoot = meta === undefined || typeof meta === 'string';
- if (isRoot) {
- meta = {
- textures: {},
- images: {}
- };
- }
-
- const data = {
- metadata: {
- version: 4.5,
- type: 'Material',
- generator: 'Material.toJSON'
+ customProgramCacheKey() {
+ return this.onBeforeCompile.toString();
}
- }; // standard Material serialization
- data.uuid = this.uuid;
- data.type = this.type;
- if (this.name !== '') data.name = this.name;
- if (this.color && this.color.isColor) data.color = this.color.getHex();
- if (this.roughness !== undefined) data.roughness = this.roughness;
- if (this.metalness !== undefined) data.metalness = this.metalness;
- if (this.sheenTint && this.sheenTint.isColor) data.sheenTint = this.sheenTint.getHex();
- if (this.emissive && this.emissive.isColor) data.emissive = this.emissive.getHex();
- if (this.emissiveIntensity && this.emissiveIntensity !== 1) data.emissiveIntensity = this.emissiveIntensity;
- if (this.specular && this.specular.isColor) data.specular = this.specular.getHex();
- if (this.specularIntensity !== undefined) data.specularIntensity = this.specularIntensity;
- if (this.specularTint && this.specularTint.isColor) data.specularTint = this.specularTint.getHex();
- if (this.shininess !== undefined) data.shininess = this.shininess;
- if (this.clearcoat !== undefined) data.clearcoat = this.clearcoat;
- if (this.clearcoatRoughness !== undefined) data.clearcoatRoughness = this.clearcoatRoughness;
-
- if (this.clearcoatMap && this.clearcoatMap.isTexture) {
- data.clearcoatMap = this.clearcoatMap.toJSON(meta).uuid;
- }
-
- if (this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture) {
- data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON(meta).uuid;
- }
-
- if (this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture) {
- data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON(meta).uuid;
- data.clearcoatNormalScale = this.clearcoatNormalScale.toArray();
- }
-
- if (this.map && this.map.isTexture) data.map = this.map.toJSON(meta).uuid;
- if (this.matcap && this.matcap.isTexture) data.matcap = this.matcap.toJSON(meta).uuid;
- if (this.alphaMap && this.alphaMap.isTexture) data.alphaMap = this.alphaMap.toJSON(meta).uuid;
-
- if (this.lightMap && this.lightMap.isTexture) {
- data.lightMap = this.lightMap.toJSON(meta).uuid;
- data.lightMapIntensity = this.lightMapIntensity;
- }
-
- if (this.aoMap && this.aoMap.isTexture) {
- data.aoMap = this.aoMap.toJSON(meta).uuid;
- data.aoMapIntensity = this.aoMapIntensity;
- }
-
- if (this.bumpMap && this.bumpMap.isTexture) {
- data.bumpMap = this.bumpMap.toJSON(meta).uuid;
- data.bumpScale = this.bumpScale;
- }
-
- if (this.normalMap && this.normalMap.isTexture) {
- data.normalMap = this.normalMap.toJSON(meta).uuid;
- data.normalMapType = this.normalMapType;
- data.normalScale = this.normalScale.toArray();
- }
-
- if (this.displacementMap && this.displacementMap.isTexture) {
- data.displacementMap = this.displacementMap.toJSON(meta).uuid;
- data.displacementScale = this.displacementScale;
- data.displacementBias = this.displacementBias;
- }
-
- if (this.roughnessMap && this.roughnessMap.isTexture) data.roughnessMap = this.roughnessMap.toJSON(meta).uuid;
- if (this.metalnessMap && this.metalnessMap.isTexture) data.metalnessMap = this.metalnessMap.toJSON(meta).uuid;
- if (this.emissiveMap && this.emissiveMap.isTexture) data.emissiveMap = this.emissiveMap.toJSON(meta).uuid;
- if (this.specularMap && this.specularMap.isTexture) data.specularMap = this.specularMap.toJSON(meta).uuid;
- if (this.specularIntensityMap && this.specularIntensityMap.isTexture) data.specularIntensityMap = this.specularIntensityMap.toJSON(meta).uuid;
- if (this.specularTintMap && this.specularTintMap.isTexture) data.specularTintMap = this.specularTintMap.toJSON(meta).uuid;
-
- if (this.envMap && this.envMap.isTexture) {
- data.envMap = this.envMap.toJSON(meta).uuid;
- if (this.combine !== undefined) data.combine = this.combine;
- }
-
- if (this.envMapIntensity !== undefined) data.envMapIntensity = this.envMapIntensity;
- if (this.reflectivity !== undefined) data.reflectivity = this.reflectivity;
- if (this.refractionRatio !== undefined) data.refractionRatio = this.refractionRatio;
-
- if (this.gradientMap && this.gradientMap.isTexture) {
- data.gradientMap = this.gradientMap.toJSON(meta).uuid;
- }
-
- if (this.transmission !== undefined) data.transmission = this.transmission;
- if (this.transmissionMap && this.transmissionMap.isTexture) data.transmissionMap = this.transmissionMap.toJSON(meta).uuid;
- if (this.thickness !== undefined) data.thickness = this.thickness;
- if (this.thicknessMap && this.thicknessMap.isTexture) data.thicknessMap = this.thicknessMap.toJSON(meta).uuid;
- if (this.attenuationDistance !== undefined) data.attenuationDistance = this.attenuationDistance;
- if (this.attenuationTint !== undefined) data.attenuationTint = this.attenuationTint.getHex();
- if (this.size !== undefined) data.size = this.size;
- if (this.shadowSide !== null) data.shadowSide = this.shadowSide;
- if (this.sizeAttenuation !== undefined) data.sizeAttenuation = this.sizeAttenuation;
- if (this.blending !== NormalBlending) data.blending = this.blending;
- if (this.side !== FrontSide) data.side = this.side;
- if (this.vertexColors) data.vertexColors = true;
- if (this.opacity < 1) data.opacity = this.opacity;
- if (this.format !== RGBAFormat) data.format = this.format;
- if (this.transparent === true) data.transparent = this.transparent;
- data.depthFunc = this.depthFunc;
- data.depthTest = this.depthTest;
- data.depthWrite = this.depthWrite;
- data.colorWrite = this.colorWrite;
- data.stencilWrite = this.stencilWrite;
- data.stencilWriteMask = this.stencilWriteMask;
- data.stencilFunc = this.stencilFunc;
- data.stencilRef = this.stencilRef;
- data.stencilFuncMask = this.stencilFuncMask;
- data.stencilFail = this.stencilFail;
- data.stencilZFail = this.stencilZFail;
- data.stencilZPass = this.stencilZPass; // rotation (SpriteMaterial)
-
- if (this.rotation && this.rotation !== 0) data.rotation = this.rotation;
- if (this.polygonOffset === true) data.polygonOffset = true;
- if (this.polygonOffsetFactor !== 0) data.polygonOffsetFactor = this.polygonOffsetFactor;
- if (this.polygonOffsetUnits !== 0) data.polygonOffsetUnits = this.polygonOffsetUnits;
- if (this.linewidth && this.linewidth !== 1) data.linewidth = this.linewidth;
- if (this.dashSize !== undefined) data.dashSize = this.dashSize;
- if (this.gapSize !== undefined) data.gapSize = this.gapSize;
- if (this.scale !== undefined) data.scale = this.scale;
- if (this.dithering === true) data.dithering = true;
- if (this.alphaTest > 0) data.alphaTest = this.alphaTest;
- if (this.alphaToCoverage === true) data.alphaToCoverage = this.alphaToCoverage;
- if (this.premultipliedAlpha === true) data.premultipliedAlpha = this.premultipliedAlpha;
- if (this.wireframe === true) data.wireframe = this.wireframe;
- if (this.wireframeLinewidth > 1) data.wireframeLinewidth = this.wireframeLinewidth;
- if (this.wireframeLinecap !== 'round') data.wireframeLinecap = this.wireframeLinecap;
- if (this.wireframeLinejoin !== 'round') data.wireframeLinejoin = this.wireframeLinejoin;
- if (this.flatShading === true) data.flatShading = this.flatShading;
- if (this.visible === false) data.visible = false;
- if (this.toneMapped === false) data.toneMapped = false;
- if (JSON.stringify(this.userData) !== '{}') data.userData = this.userData; // TODO: Copied from Object3D.toJSON
-
- function extractFromCache(cache) {
- const values = [];
-
- for (const key in cache) {
- const data = cache[key];
- delete data.metadata;
- values.push(data);
- }
-
- return values;
- }
-
- if (isRoot) {
- const textures = extractFromCache(meta.textures);
- const images = extractFromCache(meta.images);
- if (textures.length > 0) data.textures = textures;
- if (images.length > 0) data.images = images;
- }
-
- return data;
- }
+ setValues(values) {
+ if (values === undefined) return;
- clone() {
- return new this.constructor().copy(this);
- }
+ for (const key in values) {
+ const newValue = values[key];
- copy(source) {
- this.name = source.name;
- this.fog = source.fog;
- this.blending = source.blending;
- this.side = source.side;
- this.vertexColors = source.vertexColors;
- this.opacity = source.opacity;
- this.format = source.format;
- this.transparent = source.transparent;
- this.blendSrc = source.blendSrc;
- this.blendDst = source.blendDst;
- this.blendEquation = source.blendEquation;
- this.blendSrcAlpha = source.blendSrcAlpha;
- this.blendDstAlpha = source.blendDstAlpha;
- this.blendEquationAlpha = source.blendEquationAlpha;
- this.depthFunc = source.depthFunc;
- this.depthTest = source.depthTest;
- this.depthWrite = source.depthWrite;
- this.stencilWriteMask = source.stencilWriteMask;
- this.stencilFunc = source.stencilFunc;
- this.stencilRef = source.stencilRef;
- this.stencilFuncMask = source.stencilFuncMask;
- this.stencilFail = source.stencilFail;
- this.stencilZFail = source.stencilZFail;
- this.stencilZPass = source.stencilZPass;
- this.stencilWrite = source.stencilWrite;
- const srcPlanes = source.clippingPlanes;
- let dstPlanes = null;
-
- if (srcPlanes !== null) {
- const n = srcPlanes.length;
- dstPlanes = new Array(n);
+ if (newValue === undefined) {
+ console.warn('THREE.Material: \'' + key + '\' parameter is undefined.');
+ continue;
+ } // for backward compatability if shading is set in the constructor
- for (let i = 0; i !== n; ++i) {
- dstPlanes[i] = srcPlanes[i].clone();
- }
- }
-
- this.clippingPlanes = dstPlanes;
- this.clipIntersection = source.clipIntersection;
- this.clipShadows = source.clipShadows;
- this.shadowSide = source.shadowSide;
- this.colorWrite = source.colorWrite;
- this.precision = source.precision;
- this.polygonOffset = source.polygonOffset;
- this.polygonOffsetFactor = source.polygonOffsetFactor;
- this.polygonOffsetUnits = source.polygonOffsetUnits;
- this.dithering = source.dithering;
- this.alphaTest = source.alphaTest;
- this.alphaToCoverage = source.alphaToCoverage;
- this.premultipliedAlpha = source.premultipliedAlpha;
- this.visible = source.visible;
- this.toneMapped = source.toneMapped;
- this.userData = JSON.parse(JSON.stringify(source.userData));
- return this;
- }
- dispose() {
- this.dispatchEvent({
- type: 'dispose'
- });
- }
+ if (key === 'shading') {
+ console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
+ this.flatShading = newValue === FlatShading ? true : false;
+ continue;
+ }
- set needsUpdate(value) {
- if (value === true) this.version++;
- }
+ const currentValue = this[key];
- }
+ if (currentValue === undefined) {
+ console.warn('THREE.' + this.type + ': \'' + key + '\' is not a property of this material.');
+ continue;
+ }
- Material.prototype.isMaterial = true;
-
- const _colorKeywords = {
- 'aliceblue': 0xF0F8FF,
- 'antiquewhite': 0xFAEBD7,
- 'aqua': 0x00FFFF,
- 'aquamarine': 0x7FFFD4,
- 'azure': 0xF0FFFF,
- 'beige': 0xF5F5DC,
- 'bisque': 0xFFE4C4,
- 'black': 0x000000,
- 'blanchedalmond': 0xFFEBCD,
- 'blue': 0x0000FF,
- 'blueviolet': 0x8A2BE2,
- 'brown': 0xA52A2A,
- 'burlywood': 0xDEB887,
- 'cadetblue': 0x5F9EA0,
- 'chartreuse': 0x7FFF00,
- 'chocolate': 0xD2691E,
- 'coral': 0xFF7F50,
- 'cornflowerblue': 0x6495ED,
- 'cornsilk': 0xFFF8DC,
- 'crimson': 0xDC143C,
- 'cyan': 0x00FFFF,
- 'darkblue': 0x00008B,
- 'darkcyan': 0x008B8B,
- 'darkgoldenrod': 0xB8860B,
- 'darkgray': 0xA9A9A9,
- 'darkgreen': 0x006400,
- 'darkgrey': 0xA9A9A9,
- 'darkkhaki': 0xBDB76B,
- 'darkmagenta': 0x8B008B,
- 'darkolivegreen': 0x556B2F,
- 'darkorange': 0xFF8C00,
- 'darkorchid': 0x9932CC,
- 'darkred': 0x8B0000,
- 'darksalmon': 0xE9967A,
- 'darkseagreen': 0x8FBC8F,
- 'darkslateblue': 0x483D8B,
- 'darkslategray': 0x2F4F4F,
- 'darkslategrey': 0x2F4F4F,
- 'darkturquoise': 0x00CED1,
- 'darkviolet': 0x9400D3,
- 'deeppink': 0xFF1493,
- 'deepskyblue': 0x00BFFF,
- 'dimgray': 0x696969,
- 'dimgrey': 0x696969,
- 'dodgerblue': 0x1E90FF,
- 'firebrick': 0xB22222,
- 'floralwhite': 0xFFFAF0,
- 'forestgreen': 0x228B22,
- 'fuchsia': 0xFF00FF,
- 'gainsboro': 0xDCDCDC,
- 'ghostwhite': 0xF8F8FF,
- 'gold': 0xFFD700,
- 'goldenrod': 0xDAA520,
- 'gray': 0x808080,
- 'green': 0x008000,
- 'greenyellow': 0xADFF2F,
- 'grey': 0x808080,
- 'honeydew': 0xF0FFF0,
- 'hotpink': 0xFF69B4,
- 'indianred': 0xCD5C5C,
- 'indigo': 0x4B0082,
- 'ivory': 0xFFFFF0,
- 'khaki': 0xF0E68C,
- 'lavender': 0xE6E6FA,
- 'lavenderblush': 0xFFF0F5,
- 'lawngreen': 0x7CFC00,
- 'lemonchiffon': 0xFFFACD,
- 'lightblue': 0xADD8E6,
- 'lightcoral': 0xF08080,
- 'lightcyan': 0xE0FFFF,
- 'lightgoldenrodyellow': 0xFAFAD2,
- 'lightgray': 0xD3D3D3,
- 'lightgreen': 0x90EE90,
- 'lightgrey': 0xD3D3D3,
- 'lightpink': 0xFFB6C1,
- 'lightsalmon': 0xFFA07A,
- 'lightseagreen': 0x20B2AA,
- 'lightskyblue': 0x87CEFA,
- 'lightslategray': 0x778899,
- 'lightslategrey': 0x778899,
- 'lightsteelblue': 0xB0C4DE,
- 'lightyellow': 0xFFFFE0,
- 'lime': 0x00FF00,
- 'limegreen': 0x32CD32,
- 'linen': 0xFAF0E6,
- 'magenta': 0xFF00FF,
- 'maroon': 0x800000,
- 'mediumaquamarine': 0x66CDAA,
- 'mediumblue': 0x0000CD,
- 'mediumorchid': 0xBA55D3,
- 'mediumpurple': 0x9370DB,
- 'mediumseagreen': 0x3CB371,
- 'mediumslateblue': 0x7B68EE,
- 'mediumspringgreen': 0x00FA9A,
- 'mediumturquoise': 0x48D1CC,
- 'mediumvioletred': 0xC71585,
- 'midnightblue': 0x191970,
- 'mintcream': 0xF5FFFA,
- 'mistyrose': 0xFFE4E1,
- 'moccasin': 0xFFE4B5,
- 'navajowhite': 0xFFDEAD,
- 'navy': 0x000080,
- 'oldlace': 0xFDF5E6,
- 'olive': 0x808000,
- 'olivedrab': 0x6B8E23,
- 'orange': 0xFFA500,
- 'orangered': 0xFF4500,
- 'orchid': 0xDA70D6,
- 'palegoldenrod': 0xEEE8AA,
- 'palegreen': 0x98FB98,
- 'paleturquoise': 0xAFEEEE,
- 'palevioletred': 0xDB7093,
- 'papayawhip': 0xFFEFD5,
- 'peachpuff': 0xFFDAB9,
- 'peru': 0xCD853F,
- 'pink': 0xFFC0CB,
- 'plum': 0xDDA0DD,
- 'powderblue': 0xB0E0E6,
- 'purple': 0x800080,
- 'rebeccapurple': 0x663399,
- 'red': 0xFF0000,
- 'rosybrown': 0xBC8F8F,
- 'royalblue': 0x4169E1,
- 'saddlebrown': 0x8B4513,
- 'salmon': 0xFA8072,
- 'sandybrown': 0xF4A460,
- 'seagreen': 0x2E8B57,
- 'seashell': 0xFFF5EE,
- 'sienna': 0xA0522D,
- 'silver': 0xC0C0C0,
- 'skyblue': 0x87CEEB,
- 'slateblue': 0x6A5ACD,
- 'slategray': 0x708090,
- 'slategrey': 0x708090,
- 'snow': 0xFFFAFA,
- 'springgreen': 0x00FF7F,
- 'steelblue': 0x4682B4,
- 'tan': 0xD2B48C,
- 'teal': 0x008080,
- 'thistle': 0xD8BFD8,
- 'tomato': 0xFF6347,
- 'turquoise': 0x40E0D0,
- 'violet': 0xEE82EE,
- 'wheat': 0xF5DEB3,
- 'white': 0xFFFFFF,
- 'whitesmoke': 0xF5F5F5,
- 'yellow': 0xFFFF00,
- 'yellowgreen': 0x9ACD32
- };
- const _hslA = {
- h: 0,
- s: 0,
- l: 0
- };
- const _hslB = {
- h: 0,
- s: 0,
- l: 0
- };
-
- function hue2rgb(p, q, t) {
- if (t < 0) t += 1;
- if (t > 1) t -= 1;
- if (t < 1 / 6) return p + (q - p) * 6 * t;
- if (t < 1 / 2) return q;
- if (t < 2 / 3) return p + (q - p) * 6 * (2 / 3 - t);
- return p;
- }
+ if (currentValue && currentValue.isColor) {
+ currentValue.set(newValue);
+ } else if (currentValue && currentValue.isVector3 && newValue && newValue.isVector3) {
+ currentValue.copy(newValue);
+ } else {
+ this[key] = newValue;
+ }
+ }
+ }
- function SRGBToLinear(c) {
- return c < 0.04045 ? c * 0.0773993808 : Math.pow(c * 0.9478672986 + 0.0521327014, 2.4);
- }
+ toJSON(meta) {
+ const isRoot = meta === undefined || typeof meta === 'string';
- function LinearToSRGB(c) {
- return c < 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 0.41666) - 0.055;
- }
+ if (isRoot) {
+ meta = {
+ textures: {},
+ images: {}
+ };
+ }
- class Color {
- constructor(r, g, b) {
- if (g === undefined && b === undefined) {
- // r is THREE.Color, hex or string
- return this.set(r);
- }
+ const data = {
+ metadata: {
+ version: 4.5,
+ type: 'Material',
+ generator: 'Material.toJSON'
+ }
+ }; // standard Material serialization
+
+ data.uuid = this.uuid;
+ data.type = this.type;
+ if (this.name !== '') data.name = this.name;
+ if (this.color && this.color.isColor) data.color = this.color.getHex();
+ if (this.roughness !== undefined) data.roughness = this.roughness;
+ if (this.metalness !== undefined) data.metalness = this.metalness;
+ if (this.sheenTint && this.sheenTint.isColor) data.sheenTint = this.sheenTint.getHex();
+ if (this.emissive && this.emissive.isColor) data.emissive = this.emissive.getHex();
+ if (this.emissiveIntensity && this.emissiveIntensity !== 1) data.emissiveIntensity = this.emissiveIntensity;
+ if (this.specular && this.specular.isColor) data.specular = this.specular.getHex();
+ if (this.specularIntensity !== undefined) data.specularIntensity = this.specularIntensity;
+ if (this.specularTint && this.specularTint.isColor) data.specularTint = this.specularTint.getHex();
+ if (this.shininess !== undefined) data.shininess = this.shininess;
+ if (this.clearcoat !== undefined) data.clearcoat = this.clearcoat;
+ if (this.clearcoatRoughness !== undefined) data.clearcoatRoughness = this.clearcoatRoughness;
+
+ if (this.clearcoatMap && this.clearcoatMap.isTexture) {
+ data.clearcoatMap = this.clearcoatMap.toJSON(meta).uuid;
+ }
- return this.setRGB(r, g, b);
- }
+ if (this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture) {
+ data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON(meta).uuid;
+ }
- set(value) {
- if (value && value.isColor) {
- this.copy(value);
- } else if (typeof value === 'number') {
- this.setHex(value);
- } else if (typeof value === 'string') {
- this.setStyle(value);
- }
+ if (this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture) {
+ data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON(meta).uuid;
+ data.clearcoatNormalScale = this.clearcoatNormalScale.toArray();
+ }
- return this;
- }
+ if (this.map && this.map.isTexture) data.map = this.map.toJSON(meta).uuid;
+ if (this.matcap && this.matcap.isTexture) data.matcap = this.matcap.toJSON(meta).uuid;
+ if (this.alphaMap && this.alphaMap.isTexture) data.alphaMap = this.alphaMap.toJSON(meta).uuid;
- setScalar(scalar) {
- this.r = scalar;
- this.g = scalar;
- this.b = scalar;
- return this;
- }
+ if (this.lightMap && this.lightMap.isTexture) {
+ data.lightMap = this.lightMap.toJSON(meta).uuid;
+ data.lightMapIntensity = this.lightMapIntensity;
+ }
- setHex(hex) {
- hex = Math.floor(hex);
- this.r = (hex >> 16 & 255) / 255;
- this.g = (hex >> 8 & 255) / 255;
- this.b = (hex & 255) / 255;
- return this;
- }
+ if (this.aoMap && this.aoMap.isTexture) {
+ data.aoMap = this.aoMap.toJSON(meta).uuid;
+ data.aoMapIntensity = this.aoMapIntensity;
+ }
- setRGB(r, g, b) {
- this.r = r;
- this.g = g;
- this.b = b;
- return this;
- }
+ if (this.bumpMap && this.bumpMap.isTexture) {
+ data.bumpMap = this.bumpMap.toJSON(meta).uuid;
+ data.bumpScale = this.bumpScale;
+ }
- setHSL(h, s, l) {
- // h,s,l ranges are in 0.0 - 1.0
- h = euclideanModulo(h, 1);
- s = clamp(s, 0, 1);
- l = clamp(l, 0, 1);
+ if (this.normalMap && this.normalMap.isTexture) {
+ data.normalMap = this.normalMap.toJSON(meta).uuid;
+ data.normalMapType = this.normalMapType;
+ data.normalScale = this.normalScale.toArray();
+ }
- if (s === 0) {
- this.r = this.g = this.b = l;
- } else {
- const p = l <= 0.5 ? l * (1 + s) : l + s - l * s;
- const q = 2 * l - p;
- this.r = hue2rgb(q, p, h + 1 / 3);
- this.g = hue2rgb(q, p, h);
- this.b = hue2rgb(q, p, h - 1 / 3);
- }
+ if (this.displacementMap && this.displacementMap.isTexture) {
+ data.displacementMap = this.displacementMap.toJSON(meta).uuid;
+ data.displacementScale = this.displacementScale;
+ data.displacementBias = this.displacementBias;
+ }
- return this;
- }
+ if (this.roughnessMap && this.roughnessMap.isTexture) data.roughnessMap = this.roughnessMap.toJSON(meta).uuid;
+ if (this.metalnessMap && this.metalnessMap.isTexture) data.metalnessMap = this.metalnessMap.toJSON(meta).uuid;
+ if (this.emissiveMap && this.emissiveMap.isTexture) data.emissiveMap = this.emissiveMap.toJSON(meta).uuid;
+ if (this.specularMap && this.specularMap.isTexture) data.specularMap = this.specularMap.toJSON(meta).uuid;
+ if (this.specularIntensityMap && this.specularIntensityMap.isTexture) data.specularIntensityMap = this.specularIntensityMap.toJSON(meta).uuid;
+ if (this.specularTintMap && this.specularTintMap.isTexture) data.specularTintMap = this.specularTintMap.toJSON(meta).uuid;
- setStyle(style) {
- function handleAlpha(string) {
- if (string === undefined) return;
+ if (this.envMap && this.envMap.isTexture) {
+ data.envMap = this.envMap.toJSON(meta).uuid;
+ if (this.combine !== undefined) data.combine = this.combine;
+ }
- if (parseFloat(string) < 1) {
- console.warn('THREE.Color: Alpha component of ' + style + ' will be ignored.');
- }
- }
+ if (this.envMapIntensity !== undefined) data.envMapIntensity = this.envMapIntensity;
+ if (this.reflectivity !== undefined) data.reflectivity = this.reflectivity;
+ if (this.refractionRatio !== undefined) data.refractionRatio = this.refractionRatio;
- let m;
+ if (this.gradientMap && this.gradientMap.isTexture) {
+ data.gradientMap = this.gradientMap.toJSON(meta).uuid;
+ }
- if (m = /^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec(style)) {
- // rgb / hsl
- let color;
- const name = m[1];
- const components = m[2];
+ if (this.transmission !== undefined) data.transmission = this.transmission;
+ if (this.transmissionMap && this.transmissionMap.isTexture) data.transmissionMap = this.transmissionMap.toJSON(meta).uuid;
+ if (this.thickness !== undefined) data.thickness = this.thickness;
+ if (this.thicknessMap && this.thicknessMap.isTexture) data.thicknessMap = this.thicknessMap.toJSON(meta).uuid;
+ if (this.attenuationDistance !== undefined) data.attenuationDistance = this.attenuationDistance;
+ if (this.attenuationTint !== undefined) data.attenuationTint = this.attenuationTint.getHex();
+ if (this.size !== undefined) data.size = this.size;
+ if (this.shadowSide !== null) data.shadowSide = this.shadowSide;
+ if (this.sizeAttenuation !== undefined) data.sizeAttenuation = this.sizeAttenuation;
+ if (this.blending !== NormalBlending) data.blending = this.blending;
+ if (this.side !== FrontSide) data.side = this.side;
+ if (this.vertexColors) data.vertexColors = true;
+ if (this.opacity < 1) data.opacity = this.opacity;
+ if (this.format !== RGBAFormat) data.format = this.format;
+ if (this.transparent === true) data.transparent = this.transparent;
+ data.depthFunc = this.depthFunc;
+ data.depthTest = this.depthTest;
+ data.depthWrite = this.depthWrite;
+ data.colorWrite = this.colorWrite;
+ data.stencilWrite = this.stencilWrite;
+ data.stencilWriteMask = this.stencilWriteMask;
+ data.stencilFunc = this.stencilFunc;
+ data.stencilRef = this.stencilRef;
+ data.stencilFuncMask = this.stencilFuncMask;
+ data.stencilFail = this.stencilFail;
+ data.stencilZFail = this.stencilZFail;
+ data.stencilZPass = this.stencilZPass; // rotation (SpriteMaterial)
+
+ if (this.rotation && this.rotation !== 0) data.rotation = this.rotation;
+ if (this.polygonOffset === true) data.polygonOffset = true;
+ if (this.polygonOffsetFactor !== 0) data.polygonOffsetFactor = this.polygonOffsetFactor;
+ if (this.polygonOffsetUnits !== 0) data.polygonOffsetUnits = this.polygonOffsetUnits;
+ if (this.linewidth && this.linewidth !== 1) data.linewidth = this.linewidth;
+ if (this.dashSize !== undefined) data.dashSize = this.dashSize;
+ if (this.gapSize !== undefined) data.gapSize = this.gapSize;
+ if (this.scale !== undefined) data.scale = this.scale;
+ if (this.dithering === true) data.dithering = true;
+ if (this.alphaTest > 0) data.alphaTest = this.alphaTest;
+ if (this.alphaToCoverage === true) data.alphaToCoverage = this.alphaToCoverage;
+ if (this.premultipliedAlpha === true) data.premultipliedAlpha = this.premultipliedAlpha;
+ if (this.wireframe === true) data.wireframe = this.wireframe;
+ if (this.wireframeLinewidth > 1) data.wireframeLinewidth = this.wireframeLinewidth;
+ if (this.wireframeLinecap !== 'round') data.wireframeLinecap = this.wireframeLinecap;
+ if (this.wireframeLinejoin !== 'round') data.wireframeLinejoin = this.wireframeLinejoin;
+ if (this.flatShading === true) data.flatShading = this.flatShading;
+ if (this.visible === false) data.visible = false;
+ if (this.toneMapped === false) data.toneMapped = false;
+ if (JSON.stringify(this.userData) !== '{}') data.userData = this.userData; // TODO: Copied from Object3D.toJSON
+
+ function extractFromCache(cache) {
+ const values = [];
- switch (name) {
- case 'rgb':
- case 'rgba':
- if (color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
- // rgb(255,0,0) rgba(255,0,0,0.5)
- this.r = Math.min(255, parseInt(color[1], 10)) / 255;
- this.g = Math.min(255, parseInt(color[2], 10)) / 255;
- this.b = Math.min(255, parseInt(color[3], 10)) / 255;
- handleAlpha(color[4]);
- return this;
+ for (const key in cache) {
+ const data = cache[key];
+ delete data.metadata;
+ values.push(data);
}
- if (color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
- // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
- this.r = Math.min(100, parseInt(color[1], 10)) / 100;
- this.g = Math.min(100, parseInt(color[2], 10)) / 100;
- this.b = Math.min(100, parseInt(color[3], 10)) / 100;
- handleAlpha(color[4]);
- return this;
- }
+ return values;
+ }
- break;
+ if (isRoot) {
+ const textures = extractFromCache(meta.textures);
+ const images = extractFromCache(meta.images);
+ if (textures.length > 0) data.textures = textures;
+ if (images.length > 0) data.images = images;
+ }
- case 'hsl':
- case 'hsla':
- if (color = /^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
- // hsl(120,50%,50%) hsla(120,50%,50%,0.5)
- const h = parseFloat(color[1]) / 360;
- const s = parseInt(color[2], 10) / 100;
- const l = parseInt(color[3], 10) / 100;
- handleAlpha(color[4]);
- return this.setHSL(h, s, l);
+ return data;
+ }
+
+ clone() {
+ return new this.constructor().copy(this);
+ }
+
+ copy(source) {
+ this.name = source.name;
+ this.fog = source.fog;
+ this.blending = source.blending;
+ this.side = source.side;
+ this.vertexColors = source.vertexColors;
+ this.opacity = source.opacity;
+ this.format = source.format;
+ this.transparent = source.transparent;
+ this.blendSrc = source.blendSrc;
+ this.blendDst = source.blendDst;
+ this.blendEquation = source.blendEquation;
+ this.blendSrcAlpha = source.blendSrcAlpha;
+ this.blendDstAlpha = source.blendDstAlpha;
+ this.blendEquationAlpha = source.blendEquationAlpha;
+ this.depthFunc = source.depthFunc;
+ this.depthTest = source.depthTest;
+ this.depthWrite = source.depthWrite;
+ this.stencilWriteMask = source.stencilWriteMask;
+ this.stencilFunc = source.stencilFunc;
+ this.stencilRef = source.stencilRef;
+ this.stencilFuncMask = source.stencilFuncMask;
+ this.stencilFail = source.stencilFail;
+ this.stencilZFail = source.stencilZFail;
+ this.stencilZPass = source.stencilZPass;
+ this.stencilWrite = source.stencilWrite;
+ const srcPlanes = source.clippingPlanes;
+ let dstPlanes = null;
+
+ if (srcPlanes !== null) {
+ const n = srcPlanes.length;
+ dstPlanes = new Array(n);
+
+ for (let i = 0; i !== n; ++i) {
+ dstPlanes[i] = srcPlanes[i].clone();
}
+ }
- break;
+ this.clippingPlanes = dstPlanes;
+ this.clipIntersection = source.clipIntersection;
+ this.clipShadows = source.clipShadows;
+ this.shadowSide = source.shadowSide;
+ this.colorWrite = source.colorWrite;
+ this.precision = source.precision;
+ this.polygonOffset = source.polygonOffset;
+ this.polygonOffsetFactor = source.polygonOffsetFactor;
+ this.polygonOffsetUnits = source.polygonOffsetUnits;
+ this.dithering = source.dithering;
+ this.alphaTest = source.alphaTest;
+ this.alphaToCoverage = source.alphaToCoverage;
+ this.premultipliedAlpha = source.premultipliedAlpha;
+ this.visible = source.visible;
+ this.toneMapped = source.toneMapped;
+ this.userData = JSON.parse(JSON.stringify(source.userData));
+ return this;
}
- } else if (m = /^\#([A-Fa-f\d]+)$/.exec(style)) {
- // hex color
- const hex = m[1];
- const size = hex.length;
- if (size === 3) {
- // #ff0
- this.r = parseInt(hex.charAt(0) + hex.charAt(0), 16) / 255;
- this.g = parseInt(hex.charAt(1) + hex.charAt(1), 16) / 255;
- this.b = parseInt(hex.charAt(2) + hex.charAt(2), 16) / 255;
- return this;
- } else if (size === 6) {
- // #ff0000
- this.r = parseInt(hex.charAt(0) + hex.charAt(1), 16) / 255;
- this.g = parseInt(hex.charAt(2) + hex.charAt(3), 16) / 255;
- this.b = parseInt(hex.charAt(4) + hex.charAt(5), 16) / 255;
- return this;
+ dispose() {
+ this.dispatchEvent({
+ type: 'dispose'
+ });
}
+
+ set needsUpdate(value) {
+ if (value === true) this.version++;
+ }
+
+ }
+
+ Material.prototype.isMaterial = true;
+
+ const _colorKeywords = {
+ 'aliceblue': 0xF0F8FF,
+ 'antiquewhite': 0xFAEBD7,
+ 'aqua': 0x00FFFF,
+ 'aquamarine': 0x7FFFD4,
+ 'azure': 0xF0FFFF,
+ 'beige': 0xF5F5DC,
+ 'bisque': 0xFFE4C4,
+ 'black': 0x000000,
+ 'blanchedalmond': 0xFFEBCD,
+ 'blue': 0x0000FF,
+ 'blueviolet': 0x8A2BE2,
+ 'brown': 0xA52A2A,
+ 'burlywood': 0xDEB887,
+ 'cadetblue': 0x5F9EA0,
+ 'chartreuse': 0x7FFF00,
+ 'chocolate': 0xD2691E,
+ 'coral': 0xFF7F50,
+ 'cornflowerblue': 0x6495ED,
+ 'cornsilk': 0xFFF8DC,
+ 'crimson': 0xDC143C,
+ 'cyan': 0x00FFFF,
+ 'darkblue': 0x00008B,
+ 'darkcyan': 0x008B8B,
+ 'darkgoldenrod': 0xB8860B,
+ 'darkgray': 0xA9A9A9,
+ 'darkgreen': 0x006400,
+ 'darkgrey': 0xA9A9A9,
+ 'darkkhaki': 0xBDB76B,
+ 'darkmagenta': 0x8B008B,
+ 'darkolivegreen': 0x556B2F,
+ 'darkorange': 0xFF8C00,
+ 'darkorchid': 0x9932CC,
+ 'darkred': 0x8B0000,
+ 'darksalmon': 0xE9967A,
+ 'darkseagreen': 0x8FBC8F,
+ 'darkslateblue': 0x483D8B,
+ 'darkslategray': 0x2F4F4F,
+ 'darkslategrey': 0x2F4F4F,
+ 'darkturquoise': 0x00CED1,
+ 'darkviolet': 0x9400D3,
+ 'deeppink': 0xFF1493,
+ 'deepskyblue': 0x00BFFF,
+ 'dimgray': 0x696969,
+ 'dimgrey': 0x696969,
+ 'dodgerblue': 0x1E90FF,
+ 'firebrick': 0xB22222,
+ 'floralwhite': 0xFFFAF0,
+ 'forestgreen': 0x228B22,
+ 'fuchsia': 0xFF00FF,
+ 'gainsboro': 0xDCDCDC,
+ 'ghostwhite': 0xF8F8FF,
+ 'gold': 0xFFD700,
+ 'goldenrod': 0xDAA520,
+ 'gray': 0x808080,
+ 'green': 0x008000,
+ 'greenyellow': 0xADFF2F,
+ 'grey': 0x808080,
+ 'honeydew': 0xF0FFF0,
+ 'hotpink': 0xFF69B4,
+ 'indianred': 0xCD5C5C,
+ 'indigo': 0x4B0082,
+ 'ivory': 0xFFFFF0,
+ 'khaki': 0xF0E68C,
+ 'lavender': 0xE6E6FA,
+ 'lavenderblush': 0xFFF0F5,
+ 'lawngreen': 0x7CFC00,
+ 'lemonchiffon': 0xFFFACD,
+ 'lightblue': 0xADD8E6,
+ 'lightcoral': 0xF08080,
+ 'lightcyan': 0xE0FFFF,
+ 'lightgoldenrodyellow': 0xFAFAD2,
+ 'lightgray': 0xD3D3D3,
+ 'lightgreen': 0x90EE90,
+ 'lightgrey': 0xD3D3D3,
+ 'lightpink': 0xFFB6C1,
+ 'lightsalmon': 0xFFA07A,
+ 'lightseagreen': 0x20B2AA,
+ 'lightskyblue': 0x87CEFA,
+ 'lightslategray': 0x778899,
+ 'lightslategrey': 0x778899,
+ 'lightsteelblue': 0xB0C4DE,
+ 'lightyellow': 0xFFFFE0,
+ 'lime': 0x00FF00,
+ 'limegreen': 0x32CD32,
+ 'linen': 0xFAF0E6,
+ 'magenta': 0xFF00FF,
+ 'maroon': 0x800000,
+ 'mediumaquamarine': 0x66CDAA,
+ 'mediumblue': 0x0000CD,
+ 'mediumorchid': 0xBA55D3,
+ 'mediumpurple': 0x9370DB,
+ 'mediumseagreen': 0x3CB371,
+ 'mediumslateblue': 0x7B68EE,
+ 'mediumspringgreen': 0x00FA9A,
+ 'mediumturquoise': 0x48D1CC,
+ 'mediumvioletred': 0xC71585,
+ 'midnightblue': 0x191970,
+ 'mintcream': 0xF5FFFA,
+ 'mistyrose': 0xFFE4E1,
+ 'moccasin': 0xFFE4B5,
+ 'navajowhite': 0xFFDEAD,
+ 'navy': 0x000080,
+ 'oldlace': 0xFDF5E6,
+ 'olive': 0x808000,
+ 'olivedrab': 0x6B8E23,
+ 'orange': 0xFFA500,
+ 'orangered': 0xFF4500,
+ 'orchid': 0xDA70D6,
+ 'palegoldenrod': 0xEEE8AA,
+ 'palegreen': 0x98FB98,
+ 'paleturquoise': 0xAFEEEE,
+ 'palevioletred': 0xDB7093,
+ 'papayawhip': 0xFFEFD5,
+ 'peachpuff': 0xFFDAB9,
+ 'peru': 0xCD853F,
+ 'pink': 0xFFC0CB,
+ 'plum': 0xDDA0DD,
+ 'powderblue': 0xB0E0E6,
+ 'purple': 0x800080,
+ 'rebeccapurple': 0x663399,
+ 'red': 0xFF0000,
+ 'rosybrown': 0xBC8F8F,
+ 'royalblue': 0x4169E1,
+ 'saddlebrown': 0x8B4513,
+ 'salmon': 0xFA8072,
+ 'sandybrown': 0xF4A460,
+ 'seagreen': 0x2E8B57,
+ 'seashell': 0xFFF5EE,
+ 'sienna': 0xA0522D,
+ 'silver': 0xC0C0C0,
+ 'skyblue': 0x87CEEB,
+ 'slateblue': 0x6A5ACD,
+ 'slategray': 0x708090,
+ 'slategrey': 0x708090,
+ 'snow': 0xFFFAFA,
+ 'springgreen': 0x00FF7F,
+ 'steelblue': 0x4682B4,
+ 'tan': 0xD2B48C,
+ 'teal': 0x008080,
+ 'thistle': 0xD8BFD8,
+ 'tomato': 0xFF6347,
+ 'turquoise': 0x40E0D0,
+ 'violet': 0xEE82EE,
+ 'wheat': 0xF5DEB3,
+ 'white': 0xFFFFFF,
+ 'whitesmoke': 0xF5F5F5,
+ 'yellow': 0xFFFF00,
+ 'yellowgreen': 0x9ACD32
+ };
+ const _hslA = {
+ h: 0,
+ s: 0,
+ l: 0
+ };
+ const _hslB = {
+ h: 0,
+ s: 0,
+ l: 0
+ };
+
+ function hue2rgb(p, q, t) {
+ if (t < 0) t += 1;
+ if (t > 1) t -= 1;
+ if (t < 1 / 6) return p + (q - p) * 6 * t;
+ if (t < 1 / 2) return q;
+ if (t < 2 / 3) return p + (q - p) * 6 * (2 / 3 - t);
+ return p;
}
- if (style && style.length > 0) {
- return this.setColorName(style);
+ function SRGBToLinear(c) {
+ return c < 0.04045 ? c * 0.0773993808 : Math.pow(c * 0.9478672986 + 0.0521327014, 2.4);
}
- return this;
- }
+ function LinearToSRGB(c) {
+ return c < 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 0.41666) - 0.055;
+ }
- setColorName(style) {
- // color keywords
- const hex = _colorKeywords[style.toLowerCase()];
+ class Color {
+ constructor(r, g, b) {
+ if (g === undefined && b === undefined) {
+ // r is THREE.Color, hex or string
+ return this.set(r);
+ }
- if (hex !== undefined) {
- // red
- this.setHex(hex);
- } else {
- // unknown color
- console.warn('THREE.Color: Unknown color ' + style);
- }
+ return this.setRGB(r, g, b);
+ }
- return this;
- }
+ set(value) {
+ if (value && value.isColor) {
+ this.copy(value);
+ } else if (typeof value === 'number') {
+ this.setHex(value);
+ } else if (typeof value === 'string') {
+ this.setStyle(value);
+ }
- clone() {
- return new this.constructor(this.r, this.g, this.b);
- }
+ return this;
+ }
- copy(color) {
- this.r = color.r;
- this.g = color.g;
- this.b = color.b;
- return this;
- }
+ setScalar(scalar) {
+ this.r = scalar;
+ this.g = scalar;
+ this.b = scalar;
+ return this;
+ }
- copyGammaToLinear(color, gammaFactor = 2.0) {
- this.r = Math.pow(color.r, gammaFactor);
- this.g = Math.pow(color.g, gammaFactor);
- this.b = Math.pow(color.b, gammaFactor);
- return this;
- }
+ setHex(hex) {
+ hex = Math.floor(hex);
+ this.r = (hex >> 16 & 255) / 255;
+ this.g = (hex >> 8 & 255) / 255;
+ this.b = (hex & 255) / 255;
+ return this;
+ }
- copyLinearToGamma(color, gammaFactor = 2.0) {
- const safeInverse = gammaFactor > 0 ? 1.0 / gammaFactor : 1.0;
- this.r = Math.pow(color.r, safeInverse);
- this.g = Math.pow(color.g, safeInverse);
- this.b = Math.pow(color.b, safeInverse);
- return this;
- }
+ setRGB(r, g, b) {
+ this.r = r;
+ this.g = g;
+ this.b = b;
+ return this;
+ }
- convertGammaToLinear(gammaFactor) {
- this.copyGammaToLinear(this, gammaFactor);
- return this;
- }
+ setHSL(h, s, l) {
+ // h,s,l ranges are in 0.0 - 1.0
+ h = euclideanModulo(h, 1);
+ s = clamp(s, 0, 1);
+ l = clamp(l, 0, 1);
- convertLinearToGamma(gammaFactor) {
- this.copyLinearToGamma(this, gammaFactor);
- return this;
- }
+ if (s === 0) {
+ this.r = this.g = this.b = l;
+ } else {
+ const p = l <= 0.5 ? l * (1 + s) : l + s - l * s;
+ const q = 2 * l - p;
+ this.r = hue2rgb(q, p, h + 1 / 3);
+ this.g = hue2rgb(q, p, h);
+ this.b = hue2rgb(q, p, h - 1 / 3);
+ }
- copySRGBToLinear(color) {
- this.r = SRGBToLinear(color.r);
- this.g = SRGBToLinear(color.g);
- this.b = SRGBToLinear(color.b);
- return this;
- }
+ return this;
+ }
- copyLinearToSRGB(color) {
- this.r = LinearToSRGB(color.r);
- this.g = LinearToSRGB(color.g);
- this.b = LinearToSRGB(color.b);
- return this;
- }
+ setStyle(style) {
+ function handleAlpha(string) {
+ if (string === undefined) return;
- convertSRGBToLinear() {
- this.copySRGBToLinear(this);
- return this;
- }
+ if (parseFloat(string) < 1) {
+ console.warn('THREE.Color: Alpha component of ' + style + ' will be ignored.');
+ }
+ }
- convertLinearToSRGB() {
- this.copyLinearToSRGB(this);
- return this;
- }
+ let m;
+
+ if (m = /^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec(style)) {
+ // rgb / hsl
+ let color;
+ const name = m[1];
+ const components = m[2];
+
+ switch (name) {
+ case 'rgb':
+ case 'rgba':
+ if (color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
+ // rgb(255,0,0) rgba(255,0,0,0.5)
+ this.r = Math.min(255, parseInt(color[1], 10)) / 255;
+ this.g = Math.min(255, parseInt(color[2], 10)) / 255;
+ this.b = Math.min(255, parseInt(color[3], 10)) / 255;
+ handleAlpha(color[4]);
+ return this;
+ }
- getHex() {
- return this.r * 255 << 16 ^ this.g * 255 << 8 ^ this.b * 255 << 0;
- }
+ if (color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
+ // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
+ this.r = Math.min(100, parseInt(color[1], 10)) / 100;
+ this.g = Math.min(100, parseInt(color[2], 10)) / 100;
+ this.b = Math.min(100, parseInt(color[3], 10)) / 100;
+ handleAlpha(color[4]);
+ return this;
+ }
- getHexString() {
- return ('000000' + this.getHex().toString(16)).slice(-6);
- }
+ break;
- getHSL(target) {
- // h,s,l ranges are in 0.0 - 1.0
- const r = this.r,
- g = this.g,
- b = this.b;
- const max = Math.max(r, g, b);
- const min = Math.min(r, g, b);
- let hue, saturation;
- const lightness = (min + max) / 2.0;
-
- if (min === max) {
- hue = 0;
- saturation = 0;
- } else {
- const delta = max - min;
- saturation = lightness <= 0.5 ? delta / (max + min) : delta / (2 - max - min);
+ case 'hsl':
+ case 'hsla':
+ if (color = /^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
+ // hsl(120,50%,50%) hsla(120,50%,50%,0.5)
+ const h = parseFloat(color[1]) / 360;
+ const s = parseInt(color[2], 10) / 100;
+ const l = parseInt(color[3], 10) / 100;
+ handleAlpha(color[4]);
+ return this.setHSL(h, s, l);
+ }
- switch (max) {
- case r:
- hue = (g - b) / delta + (g < b ? 6 : 0);
- break;
+ break;
+ }
+ } else if (m = /^\#([A-Fa-f\d]+)$/.exec(style)) {
+ // hex color
+ const hex = m[1];
+ const size = hex.length;
+
+ if (size === 3) {
+ // #ff0
+ this.r = parseInt(hex.charAt(0) + hex.charAt(0), 16) / 255;
+ this.g = parseInt(hex.charAt(1) + hex.charAt(1), 16) / 255;
+ this.b = parseInt(hex.charAt(2) + hex.charAt(2), 16) / 255;
+ return this;
+ } else if (size === 6) {
+ // #ff0000
+ this.r = parseInt(hex.charAt(0) + hex.charAt(1), 16) / 255;
+ this.g = parseInt(hex.charAt(2) + hex.charAt(3), 16) / 255;
+ this.b = parseInt(hex.charAt(4) + hex.charAt(5), 16) / 255;
+ return this;
+ }
+ }
- case g:
- hue = (b - r) / delta + 2;
- break;
+ if (style && style.length > 0) {
+ return this.setColorName(style);
+ }
- case b:
- hue = (r - g) / delta + 4;
- break;
+ return this;
}
- hue /= 6;
- }
-
- target.h = hue;
- target.s = saturation;
- target.l = lightness;
- return target;
- }
+ setColorName(style) {
+ // color keywords
+ const hex = _colorKeywords[style.toLowerCase()];
- getStyle() {
- return 'rgb(' + (this.r * 255 | 0) + ',' + (this.g * 255 | 0) + ',' + (this.b * 255 | 0) + ')';
- }
+ if (hex !== undefined) {
+ // red
+ this.setHex(hex);
+ } else {
+ // unknown color
+ console.warn('THREE.Color: Unknown color ' + style);
+ }
- offsetHSL(h, s, l) {
- this.getHSL(_hslA);
- _hslA.h += h;
- _hslA.s += s;
- _hslA.l += l;
- this.setHSL(_hslA.h, _hslA.s, _hslA.l);
- return this;
- }
+ return this;
+ }
- add(color) {
- this.r += color.r;
- this.g += color.g;
- this.b += color.b;
- return this;
- }
+ clone() {
+ return new this.constructor(this.r, this.g, this.b);
+ }
- addColors(color1, color2) {
- this.r = color1.r + color2.r;
- this.g = color1.g + color2.g;
- this.b = color1.b + color2.b;
- return this;
- }
+ copy(color) {
+ this.r = color.r;
+ this.g = color.g;
+ this.b = color.b;
+ return this;
+ }
- addScalar(s) {
- this.r += s;
- this.g += s;
- this.b += s;
- return this;
- }
+ copyGammaToLinear(color, gammaFactor = 2.0) {
+ this.r = Math.pow(color.r, gammaFactor);
+ this.g = Math.pow(color.g, gammaFactor);
+ this.b = Math.pow(color.b, gammaFactor);
+ return this;
+ }
- sub(color) {
- this.r = Math.max(0, this.r - color.r);
- this.g = Math.max(0, this.g - color.g);
- this.b = Math.max(0, this.b - color.b);
- return this;
- }
+ copyLinearToGamma(color, gammaFactor = 2.0) {
+ const safeInverse = gammaFactor > 0 ? 1.0 / gammaFactor : 1.0;
+ this.r = Math.pow(color.r, safeInverse);
+ this.g = Math.pow(color.g, safeInverse);
+ this.b = Math.pow(color.b, safeInverse);
+ return this;
+ }
- multiply(color) {
- this.r *= color.r;
- this.g *= color.g;
- this.b *= color.b;
- return this;
- }
+ convertGammaToLinear(gammaFactor) {
+ this.copyGammaToLinear(this, gammaFactor);
+ return this;
+ }
- multiplyScalar(s) {
- this.r *= s;
- this.g *= s;
- this.b *= s;
- return this;
- }
+ convertLinearToGamma(gammaFactor) {
+ this.copyLinearToGamma(this, gammaFactor);
+ return this;
+ }
- lerp(color, alpha) {
- this.r += (color.r - this.r) * alpha;
- this.g += (color.g - this.g) * alpha;
- this.b += (color.b - this.b) * alpha;
- return this;
- }
+ copySRGBToLinear(color) {
+ this.r = SRGBToLinear(color.r);
+ this.g = SRGBToLinear(color.g);
+ this.b = SRGBToLinear(color.b);
+ return this;
+ }
- lerpColors(color1, color2, alpha) {
- this.r = color1.r + (color2.r - color1.r) * alpha;
- this.g = color1.g + (color2.g - color1.g) * alpha;
- this.b = color1.b + (color2.b - color1.b) * alpha;
- return this;
- }
+ copyLinearToSRGB(color) {
+ this.r = LinearToSRGB(color.r);
+ this.g = LinearToSRGB(color.g);
+ this.b = LinearToSRGB(color.b);
+ return this;
+ }
- lerpHSL(color, alpha) {
- this.getHSL(_hslA);
- color.getHSL(_hslB);
- const h = lerp(_hslA.h, _hslB.h, alpha);
- const s = lerp(_hslA.s, _hslB.s, alpha);
- const l = lerp(_hslA.l, _hslB.l, alpha);
- this.setHSL(h, s, l);
- return this;
- }
+ convertSRGBToLinear() {
+ this.copySRGBToLinear(this);
+ return this;
+ }
- equals(c) {
- return c.r === this.r && c.g === this.g && c.b === this.b;
- }
+ convertLinearToSRGB() {
+ this.copyLinearToSRGB(this);
+ return this;
+ }
- fromArray(array, offset = 0) {
- this.r = array[offset];
- this.g = array[offset + 1];
- this.b = array[offset + 2];
- return this;
- }
+ getHex() {
+ return this.r * 255 << 16 ^ this.g * 255 << 8 ^ this.b * 255 << 0;
+ }
- toArray(array = [], offset = 0) {
- array[offset] = this.r;
- array[offset + 1] = this.g;
- array[offset + 2] = this.b;
- return array;
- }
+ getHexString() {
+ return ('000000' + this.getHex().toString(16)).slice(-6);
+ }
- fromBufferAttribute(attribute, index) {
- this.r = attribute.getX(index);
- this.g = attribute.getY(index);
- this.b = attribute.getZ(index);
+ getHSL(target) {
+ // h,s,l ranges are in 0.0 - 1.0
+ const r = this.r,
+ g = this.g,
+ b = this.b;
+ const max = Math.max(r, g, b);
+ const min = Math.min(r, g, b);
+ let hue, saturation;
+ const lightness = (min + max) / 2.0;
+
+ if (min === max) {
+ hue = 0;
+ saturation = 0;
+ } else {
+ const delta = max - min;
+ saturation = lightness <= 0.5 ? delta / (max + min) : delta / (2 - max - min);
- if (attribute.normalized === true) {
- // assuming Uint8Array
- this.r /= 255;
- this.g /= 255;
- this.b /= 255;
- }
+ switch (max) {
+ case r:
+ hue = (g - b) / delta + (g < b ? 6 : 0);
+ break;
- return this;
- }
+ case g:
+ hue = (b - r) / delta + 2;
+ break;
- toJSON() {
- return this.getHex();
- }
+ case b:
+ hue = (r - g) / delta + 4;
+ break;
+ }
- }
+ hue /= 6;
+ }
- Color.NAMES = _colorKeywords;
- Color.prototype.isColor = true;
- Color.prototype.r = 1;
- Color.prototype.g = 1;
- Color.prototype.b = 1;
-
- /**
- * parameters = {
- * color: <hex>,
- * opacity: <float>,
- * map: new THREE.Texture( <Image> ),
- *
- * lightMap: new THREE.Texture( <Image> ),
- * lightMapIntensity: <float>
- *
- * aoMap: new THREE.Texture( <Image> ),
- * aoMapIntensity: <float>
- *
- * specularMap: new THREE.Texture( <Image> ),
- *
- * alphaMap: new THREE.Texture( <Image> ),
- *
- * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
- * combine: THREE.Multiply,
- * reflectivity: <float>,
- * refractionRatio: <float>,
- *
- * depthTest: <bool>,
- * depthWrite: <bool>,
- *
- * wireframe: <boolean>,
- * wireframeLinewidth: <float>,
- * }
- */
-
- class MeshBasicMaterial extends Material {
- constructor(parameters) {
- super();
- this.type = 'MeshBasicMaterial';
- this.color = new Color(0xffffff); // emissive
-
- this.map = null;
- this.lightMap = null;
- this.lightMapIntensity = 1.0;
- this.aoMap = null;
- this.aoMapIntensity = 1.0;
- this.specularMap = null;
- this.alphaMap = null;
- this.envMap = null;
- this.combine = MultiplyOperation;
- this.reflectivity = 1;
- this.refractionRatio = 0.98;
- this.wireframe = false;
- this.wireframeLinewidth = 1;
- this.wireframeLinecap = 'round';
- this.wireframeLinejoin = 'round';
- this.setValues(parameters);
- }
+ target.h = hue;
+ target.s = saturation;
+ target.l = lightness;
+ return target;
+ }
- copy(source) {
- super.copy(source);
- this.color.copy(source.color);
- this.map = source.map;
- this.lightMap = source.lightMap;
- this.lightMapIntensity = source.lightMapIntensity;
- this.aoMap = source.aoMap;
- this.aoMapIntensity = source.aoMapIntensity;
- this.specularMap = source.specularMap;
- this.alphaMap = source.alphaMap;
- this.envMap = source.envMap;
- this.combine = source.combine;
- this.reflectivity = source.reflectivity;
- this.refractionRatio = source.refractionRatio;
- this.wireframe = source.wireframe;
- this.wireframeLinewidth = source.wireframeLinewidth;
- this.wireframeLinecap = source.wireframeLinecap;
- this.wireframeLinejoin = source.wireframeLinejoin;
- return this;
- }
+ getStyle() {
+ return 'rgb(' + (this.r * 255 | 0) + ',' + (this.g * 255 | 0) + ',' + (this.b * 255 | 0) + ')';
+ }
- }
+ offsetHSL(h, s, l) {
+ this.getHSL(_hslA);
+ _hslA.h += h;
+ _hslA.s += s;
+ _hslA.l += l;
+ this.setHSL(_hslA.h, _hslA.s, _hslA.l);
+ return this;
+ }
- MeshBasicMaterial.prototype.isMeshBasicMaterial = true;
+ add(color) {
+ this.r += color.r;
+ this.g += color.g;
+ this.b += color.b;
+ return this;
+ }
- const _vector$9 = /*@__PURE__*/new Vector3();
+ addColors(color1, color2) {
+ this.r = color1.r + color2.r;
+ this.g = color1.g + color2.g;
+ this.b = color1.b + color2.b;
+ return this;
+ }
- const _vector2$1 = /*@__PURE__*/new Vector2();
+ addScalar(s) {
+ this.r += s;
+ this.g += s;
+ this.b += s;
+ return this;
+ }
- class BufferAttribute {
- constructor(array, itemSize, normalized) {
- if (Array.isArray(array)) {
- throw new TypeError('THREE.BufferAttribute: array should be a Typed Array.');
- }
+ sub(color) {
+ this.r = Math.max(0, this.r - color.r);
+ this.g = Math.max(0, this.g - color.g);
+ this.b = Math.max(0, this.b - color.b);
+ return this;
+ }
- this.name = '';
- this.array = array;
- this.itemSize = itemSize;
- this.count = array !== undefined ? array.length / itemSize : 0;
- this.normalized = normalized === true;
- this.usage = StaticDrawUsage;
- this.updateRange = {
- offset: 0,
- count: -1
- };
- this.version = 0;
- }
+ multiply(color) {
+ this.r *= color.r;
+ this.g *= color.g;
+ this.b *= color.b;
+ return this;
+ }
- onUploadCallback() {}
+ multiplyScalar(s) {
+ this.r *= s;
+ this.g *= s;
+ this.b *= s;
+ return this;
+ }
- set needsUpdate(value) {
- if (value === true) this.version++;
- }
+ lerp(color, alpha) {
+ this.r += (color.r - this.r) * alpha;
+ this.g += (color.g - this.g) * alpha;
+ this.b += (color.b - this.b) * alpha;
+ return this;
+ }
- setUsage(value) {
- this.usage = value;
- return this;
- }
+ lerpColors(color1, color2, alpha) {
+ this.r = color1.r + (color2.r - color1.r) * alpha;
+ this.g = color1.g + (color2.g - color1.g) * alpha;
+ this.b = color1.b + (color2.b - color1.b) * alpha;
+ return this;
+ }
- copy(source) {
- this.name = source.name;
- this.array = new source.array.constructor(source.array);
- this.itemSize = source.itemSize;
- this.count = source.count;
- this.normalized = source.normalized;
- this.usage = source.usage;
- return this;
- }
+ lerpHSL(color, alpha) {
+ this.getHSL(_hslA);
+ color.getHSL(_hslB);
+ const h = lerp(_hslA.h, _hslB.h, alpha);
+ const s = lerp(_hslA.s, _hslB.s, alpha);
+ const l = lerp(_hslA.l, _hslB.l, alpha);
+ this.setHSL(h, s, l);
+ return this;
+ }
- copyAt(index1, attribute, index2) {
- index1 *= this.itemSize;
- index2 *= attribute.itemSize;
+ equals(c) {
+ return c.r === this.r && c.g === this.g && c.b === this.b;
+ }
- for (let i = 0, l = this.itemSize; i < l; i++) {
- this.array[index1 + i] = attribute.array[index2 + i];
- }
+ fromArray(array, offset = 0) {
+ this.r = array[offset];
+ this.g = array[offset + 1];
+ this.b = array[offset + 2];
+ return this;
+ }
- return this;
- }
+ toArray(array = [], offset = 0) {
+ array[offset] = this.r;
+ array[offset + 1] = this.g;
+ array[offset + 2] = this.b;
+ return array;
+ }
- copyArray(array) {
- this.array.set(array);
- return this;
- }
+ fromBufferAttribute(attribute, index) {
+ this.r = attribute.getX(index);
+ this.g = attribute.getY(index);
+ this.b = attribute.getZ(index);
- copyColorsArray(colors) {
- const array = this.array;
- let offset = 0;
+ if (attribute.normalized === true) {
+ // assuming Uint8Array
+ this.r /= 255;
+ this.g /= 255;
+ this.b /= 255;
+ }
- for (let i = 0, l = colors.length; i < l; i++) {
- let color = colors[i];
+ return this;
+ }
- if (color === undefined) {
- console.warn('THREE.BufferAttribute.copyColorsArray(): color is undefined', i);
- color = new Color();
+ toJSON() {
+ return this.getHex();
}
- array[offset++] = color.r;
- array[offset++] = color.g;
- array[offset++] = color.b;
}
- return this;
- }
-
- copyVector2sArray(vectors) {
- const array = this.array;
- let offset = 0;
+ Color.NAMES = _colorKeywords;
+ Color.prototype.isColor = true;
+ Color.prototype.r = 1;
+ Color.prototype.g = 1;
+ Color.prototype.b = 1;
- for (let i = 0, l = vectors.length; i < l; i++) {
- let vector = vectors[i];
+ /**
+ * parameters = {
+ * color: <hex>,
+ * opacity: <float>,
+ * map: new THREE.Texture( <Image> ),
+ *
+ * lightMap: new THREE.Texture( <Image> ),
+ * lightMapIntensity: <float>
+ *
+ * aoMap: new THREE.Texture( <Image> ),
+ * aoMapIntensity: <float>
+ *
+ * specularMap: new THREE.Texture( <Image> ),
+ *
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
+ * combine: THREE.Multiply,
+ * reflectivity: <float>,
+ * refractionRatio: <float>,
+ *
+ * depthTest: <bool>,
+ * depthWrite: <bool>,
+ *
+ * wireframe: <boolean>,
+ * wireframeLinewidth: <float>,
+ * }
+ */
- if (vector === undefined) {
- console.warn('THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i);
- vector = new Vector2();
+ class MeshBasicMaterial extends Material {
+ constructor(parameters) {
+ super();
+ this.type = 'MeshBasicMaterial';
+ this.color = new Color(0xffffff); // emissive
+
+ this.map = null;
+ this.lightMap = null;
+ this.lightMapIntensity = 1.0;
+ this.aoMap = null;
+ this.aoMapIntensity = 1.0;
+ this.specularMap = null;
+ this.alphaMap = null;
+ this.envMap = null;
+ this.combine = MultiplyOperation;
+ this.reflectivity = 1;
+ this.refractionRatio = 0.98;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.wireframeLinecap = 'round';
+ this.wireframeLinejoin = 'round';
+ this.setValues(parameters);
+ }
+
+ copy(source) {
+ super.copy(source);
+ this.color.copy(source.color);
+ this.map = source.map;
+ this.lightMap = source.lightMap;
+ this.lightMapIntensity = source.lightMapIntensity;
+ this.aoMap = source.aoMap;
+ this.aoMapIntensity = source.aoMapIntensity;
+ this.specularMap = source.specularMap;
+ this.alphaMap = source.alphaMap;
+ this.envMap = source.envMap;
+ this.combine = source.combine;
+ this.reflectivity = source.reflectivity;
+ this.refractionRatio = source.refractionRatio;
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ this.wireframeLinecap = source.wireframeLinecap;
+ this.wireframeLinejoin = source.wireframeLinejoin;
+ return this;
}
- array[offset++] = vector.x;
- array[offset++] = vector.y;
}
- return this;
- }
+ MeshBasicMaterial.prototype.isMeshBasicMaterial = true;
+
+ const _vector$9 = /*@__PURE__*/new Vector3();
- copyVector3sArray(vectors) {
- const array = this.array;
- let offset = 0;
+ const _vector2$1 = /*@__PURE__*/new Vector2();
- for (let i = 0, l = vectors.length; i < l; i++) {
- let vector = vectors[i];
+ class BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ if (Array.isArray(array)) {
+ throw new TypeError('THREE.BufferAttribute: array should be a Typed Array.');
+ }
- if (vector === undefined) {
- console.warn('THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i);
- vector = new Vector3();
+ this.name = '';
+ this.array = array;
+ this.itemSize = itemSize;
+ this.count = array !== undefined ? array.length / itemSize : 0;
+ this.normalized = normalized === true;
+ this.usage = StaticDrawUsage;
+ this.updateRange = {
+ offset: 0,
+ count: -1
+ };
+ this.version = 0;
}
- array[offset++] = vector.x;
- array[offset++] = vector.y;
- array[offset++] = vector.z;
- }
+ onUploadCallback() {
+ }
- return this;
- }
+ set needsUpdate(value) {
+ if (value === true) this.version++;
+ }
- copyVector4sArray(vectors) {
- const array = this.array;
- let offset = 0;
-
- for (let i = 0, l = vectors.length; i < l; i++) {
- let vector = vectors[i];
-
- if (vector === undefined) {
- console.warn('THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i);
- vector = new Vector4();
+ setUsage(value) {
+ this.usage = value;
+ return this;
}
- array[offset++] = vector.x;
- array[offset++] = vector.y;
- array[offset++] = vector.z;
- array[offset++] = vector.w;
- }
-
- return this;
- }
+ copy(source) {
+ this.name = source.name;
+ this.array = new source.array.constructor(source.array);
+ this.itemSize = source.itemSize;
+ this.count = source.count;
+ this.normalized = source.normalized;
+ this.usage = source.usage;
+ return this;
+ }
- applyMatrix3(m) {
- if (this.itemSize === 2) {
- for (let i = 0, l = this.count; i < l; i++) {
- _vector2$1.fromBufferAttribute(this, i);
+ copyAt(index1, attribute, index2) {
+ index1 *= this.itemSize;
+ index2 *= attribute.itemSize;
- _vector2$1.applyMatrix3(m);
+ for (let i = 0, l = this.itemSize; i < l; i++) {
+ this.array[index1 + i] = attribute.array[index2 + i];
+ }
- this.setXY(i, _vector2$1.x, _vector2$1.y);
+ return this;
}
- } else if (this.itemSize === 3) {
- for (let i = 0, l = this.count; i < l; i++) {
- _vector$9.fromBufferAttribute(this, i);
- _vector$9.applyMatrix3(m);
-
- this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
+ copyArray(array) {
+ this.array.set(array);
+ return this;
}
- }
- return this;
- }
+ copyColorsArray(colors) {
+ const array = this.array;
+ let offset = 0;
- applyMatrix4(m) {
- for (let i = 0, l = this.count; i < l; i++) {
- _vector$9.x = this.getX(i);
- _vector$9.y = this.getY(i);
- _vector$9.z = this.getZ(i);
+ for (let i = 0, l = colors.length; i < l; i++) {
+ let color = colors[i];
- _vector$9.applyMatrix4(m);
+ if (color === undefined) {
+ console.warn('THREE.BufferAttribute.copyColorsArray(): color is undefined', i);
+ color = new Color();
+ }
- this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
- }
+ array[offset++] = color.r;
+ array[offset++] = color.g;
+ array[offset++] = color.b;
+ }
- return this;
- }
+ return this;
+ }
- applyNormalMatrix(m) {
- for (let i = 0, l = this.count; i < l; i++) {
- _vector$9.x = this.getX(i);
- _vector$9.y = this.getY(i);
- _vector$9.z = this.getZ(i);
+ copyVector2sArray(vectors) {
+ const array = this.array;
+ let offset = 0;
- _vector$9.applyNormalMatrix(m);
+ for (let i = 0, l = vectors.length; i < l; i++) {
+ let vector = vectors[i];
- this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
- }
+ if (vector === undefined) {
+ console.warn('THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i);
+ vector = new Vector2();
+ }
- return this;
- }
+ array[offset++] = vector.x;
+ array[offset++] = vector.y;
+ }
- transformDirection(m) {
- for (let i = 0, l = this.count; i < l; i++) {
- _vector$9.x = this.getX(i);
- _vector$9.y = this.getY(i);
- _vector$9.z = this.getZ(i);
+ return this;
+ }
- _vector$9.transformDirection(m);
+ copyVector3sArray(vectors) {
+ const array = this.array;
+ let offset = 0;
- this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
- }
+ for (let i = 0, l = vectors.length; i < l; i++) {
+ let vector = vectors[i];
- return this;
- }
+ if (vector === undefined) {
+ console.warn('THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i);
+ vector = new Vector3();
+ }
- set(value, offset = 0) {
- this.array.set(value, offset);
- return this;
- }
+ array[offset++] = vector.x;
+ array[offset++] = vector.y;
+ array[offset++] = vector.z;
+ }
- getX(index) {
- return this.array[index * this.itemSize];
- }
+ return this;
+ }
- setX(index, x) {
- this.array[index * this.itemSize] = x;
- return this;
- }
+ copyVector4sArray(vectors) {
+ const array = this.array;
+ let offset = 0;
- getY(index) {
- return this.array[index * this.itemSize + 1];
- }
+ for (let i = 0, l = vectors.length; i < l; i++) {
+ let vector = vectors[i];
- setY(index, y) {
- this.array[index * this.itemSize + 1] = y;
- return this;
- }
+ if (vector === undefined) {
+ console.warn('THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i);
+ vector = new Vector4();
+ }
- getZ(index) {
- return this.array[index * this.itemSize + 2];
- }
+ array[offset++] = vector.x;
+ array[offset++] = vector.y;
+ array[offset++] = vector.z;
+ array[offset++] = vector.w;
+ }
- setZ(index, z) {
- this.array[index * this.itemSize + 2] = z;
- return this;
- }
+ return this;
+ }
- getW(index) {
- return this.array[index * this.itemSize + 3];
- }
+ applyMatrix3(m) {
+ if (this.itemSize === 2) {
+ for (let i = 0, l = this.count; i < l; i++) {
+ _vector2$1.fromBufferAttribute(this, i);
- setW(index, w) {
- this.array[index * this.itemSize + 3] = w;
- return this;
- }
+ _vector2$1.applyMatrix3(m);
- setXY(index, x, y) {
- index *= this.itemSize;
- this.array[index + 0] = x;
- this.array[index + 1] = y;
- return this;
- }
+ this.setXY(i, _vector2$1.x, _vector2$1.y);
+ }
+ } else if (this.itemSize === 3) {
+ for (let i = 0, l = this.count; i < l; i++) {
+ _vector$9.fromBufferAttribute(this, i);
- setXYZ(index, x, y, z) {
- index *= this.itemSize;
- this.array[index + 0] = x;
- this.array[index + 1] = y;
- this.array[index + 2] = z;
- return this;
- }
+ _vector$9.applyMatrix3(m);
- setXYZW(index, x, y, z, w) {
- index *= this.itemSize;
- this.array[index + 0] = x;
- this.array[index + 1] = y;
- this.array[index + 2] = z;
- this.array[index + 3] = w;
- return this;
- }
+ this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
+ }
+ }
- onUpload(callback) {
- this.onUploadCallback = callback;
- return this;
- }
+ return this;
+ }
- clone() {
- return new this.constructor(this.array, this.itemSize).copy(this);
- }
+ applyMatrix4(m) {
+ for (let i = 0, l = this.count; i < l; i++) {
+ _vector$9.x = this.getX(i);
+ _vector$9.y = this.getY(i);
+ _vector$9.z = this.getZ(i);
- toJSON() {
- const data = {
- itemSize: this.itemSize,
- type: this.array.constructor.name,
- array: Array.prototype.slice.call(this.array),
- normalized: this.normalized
- };
- if (this.name !== '') data.name = this.name;
- if (this.usage !== StaticDrawUsage) data.usage = this.usage;
- if (this.updateRange.offset !== 0 || this.updateRange.count !== -1) data.updateRange = this.updateRange;
- return data;
- }
+ _vector$9.applyMatrix4(m);
- }
+ this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
+ }
- BufferAttribute.prototype.isBufferAttribute = true; //
+ return this;
+ }
- class Int8BufferAttribute extends BufferAttribute {
- constructor(array, itemSize, normalized) {
- super(new Int8Array(array), itemSize, normalized);
- }
+ applyNormalMatrix(m) {
+ for (let i = 0, l = this.count; i < l; i++) {
+ _vector$9.x = this.getX(i);
+ _vector$9.y = this.getY(i);
+ _vector$9.z = this.getZ(i);
- }
+ _vector$9.applyNormalMatrix(m);
- class Uint8BufferAttribute extends BufferAttribute {
- constructor(array, itemSize, normalized) {
- super(new Uint8Array(array), itemSize, normalized);
- }
+ this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
+ }
- }
+ return this;
+ }
- class Uint8ClampedBufferAttribute extends BufferAttribute {
- constructor(array, itemSize, normalized) {
- super(new Uint8ClampedArray(array), itemSize, normalized);
- }
+ transformDirection(m) {
+ for (let i = 0, l = this.count; i < l; i++) {
+ _vector$9.x = this.getX(i);
+ _vector$9.y = this.getY(i);
+ _vector$9.z = this.getZ(i);
- }
+ _vector$9.transformDirection(m);
- class Int16BufferAttribute extends BufferAttribute {
- constructor(array, itemSize, normalized) {
- super(new Int16Array(array), itemSize, normalized);
- }
+ this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
+ }
- }
+ return this;
+ }
- class Uint16BufferAttribute extends BufferAttribute {
- constructor(array, itemSize, normalized) {
- super(new Uint16Array(array), itemSize, normalized);
- }
+ set(value, offset = 0) {
+ this.array.set(value, offset);
+ return this;
+ }
- }
+ getX(index) {
+ return this.array[index * this.itemSize];
+ }
- class Int32BufferAttribute extends BufferAttribute {
- constructor(array, itemSize, normalized) {
- super(new Int32Array(array), itemSize, normalized);
- }
+ setX(index, x) {
+ this.array[index * this.itemSize] = x;
+ return this;
+ }
- }
+ getY(index) {
+ return this.array[index * this.itemSize + 1];
+ }
- class Uint32BufferAttribute extends BufferAttribute {
- constructor(array, itemSize, normalized) {
- super(new Uint32Array(array), itemSize, normalized);
- }
+ setY(index, y) {
+ this.array[index * this.itemSize + 1] = y;
+ return this;
+ }
- }
+ getZ(index) {
+ return this.array[index * this.itemSize + 2];
+ }
- class Float16BufferAttribute extends BufferAttribute {
- constructor(array, itemSize, normalized) {
- super(new Uint16Array(array), itemSize, normalized);
- }
+ setZ(index, z) {
+ this.array[index * this.itemSize + 2] = z;
+ return this;
+ }
- }
+ getW(index) {
+ return this.array[index * this.itemSize + 3];
+ }
- Float16BufferAttribute.prototype.isFloat16BufferAttribute = true;
+ setW(index, w) {
+ this.array[index * this.itemSize + 3] = w;
+ return this;
+ }
- class Float32BufferAttribute extends BufferAttribute {
- constructor(array, itemSize, normalized) {
- super(new Float32Array(array), itemSize, normalized);
- }
+ setXY(index, x, y) {
+ index *= this.itemSize;
+ this.array[index + 0] = x;
+ this.array[index + 1] = y;
+ return this;
+ }
- }
+ setXYZ(index, x, y, z) {
+ index *= this.itemSize;
+ this.array[index + 0] = x;
+ this.array[index + 1] = y;
+ this.array[index + 2] = z;
+ return this;
+ }
- class Float64BufferAttribute extends BufferAttribute {
- constructor(array, itemSize, normalized) {
- super(new Float64Array(array), itemSize, normalized);
- }
+ setXYZW(index, x, y, z, w) {
+ index *= this.itemSize;
+ this.array[index + 0] = x;
+ this.array[index + 1] = y;
+ this.array[index + 2] = z;
+ this.array[index + 3] = w;
+ return this;
+ }
- } //
+ onUpload(callback) {
+ this.onUploadCallback = callback;
+ return this;
+ }
- function arrayMax(array) {
- if (array.length === 0) return -Infinity;
- let max = array[0];
+ clone() {
+ return new this.constructor(this.array, this.itemSize).copy(this);
+ }
- for (let i = 1, l = array.length; i < l; ++i) {
- if (array[i] > max) max = array[i];
- }
+ toJSON() {
+ const data = {
+ itemSize: this.itemSize,
+ type: this.array.constructor.name,
+ array: Array.prototype.slice.call(this.array),
+ normalized: this.normalized
+ };
+ if (this.name !== '') data.name = this.name;
+ if (this.usage !== StaticDrawUsage) data.usage = this.usage;
+ if (this.updateRange.offset !== 0 || this.updateRange.count !== -1) data.updateRange = this.updateRange;
+ return data;
+ }
- return max;
- }
+ }
- const TYPED_ARRAYS = {
- Int8Array: Int8Array,
- Uint8Array: Uint8Array,
- Uint8ClampedArray: Uint8ClampedArray,
- Int16Array: Int16Array,
- Uint16Array: Uint16Array,
- Int32Array: Int32Array,
- Uint32Array: Uint32Array,
- Float32Array: Float32Array,
- Float64Array: Float64Array
- };
-
- function getTypedArray(type, buffer) {
- return new TYPED_ARRAYS[type](buffer);
- }
+ BufferAttribute.prototype.isBufferAttribute = true; //
- let _id = 0;
+ class Int8BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Int8Array(array), itemSize, normalized);
+ }
- const _m1 = /*@__PURE__*/new Matrix4();
+ }
- const _obj = /*@__PURE__*/new Object3D();
+ class Uint8BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Uint8Array(array), itemSize, normalized);
+ }
- const _offset = /*@__PURE__*/new Vector3();
+ }
- const _box$1 = /*@__PURE__*/new Box3();
+ class Uint8ClampedBufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Uint8ClampedArray(array), itemSize, normalized);
+ }
- const _boxMorphTargets = /*@__PURE__*/new Box3();
+ }
- const _vector$8 = /*@__PURE__*/new Vector3();
+ class Int16BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Int16Array(array), itemSize, normalized);
+ }
- class BufferGeometry extends EventDispatcher {
- constructor() {
- super();
- Object.defineProperty(this, 'id', {
- value: _id++
- });
- this.uuid = generateUUID();
- this.name = '';
- this.type = 'BufferGeometry';
- this.index = null;
- this.attributes = {};
- this.morphAttributes = {};
- this.morphTargetsRelative = false;
- this.groups = [];
- this.boundingBox = null;
- this.boundingSphere = null;
- this.drawRange = {
- start: 0,
- count: Infinity
- };
- this.userData = {};
- }
+ }
- getIndex() {
- return this.index;
- }
+ class Uint16BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Uint16Array(array), itemSize, normalized);
+ }
- setIndex(index) {
- if (Array.isArray(index)) {
- this.index = new (arrayMax(index) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(index, 1);
- } else {
- this.index = index;
}
- return this;
- }
-
- getAttribute(name) {
- return this.attributes[name];
- }
+ class Int32BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Int32Array(array), itemSize, normalized);
+ }
- setAttribute(name, attribute) {
- this.attributes[name] = attribute;
- return this;
- }
+ }
- deleteAttribute(name) {
- delete this.attributes[name];
- return this;
- }
+ class Uint32BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Uint32Array(array), itemSize, normalized);
+ }
- hasAttribute(name) {
- return this.attributes[name] !== undefined;
- }
+ }
- addGroup(start, count, materialIndex = 0) {
- this.groups.push({
- start: start,
- count: count,
- materialIndex: materialIndex
- });
- }
+ class Float16BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Uint16Array(array), itemSize, normalized);
+ }
- clearGroups() {
- this.groups = [];
- }
+ }
- setDrawRange(start, count) {
- this.drawRange.start = start;
- this.drawRange.count = count;
- }
+ Float16BufferAttribute.prototype.isFloat16BufferAttribute = true;
- applyMatrix4(matrix) {
- const position = this.attributes.position;
+ class Float32BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Float32Array(array), itemSize, normalized);
+ }
- if (position !== undefined) {
- position.applyMatrix4(matrix);
- position.needsUpdate = true;
}
- const normal = this.attributes.normal;
+ class Float64BufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized) {
+ super(new Float64Array(array), itemSize, normalized);
+ }
- if (normal !== undefined) {
- const normalMatrix = new Matrix3().getNormalMatrix(matrix);
- normal.applyNormalMatrix(normalMatrix);
- normal.needsUpdate = true;
- }
+ } //
- const tangent = this.attributes.tangent;
+ function arrayMax(array) {
+ if (array.length === 0) return -Infinity;
+ let max = array[0];
- if (tangent !== undefined) {
- tangent.transformDirection(matrix);
- tangent.needsUpdate = true;
- }
+ for (let i = 1, l = array.length; i < l; ++i) {
+ if (array[i] > max) max = array[i];
+ }
- if (this.boundingBox !== null) {
- this.computeBoundingBox();
+ return max;
}
- if (this.boundingSphere !== null) {
- this.computeBoundingSphere();
+ const TYPED_ARRAYS = {
+ Int8Array: Int8Array,
+ Uint8Array: Uint8Array,
+ Uint8ClampedArray: Uint8ClampedArray,
+ Int16Array: Int16Array,
+ Uint16Array: Uint16Array,
+ Int32Array: Int32Array,
+ Uint32Array: Uint32Array,
+ Float32Array: Float32Array,
+ Float64Array: Float64Array
+ };
+
+ function getTypedArray(type, buffer) {
+ return new TYPED_ARRAYS[type](buffer);
}
- return this;
- }
+ let _id = 0;
- applyQuaternion(q) {
- _m1.makeRotationFromQuaternion(q);
+ const _m1 = /*@__PURE__*/new Matrix4();
- this.applyMatrix4(_m1);
- return this;
- }
+ const _obj = /*@__PURE__*/new Object3D();
- rotateX(angle) {
- // rotate geometry around world x-axis
- _m1.makeRotationX(angle);
+ const _offset = /*@__PURE__*/new Vector3();
- this.applyMatrix4(_m1);
- return this;
- }
+ const _box$1 = /*@__PURE__*/new Box3();
- rotateY(angle) {
- // rotate geometry around world y-axis
- _m1.makeRotationY(angle);
+ const _boxMorphTargets = /*@__PURE__*/new Box3();
- this.applyMatrix4(_m1);
- return this;
- }
+ const _vector$8 = /*@__PURE__*/new Vector3();
+
+ class BufferGeometry extends EventDispatcher {
+ constructor() {
+ super();
+ Object.defineProperty(this, 'id', {
+ value: _id++
+ });
+ this.uuid = generateUUID();
+ this.name = '';
+ this.type = 'BufferGeometry';
+ this.index = null;
+ this.attributes = {};
+ this.morphAttributes = {};
+ this.morphTargetsRelative = false;
+ this.groups = [];
+ this.boundingBox = null;
+ this.boundingSphere = null;
+ this.drawRange = {
+ start: 0,
+ count: Infinity
+ };
+ this.userData = {};
+ }
- rotateZ(angle) {
- // rotate geometry around world z-axis
- _m1.makeRotationZ(angle);
+ getIndex() {
+ return this.index;
+ }
- this.applyMatrix4(_m1);
- return this;
- }
+ setIndex(index) {
+ if (Array.isArray(index)) {
+ this.index = new (arrayMax(index) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(index, 1);
+ } else {
+ this.index = index;
+ }
- translate(x, y, z) {
- // translate geometry
- _m1.makeTranslation(x, y, z);
+ return this;
+ }
- this.applyMatrix4(_m1);
- return this;
- }
+ getAttribute(name) {
+ return this.attributes[name];
+ }
- scale(x, y, z) {
- // scale geometry
- _m1.makeScale(x, y, z);
+ setAttribute(name, attribute) {
+ this.attributes[name] = attribute;
+ return this;
+ }
- this.applyMatrix4(_m1);
- return this;
- }
+ deleteAttribute(name) {
+ delete this.attributes[name];
+ return this;
+ }
- lookAt(vector) {
- _obj.lookAt(vector);
+ hasAttribute(name) {
+ return this.attributes[name] !== undefined;
+ }
- _obj.updateMatrix();
+ addGroup(start, count, materialIndex = 0) {
+ this.groups.push({
+ start: start,
+ count: count,
+ materialIndex: materialIndex
+ });
+ }
- this.applyMatrix4(_obj.matrix);
- return this;
- }
+ clearGroups() {
+ this.groups = [];
+ }
- center() {
- this.computeBoundingBox();
- this.boundingBox.getCenter(_offset).negate();
- this.translate(_offset.x, _offset.y, _offset.z);
- return this;
- }
+ setDrawRange(start, count) {
+ this.drawRange.start = start;
+ this.drawRange.count = count;
+ }
- setFromPoints(points) {
- const position = [];
+ applyMatrix4(matrix) {
+ const position = this.attributes.position;
- for (let i = 0, l = points.length; i < l; i++) {
- const point = points[i];
- position.push(point.x, point.y, point.z || 0);
- }
+ if (position !== undefined) {
+ position.applyMatrix4(matrix);
+ position.needsUpdate = true;
+ }
- this.setAttribute('position', new Float32BufferAttribute(position, 3));
- return this;
- }
+ const normal = this.attributes.normal;
- computeBoundingBox() {
- if (this.boundingBox === null) {
- this.boundingBox = new Box3();
- }
+ if (normal !== undefined) {
+ const normalMatrix = new Matrix3().getNormalMatrix(matrix);
+ normal.applyNormalMatrix(normalMatrix);
+ normal.needsUpdate = true;
+ }
- const position = this.attributes.position;
- const morphAttributesPosition = this.morphAttributes.position;
+ const tangent = this.attributes.tangent;
- if (position && position.isGLBufferAttribute) {
- console.error('THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".', this);
- this.boundingBox.set(new Vector3(-Infinity, -Infinity, -Infinity), new Vector3(+Infinity, +Infinity, +Infinity));
- return;
- }
+ if (tangent !== undefined) {
+ tangent.transformDirection(matrix);
+ tangent.needsUpdate = true;
+ }
- if (position !== undefined) {
- this.boundingBox.setFromBufferAttribute(position); // process morph attributes if present
+ if (this.boundingBox !== null) {
+ this.computeBoundingBox();
+ }
- if (morphAttributesPosition) {
- for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
- const morphAttribute = morphAttributesPosition[i];
+ if (this.boundingSphere !== null) {
+ this.computeBoundingSphere();
+ }
- _box$1.setFromBufferAttribute(morphAttribute);
+ return this;
+ }
- if (this.morphTargetsRelative) {
- _vector$8.addVectors(this.boundingBox.min, _box$1.min);
+ applyQuaternion(q) {
+ _m1.makeRotationFromQuaternion(q);
- this.boundingBox.expandByPoint(_vector$8);
+ this.applyMatrix4(_m1);
+ return this;
+ }
- _vector$8.addVectors(this.boundingBox.max, _box$1.max);
+ rotateX(angle) {
+ // rotate geometry around world x-axis
+ _m1.makeRotationX(angle);
- this.boundingBox.expandByPoint(_vector$8);
- } else {
- this.boundingBox.expandByPoint(_box$1.min);
- this.boundingBox.expandByPoint(_box$1.max);
- }
- }
+ this.applyMatrix4(_m1);
+ return this;
}
- } else {
- this.boundingBox.makeEmpty();
- }
- if (isNaN(this.boundingBox.min.x) || isNaN(this.boundingBox.min.y) || isNaN(this.boundingBox.min.z)) {
- console.error('THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this);
- }
- }
+ rotateY(angle) {
+ // rotate geometry around world y-axis
+ _m1.makeRotationY(angle);
- computeBoundingSphere() {
- if (this.boundingSphere === null) {
- this.boundingSphere = new Sphere();
- }
+ this.applyMatrix4(_m1);
+ return this;
+ }
- const position = this.attributes.position;
- const morphAttributesPosition = this.morphAttributes.position;
+ rotateZ(angle) {
+ // rotate geometry around world z-axis
+ _m1.makeRotationZ(angle);
- if (position && position.isGLBufferAttribute) {
- console.error('THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".', this);
- this.boundingSphere.set(new Vector3(), Infinity);
- return;
- }
+ this.applyMatrix4(_m1);
+ return this;
+ }
- if (position) {
- // first, find the center of the bounding sphere
- const center = this.boundingSphere.center;
+ translate(x, y, z) {
+ // translate geometry
+ _m1.makeTranslation(x, y, z);
- _box$1.setFromBufferAttribute(position); // process morph attributes if present
+ this.applyMatrix4(_m1);
+ return this;
+ }
+ scale(x, y, z) {
+ // scale geometry
+ _m1.makeScale(x, y, z);
- if (morphAttributesPosition) {
- for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
- const morphAttribute = morphAttributesPosition[i];
+ this.applyMatrix4(_m1);
+ return this;
+ }
- _boxMorphTargets.setFromBufferAttribute(morphAttribute);
+ lookAt(vector) {
+ _obj.lookAt(vector);
- if (this.morphTargetsRelative) {
- _vector$8.addVectors(_box$1.min, _boxMorphTargets.min);
+ _obj.updateMatrix();
- _box$1.expandByPoint(_vector$8);
+ this.applyMatrix4(_obj.matrix);
+ return this;
+ }
- _vector$8.addVectors(_box$1.max, _boxMorphTargets.max);
+ center() {
+ this.computeBoundingBox();
+ this.boundingBox.getCenter(_offset).negate();
+ this.translate(_offset.x, _offset.y, _offset.z);
+ return this;
+ }
- _box$1.expandByPoint(_vector$8);
- } else {
- _box$1.expandByPoint(_boxMorphTargets.min);
+ setFromPoints(points) {
+ const position = [];
- _box$1.expandByPoint(_boxMorphTargets.max);
- }
+ for (let i = 0, l = points.length; i < l; i++) {
+ const point = points[i];
+ position.push(point.x, point.y, point.z || 0);
}
+
+ this.setAttribute('position', new Float32BufferAttribute(position, 3));
+ return this;
}
- _box$1.getCenter(center); // second, try to find a boundingSphere with a radius smaller than the
- // boundingSphere of the boundingBox: sqrt(3) smaller in the best case
+ computeBoundingBox() {
+ if (this.boundingBox === null) {
+ this.boundingBox = new Box3();
+ }
+ const position = this.attributes.position;
+ const morphAttributesPosition = this.morphAttributes.position;
- let maxRadiusSq = 0;
+ if (position && position.isGLBufferAttribute) {
+ console.error('THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".', this);
+ this.boundingBox.set(new Vector3(-Infinity, -Infinity, -Infinity), new Vector3(+Infinity, +Infinity, +Infinity));
+ return;
+ }
- for (let i = 0, il = position.count; i < il; i++) {
- _vector$8.fromBufferAttribute(position, i);
+ if (position !== undefined) {
+ this.boundingBox.setFromBufferAttribute(position); // process morph attributes if present
- maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8));
- } // process morph attributes if present
+ if (morphAttributesPosition) {
+ for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
+ const morphAttribute = morphAttributesPosition[i];
+ _box$1.setFromBufferAttribute(morphAttribute);
- if (morphAttributesPosition) {
- for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
- const morphAttribute = morphAttributesPosition[i];
- const morphTargetsRelative = this.morphTargetsRelative;
+ if (this.morphTargetsRelative) {
+ _vector$8.addVectors(this.boundingBox.min, _box$1.min);
- for (let j = 0, jl = morphAttribute.count; j < jl; j++) {
- _vector$8.fromBufferAttribute(morphAttribute, j);
+ this.boundingBox.expandByPoint(_vector$8);
- if (morphTargetsRelative) {
- _offset.fromBufferAttribute(position, j);
+ _vector$8.addVectors(this.boundingBox.max, _box$1.max);
- _vector$8.add(_offset);
+ this.boundingBox.expandByPoint(_vector$8);
+ } else {
+ this.boundingBox.expandByPoint(_box$1.min);
+ this.boundingBox.expandByPoint(_box$1.max);
+ }
}
-
- maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8));
}
+ } else {
+ this.boundingBox.makeEmpty();
+ }
+
+ if (isNaN(this.boundingBox.min.x) || isNaN(this.boundingBox.min.y) || isNaN(this.boundingBox.min.z)) {
+ console.error('THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this);
}
}
- this.boundingSphere.radius = Math.sqrt(maxRadiusSq);
+ computeBoundingSphere() {
+ if (this.boundingSphere === null) {
+ this.boundingSphere = new Sphere();
+ }
- if (isNaN(this.boundingSphere.radius)) {
- console.error('THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this);
- }
- }
- }
+ const position = this.attributes.position;
+ const morphAttributesPosition = this.morphAttributes.position;
- computeTangents() {
- const index = this.index;
- const attributes = this.attributes; // based on http://www.terathon.com/code/tangent.html
- // (per vertex tangents)
+ if (position && position.isGLBufferAttribute) {
+ console.error('THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".', this);
+ this.boundingSphere.set(new Vector3(), Infinity);
+ return;
+ }
- if (index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined) {
- console.error('THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)');
- return;
- }
+ if (position) {
+ // first, find the center of the bounding sphere
+ const center = this.boundingSphere.center;
- const indices = index.array;
- const positions = attributes.position.array;
- const normals = attributes.normal.array;
- const uvs = attributes.uv.array;
- const nVertices = positions.length / 3;
+ _box$1.setFromBufferAttribute(position); // process morph attributes if present
- if (attributes.tangent === undefined) {
- this.setAttribute('tangent', new BufferAttribute(new Float32Array(4 * nVertices), 4));
- }
- const tangents = attributes.tangent.array;
- const tan1 = [],
- tan2 = [];
+ if (morphAttributesPosition) {
+ for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
+ const morphAttribute = morphAttributesPosition[i];
- for (let i = 0; i < nVertices; i++) {
- tan1[i] = new Vector3();
- tan2[i] = new Vector3();
- }
+ _boxMorphTargets.setFromBufferAttribute(morphAttribute);
- const vA = new Vector3(),
- vB = new Vector3(),
- vC = new Vector3(),
- uvA = new Vector2(),
- uvB = new Vector2(),
- uvC = new Vector2(),
- sdir = new Vector3(),
- tdir = new Vector3();
+ if (this.morphTargetsRelative) {
+ _vector$8.addVectors(_box$1.min, _boxMorphTargets.min);
- function handleTriangle(a, b, c) {
- vA.fromArray(positions, a * 3);
- vB.fromArray(positions, b * 3);
- vC.fromArray(positions, c * 3);
- uvA.fromArray(uvs, a * 2);
- uvB.fromArray(uvs, b * 2);
- uvC.fromArray(uvs, c * 2);
- vB.sub(vA);
- vC.sub(vA);
- uvB.sub(uvA);
- uvC.sub(uvA);
- const r = 1.0 / (uvB.x * uvC.y - uvC.x * uvB.y); // silently ignore degenerate uv triangles having coincident or colinear vertices
+ _box$1.expandByPoint(_vector$8);
- if (!isFinite(r)) return;
- sdir.copy(vB).multiplyScalar(uvC.y).addScaledVector(vC, -uvB.y).multiplyScalar(r);
- tdir.copy(vC).multiplyScalar(uvB.x).addScaledVector(vB, -uvC.x).multiplyScalar(r);
- tan1[a].add(sdir);
- tan1[b].add(sdir);
- tan1[c].add(sdir);
- tan2[a].add(tdir);
- tan2[b].add(tdir);
- tan2[c].add(tdir);
- }
+ _vector$8.addVectors(_box$1.max, _boxMorphTargets.max);
- let groups = this.groups;
+ _box$1.expandByPoint(_vector$8);
+ } else {
+ _box$1.expandByPoint(_boxMorphTargets.min);
- if (groups.length === 0) {
- groups = [{
- start: 0,
- count: indices.length
- }];
- }
+ _box$1.expandByPoint(_boxMorphTargets.max);
+ }
+ }
+ }
- for (let i = 0, il = groups.length; i < il; ++i) {
- const group = groups[i];
- const start = group.start;
- const count = group.count;
+ _box$1.getCenter(center); // second, try to find a boundingSphere with a radius smaller than the
+ // boundingSphere of the boundingBox: sqrt(3) smaller in the best case
- for (let j = start, jl = start + count; j < jl; j += 3) {
- handleTriangle(indices[j + 0], indices[j + 1], indices[j + 2]);
- }
- }
- const tmp = new Vector3(),
- tmp2 = new Vector3();
- const n = new Vector3(),
- n2 = new Vector3();
+ let maxRadiusSq = 0;
- function handleVertex(v) {
- n.fromArray(normals, v * 3);
- n2.copy(n);
- const t = tan1[v]; // Gram-Schmidt orthogonalize
+ for (let i = 0, il = position.count; i < il; i++) {
+ _vector$8.fromBufferAttribute(position, i);
- tmp.copy(t);
- tmp.sub(n.multiplyScalar(n.dot(t))).normalize(); // Calculate handedness
+ maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8));
+ } // process morph attributes if present
- tmp2.crossVectors(n2, t);
- const test = tmp2.dot(tan2[v]);
- const w = test < 0.0 ? -1.0 : 1.0;
- tangents[v * 4] = tmp.x;
- tangents[v * 4 + 1] = tmp.y;
- tangents[v * 4 + 2] = tmp.z;
- tangents[v * 4 + 3] = w;
- }
- for (let i = 0, il = groups.length; i < il; ++i) {
- const group = groups[i];
- const start = group.start;
- const count = group.count;
+ if (morphAttributesPosition) {
+ for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
+ const morphAttribute = morphAttributesPosition[i];
+ const morphTargetsRelative = this.morphTargetsRelative;
+
+ for (let j = 0, jl = morphAttribute.count; j < jl; j++) {
+ _vector$8.fromBufferAttribute(morphAttribute, j);
+
+ if (morphTargetsRelative) {
+ _offset.fromBufferAttribute(position, j);
+
+ _vector$8.add(_offset);
+ }
+
+ maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8));
+ }
+ }
+ }
+
+ this.boundingSphere.radius = Math.sqrt(maxRadiusSq);
- for (let j = start, jl = start + count; j < jl; j += 3) {
- handleVertex(indices[j + 0]);
- handleVertex(indices[j + 1]);
- handleVertex(indices[j + 2]);
+ if (isNaN(this.boundingSphere.radius)) {
+ console.error('THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this);
+ }
+ }
}
- }
- }
- computeVertexNormals() {
- const index = this.index;
- const positionAttribute = this.getAttribute('position');
+ computeTangents() {
+ const index = this.index;
+ const attributes = this.attributes; // based on http://www.terathon.com/code/tangent.html
+ // (per vertex tangents)
- if (positionAttribute !== undefined) {
- let normalAttribute = this.getAttribute('normal');
+ if (index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined) {
+ console.error('THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)');
+ return;
+ }
- if (normalAttribute === undefined) {
- normalAttribute = new BufferAttribute(new Float32Array(positionAttribute.count * 3), 3);
- this.setAttribute('normal', normalAttribute);
- } else {
- // reset existing normals to zero
- for (let i = 0, il = normalAttribute.count; i < il; i++) {
- normalAttribute.setXYZ(i, 0, 0, 0);
+ const indices = index.array;
+ const positions = attributes.position.array;
+ const normals = attributes.normal.array;
+ const uvs = attributes.uv.array;
+ const nVertices = positions.length / 3;
+
+ if (attributes.tangent === undefined) {
+ this.setAttribute('tangent', new BufferAttribute(new Float32Array(4 * nVertices), 4));
+ }
+
+ const tangents = attributes.tangent.array;
+ const tan1 = [],
+ tan2 = [];
+
+ for (let i = 0; i < nVertices; i++) {
+ tan1[i] = new Vector3();
+ tan2[i] = new Vector3();
+ }
+
+ const vA = new Vector3(),
+ vB = new Vector3(),
+ vC = new Vector3(),
+ uvA = new Vector2(),
+ uvB = new Vector2(),
+ uvC = new Vector2(),
+ sdir = new Vector3(),
+ tdir = new Vector3();
+
+ function handleTriangle(a, b, c) {
+ vA.fromArray(positions, a * 3);
+ vB.fromArray(positions, b * 3);
+ vC.fromArray(positions, c * 3);
+ uvA.fromArray(uvs, a * 2);
+ uvB.fromArray(uvs, b * 2);
+ uvC.fromArray(uvs, c * 2);
+ vB.sub(vA);
+ vC.sub(vA);
+ uvB.sub(uvA);
+ uvC.sub(uvA);
+ const r = 1.0 / (uvB.x * uvC.y - uvC.x * uvB.y); // silently ignore degenerate uv triangles having coincident or colinear vertices
+
+ if (!isFinite(r)) return;
+ sdir.copy(vB).multiplyScalar(uvC.y).addScaledVector(vC, -uvB.y).multiplyScalar(r);
+ tdir.copy(vC).multiplyScalar(uvB.x).addScaledVector(vB, -uvC.x).multiplyScalar(r);
+ tan1[a].add(sdir);
+ tan1[b].add(sdir);
+ tan1[c].add(sdir);
+ tan2[a].add(tdir);
+ tan2[b].add(tdir);
+ tan2[c].add(tdir);
+ }
+
+ let groups = this.groups;
+
+ if (groups.length === 0) {
+ groups = [{
+ start: 0,
+ count: indices.length
+ }];
+ }
+
+ for (let i = 0, il = groups.length; i < il; ++i) {
+ const group = groups[i];
+ const start = group.start;
+ const count = group.count;
+
+ for (let j = start, jl = start + count; j < jl; j += 3) {
+ handleTriangle(indices[j + 0], indices[j + 1], indices[j + 2]);
+ }
+ }
+
+ const tmp = new Vector3(),
+ tmp2 = new Vector3();
+ const n = new Vector3(),
+ n2 = new Vector3();
+
+ function handleVertex(v) {
+ n.fromArray(normals, v * 3);
+ n2.copy(n);
+ const t = tan1[v]; // Gram-Schmidt orthogonalize
+
+ tmp.copy(t);
+ tmp.sub(n.multiplyScalar(n.dot(t))).normalize(); // Calculate handedness
+
+ tmp2.crossVectors(n2, t);
+ const test = tmp2.dot(tan2[v]);
+ const w = test < 0.0 ? -1.0 : 1.0;
+ tangents[v * 4] = tmp.x;
+ tangents[v * 4 + 1] = tmp.y;
+ tangents[v * 4 + 2] = tmp.z;
+ tangents[v * 4 + 3] = w;
+ }
+
+ for (let i = 0, il = groups.length; i < il; ++i) {
+ const group = groups[i];
+ const start = group.start;
+ const count = group.count;
+
+ for (let j = start, jl = start + count; j < jl; j += 3) {
+ handleVertex(indices[j + 0]);
+ handleVertex(indices[j + 1]);
+ handleVertex(indices[j + 2]);
+ }
}
}
- const pA = new Vector3(),
+ computeVertexNormals() {
+ const index = this.index;
+ const positionAttribute = this.getAttribute('position');
+
+ if (positionAttribute !== undefined) {
+ let normalAttribute = this.getAttribute('normal');
+
+ if (normalAttribute === undefined) {
+ normalAttribute = new BufferAttribute(new Float32Array(positionAttribute.count * 3), 3);
+ this.setAttribute('normal', normalAttribute);
+ } else {
+ // reset existing normals to zero
+ for (let i = 0, il = normalAttribute.count; i < il; i++) {
+ normalAttribute.setXYZ(i, 0, 0, 0);
+ }
+ }
+
+ const pA = new Vector3(),
pB = new Vector3(),
pC = new Vector3();
- const nA = new Vector3(),
+ const nA = new Vector3(),
nB = new Vector3(),
nC = new Vector3();
- const cb = new Vector3(),
+ const cb = new Vector3(),
ab = new Vector3(); // indexed elements
- if (index) {
- for (let i = 0, il = index.count; i < il; i += 3) {
- const vA = index.getX(i + 0);
- const vB = index.getX(i + 1);
- const vC = index.getX(i + 2);
- pA.fromBufferAttribute(positionAttribute, vA);
- pB.fromBufferAttribute(positionAttribute, vB);
- pC.fromBufferAttribute(positionAttribute, vC);
- cb.subVectors(pC, pB);
- ab.subVectors(pA, pB);
- cb.cross(ab);
- nA.fromBufferAttribute(normalAttribute, vA);
- nB.fromBufferAttribute(normalAttribute, vB);
- nC.fromBufferAttribute(normalAttribute, vC);
- nA.add(cb);
- nB.add(cb);
- nC.add(cb);
- normalAttribute.setXYZ(vA, nA.x, nA.y, nA.z);
- normalAttribute.setXYZ(vB, nB.x, nB.y, nB.z);
- normalAttribute.setXYZ(vC, nC.x, nC.y, nC.z);
- }
- } else {
- // non-indexed elements (unconnected triangle soup)
- for (let i = 0, il = positionAttribute.count; i < il; i += 3) {
- pA.fromBufferAttribute(positionAttribute, i + 0);
- pB.fromBufferAttribute(positionAttribute, i + 1);
- pC.fromBufferAttribute(positionAttribute, i + 2);
- cb.subVectors(pC, pB);
- ab.subVectors(pA, pB);
- cb.cross(ab);
- normalAttribute.setXYZ(i + 0, cb.x, cb.y, cb.z);
- normalAttribute.setXYZ(i + 1, cb.x, cb.y, cb.z);
- normalAttribute.setXYZ(i + 2, cb.x, cb.y, cb.z);
+ if (index) {
+ for (let i = 0, il = index.count; i < il; i += 3) {
+ const vA = index.getX(i + 0);
+ const vB = index.getX(i + 1);
+ const vC = index.getX(i + 2);
+ pA.fromBufferAttribute(positionAttribute, vA);
+ pB.fromBufferAttribute(positionAttribute, vB);
+ pC.fromBufferAttribute(positionAttribute, vC);
+ cb.subVectors(pC, pB);
+ ab.subVectors(pA, pB);
+ cb.cross(ab);
+ nA.fromBufferAttribute(normalAttribute, vA);
+ nB.fromBufferAttribute(normalAttribute, vB);
+ nC.fromBufferAttribute(normalAttribute, vC);
+ nA.add(cb);
+ nB.add(cb);
+ nC.add(cb);
+ normalAttribute.setXYZ(vA, nA.x, nA.y, nA.z);
+ normalAttribute.setXYZ(vB, nB.x, nB.y, nB.z);
+ normalAttribute.setXYZ(vC, nC.x, nC.y, nC.z);
+ }
+ } else {
+ // non-indexed elements (unconnected triangle soup)
+ for (let i = 0, il = positionAttribute.count; i < il; i += 3) {
+ pA.fromBufferAttribute(positionAttribute, i + 0);
+ pB.fromBufferAttribute(positionAttribute, i + 1);
+ pC.fromBufferAttribute(positionAttribute, i + 2);
+ cb.subVectors(pC, pB);
+ ab.subVectors(pA, pB);
+ cb.cross(ab);
+ normalAttribute.setXYZ(i + 0, cb.x, cb.y, cb.z);
+ normalAttribute.setXYZ(i + 1, cb.x, cb.y, cb.z);
+ normalAttribute.setXYZ(i + 2, cb.x, cb.y, cb.z);
+ }
+ }
+
+ this.normalizeNormals();
+ normalAttribute.needsUpdate = true;
}
}
- this.normalizeNormals();
- normalAttribute.needsUpdate = true;
- }
- }
+ merge(geometry, offset) {
+ if (!(geometry && geometry.isBufferGeometry)) {
+ console.error('THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry);
+ return;
+ }
- merge(geometry, offset) {
- if (!(geometry && geometry.isBufferGeometry)) {
- console.error('THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry);
- return;
- }
+ if (offset === undefined) {
+ offset = 0;
+ console.warn('THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.');
+ }
- if (offset === undefined) {
- offset = 0;
- console.warn('THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.');
- }
+ const attributes = this.attributes;
- const attributes = this.attributes;
+ for (const key in attributes) {
+ if (geometry.attributes[key] === undefined) continue;
+ const attribute1 = attributes[key];
+ const attributeArray1 = attribute1.array;
+ const attribute2 = geometry.attributes[key];
+ const attributeArray2 = attribute2.array;
+ const attributeOffset = attribute2.itemSize * offset;
+ const length = Math.min(attributeArray2.length, attributeArray1.length - attributeOffset);
- for (const key in attributes) {
- if (geometry.attributes[key] === undefined) continue;
- const attribute1 = attributes[key];
- const attributeArray1 = attribute1.array;
- const attribute2 = geometry.attributes[key];
- const attributeArray2 = attribute2.array;
- const attributeOffset = attribute2.itemSize * offset;
- const length = Math.min(attributeArray2.length, attributeArray1.length - attributeOffset);
+ for (let i = 0, j = attributeOffset; i < length; i++, j++) {
+ attributeArray1[j] = attributeArray2[i];
+ }
+ }
- for (let i = 0, j = attributeOffset; i < length; i++, j++) {
- attributeArray1[j] = attributeArray2[i];
+ return this;
}
- }
-
- return this;
- }
- normalizeNormals() {
- const normals = this.attributes.normal;
+ normalizeNormals() {
+ const normals = this.attributes.normal;
- for (let i = 0, il = normals.count; i < il; i++) {
- _vector$8.fromBufferAttribute(normals, i);
-
- _vector$8.normalize();
-
- normals.setXYZ(i, _vector$8.x, _vector$8.y, _vector$8.z);
- }
- }
+ for (let i = 0, il = normals.count; i < il; i++) {
+ _vector$8.fromBufferAttribute(normals, i);
- toNonIndexed() {
- function convertBufferAttribute(attribute, indices) {
- const array = attribute.array;
- const itemSize = attribute.itemSize;
- const normalized = attribute.normalized;
- const array2 = new array.constructor(indices.length * itemSize);
- let index = 0,
- index2 = 0;
-
- for (let i = 0, l = indices.length; i < l; i++) {
- if (attribute.isInterleavedBufferAttribute) {
- index = indices[i] * attribute.data.stride + attribute.offset;
- } else {
- index = indices[i] * itemSize;
- }
+ _vector$8.normalize();
- for (let j = 0; j < itemSize; j++) {
- array2[index2++] = array[index++];
+ normals.setXYZ(i, _vector$8.x, _vector$8.y, _vector$8.z);
}
}
- return new BufferAttribute(array2, itemSize, normalized);
- } //
+ toNonIndexed() {
+ function convertBufferAttribute(attribute, indices) {
+ const array = attribute.array;
+ const itemSize = attribute.itemSize;
+ const normalized = attribute.normalized;
+ const array2 = new array.constructor(indices.length * itemSize);
+ let index = 0,
+ index2 = 0;
+ for (let i = 0, l = indices.length; i < l; i++) {
+ if (attribute.isInterleavedBufferAttribute) {
+ index = indices[i] * attribute.data.stride + attribute.offset;
+ } else {
+ index = indices[i] * itemSize;
+ }
- if (this.index === null) {
- console.warn('THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.');
- return this;
- }
+ for (let j = 0; j < itemSize; j++) {
+ array2[index2++] = array[index++];
+ }
+ }
- const geometry2 = new BufferGeometry();
- const indices = this.index.array;
- const attributes = this.attributes; // attributes
+ return new BufferAttribute(array2, itemSize, normalized);
+ } //
- for (const name in attributes) {
- const attribute = attributes[name];
- const newAttribute = convertBufferAttribute(attribute, indices);
- geometry2.setAttribute(name, newAttribute);
- } // morph attributes
+ if (this.index === null) {
+ console.warn('THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.');
+ return this;
+ }
- const morphAttributes = this.morphAttributes;
+ const geometry2 = new BufferGeometry();
+ const indices = this.index.array;
+ const attributes = this.attributes; // attributes
- for (const name in morphAttributes) {
- const morphArray = [];
- const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes
+ for (const name in attributes) {
+ const attribute = attributes[name];
+ const newAttribute = convertBufferAttribute(attribute, indices);
+ geometry2.setAttribute(name, newAttribute);
+ } // morph attributes
- for (let i = 0, il = morphAttribute.length; i < il; i++) {
- const attribute = morphAttribute[i];
- const newAttribute = convertBufferAttribute(attribute, indices);
- morphArray.push(newAttribute);
- }
- geometry2.morphAttributes[name] = morphArray;
- }
+ const morphAttributes = this.morphAttributes;
- geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups
+ for (const name in morphAttributes) {
+ const morphArray = [];
+ const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes
- const groups = this.groups;
+ for (let i = 0, il = morphAttribute.length; i < il; i++) {
+ const attribute = morphAttribute[i];
+ const newAttribute = convertBufferAttribute(attribute, indices);
+ morphArray.push(newAttribute);
+ }
- for (let i = 0, l = groups.length; i < l; i++) {
- const group = groups[i];
- geometry2.addGroup(group.start, group.count, group.materialIndex);
- }
+ geometry2.morphAttributes[name] = morphArray;
+ }
- return geometry2;
- }
+ geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups
- toJSON() {
- const data = {
- metadata: {
- version: 4.5,
- type: 'BufferGeometry',
- generator: 'BufferGeometry.toJSON'
+ const groups = this.groups;
+
+ for (let i = 0, l = groups.length; i < l; i++) {
+ const group = groups[i];
+ geometry2.addGroup(group.start, group.count, group.materialIndex);
+ }
+
+ return geometry2;
}
- }; // standard BufferGeometry serialization
- data.uuid = this.uuid;
- data.type = this.type;
- if (this.name !== '') data.name = this.name;
- if (Object.keys(this.userData).length > 0) data.userData = this.userData;
+ toJSON() {
+ const data = {
+ metadata: {
+ version: 4.5,
+ type: 'BufferGeometry',
+ generator: 'BufferGeometry.toJSON'
+ }
+ }; // standard BufferGeometry serialization
- if (this.parameters !== undefined) {
- const parameters = this.parameters;
+ data.uuid = this.uuid;
+ data.type = this.type;
+ if (this.name !== '') data.name = this.name;
+ if (Object.keys(this.userData).length > 0) data.userData = this.userData;
- for (const key in parameters) {
- if (parameters[key] !== undefined) data[key] = parameters[key];
- }
+ if (this.parameters !== undefined) {
+ const parameters = this.parameters;
- return data;
- } // for simplicity the code assumes attributes are not shared across geometries, see #15811
+ for (const key in parameters) {
+ if (parameters[key] !== undefined) data[key] = parameters[key];
+ }
+ return data;
+ } // for simplicity the code assumes attributes are not shared across geometries, see #15811
- data.data = {
- attributes: {}
- };
- const index = this.index;
- if (index !== null) {
- data.data.index = {
- type: index.array.constructor.name,
- array: Array.prototype.slice.call(index.array)
- };
- }
+ data.data = {
+ attributes: {}
+ };
+ const index = this.index;
- const attributes = this.attributes;
+ if (index !== null) {
+ data.data.index = {
+ type: index.array.constructor.name,
+ array: Array.prototype.slice.call(index.array)
+ };
+ }
- for (const key in attributes) {
- const attribute = attributes[key];
- data.data.attributes[key] = attribute.toJSON(data.data);
- }
+ const attributes = this.attributes;
- const morphAttributes = {};
- let hasMorphAttributes = false;
+ for (const key in attributes) {
+ const attribute = attributes[key];
+ data.data.attributes[key] = attribute.toJSON(data.data);
+ }
- for (const key in this.morphAttributes) {
- const attributeArray = this.morphAttributes[key];
- const array = [];
+ const morphAttributes = {};
+ let hasMorphAttributes = false;
- for (let i = 0, il = attributeArray.length; i < il; i++) {
- const attribute = attributeArray[i];
- array.push(attribute.toJSON(data.data));
- }
+ for (const key in this.morphAttributes) {
+ const attributeArray = this.morphAttributes[key];
+ const array = [];
- if (array.length > 0) {
- morphAttributes[key] = array;
- hasMorphAttributes = true;
- }
- }
+ for (let i = 0, il = attributeArray.length; i < il; i++) {
+ const attribute = attributeArray[i];
+ array.push(attribute.toJSON(data.data));
+ }
- if (hasMorphAttributes) {
- data.data.morphAttributes = morphAttributes;
- data.data.morphTargetsRelative = this.morphTargetsRelative;
- }
+ if (array.length > 0) {
+ morphAttributes[key] = array;
+ hasMorphAttributes = true;
+ }
+ }
- const groups = this.groups;
+ if (hasMorphAttributes) {
+ data.data.morphAttributes = morphAttributes;
+ data.data.morphTargetsRelative = this.morphTargetsRelative;
+ }
- if (groups.length > 0) {
- data.data.groups = JSON.parse(JSON.stringify(groups));
- }
+ const groups = this.groups;
- const boundingSphere = this.boundingSphere;
+ if (groups.length > 0) {
+ data.data.groups = JSON.parse(JSON.stringify(groups));
+ }
- if (boundingSphere !== null) {
- data.data.boundingSphere = {
- center: boundingSphere.center.toArray(),
- radius: boundingSphere.radius
- };
- }
+ const boundingSphere = this.boundingSphere;
- return data;
- }
+ if (boundingSphere !== null) {
+ data.data.boundingSphere = {
+ center: boundingSphere.center.toArray(),
+ radius: boundingSphere.radius
+ };
+ }
- clone() {
- /*
+ return data;
+ }
+
+ clone() {
+ /*
// Handle primitives
const parameters = this.parameters;
if ( parameters !== undefined ) {
}
return new this.constructor().copy( this );
*/
- return new BufferGeometry().copy(this);
- }
+ return new BufferGeometry().copy(this);
+ }
- copy(source) {
- // reset
- this.index = null;
- this.attributes = {};
- this.morphAttributes = {};
- this.groups = [];
- this.boundingBox = null;
- this.boundingSphere = null; // used for storing cloned, shared data
+ copy(source) {
+ // reset
+ this.index = null;
+ this.attributes = {};
+ this.morphAttributes = {};
+ this.groups = [];
+ this.boundingBox = null;
+ this.boundingSphere = null; // used for storing cloned, shared data
- const data = {}; // name
+ const data = {}; // name
- this.name = source.name; // index
+ this.name = source.name; // index
- const index = source.index;
+ const index = source.index;
- if (index !== null) {
- this.setIndex(index.clone(data));
- } // attributes
+ if (index !== null) {
+ this.setIndex(index.clone(data));
+ } // attributes
- const attributes = source.attributes;
+ const attributes = source.attributes;
- for (const name in attributes) {
- const attribute = attributes[name];
- this.setAttribute(name, attribute.clone(data));
- } // morph attributes
+ for (const name in attributes) {
+ const attribute = attributes[name];
+ this.setAttribute(name, attribute.clone(data));
+ } // morph attributes
- const morphAttributes = source.morphAttributes;
+ const morphAttributes = source.morphAttributes;
- for (const name in morphAttributes) {
- const array = [];
- const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes
+ for (const name in morphAttributes) {
+ const array = [];
+ const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes
- for (let i = 0, l = morphAttribute.length; i < l; i++) {
- array.push(morphAttribute[i].clone(data));
- }
+ for (let i = 0, l = morphAttribute.length; i < l; i++) {
+ array.push(morphAttribute[i].clone(data));
+ }
- this.morphAttributes[name] = array;
- }
+ this.morphAttributes[name] = array;
+ }
- this.morphTargetsRelative = source.morphTargetsRelative; // groups
+ this.morphTargetsRelative = source.morphTargetsRelative; // groups
- const groups = source.groups;
+ const groups = source.groups;
- for (let i = 0, l = groups.length; i < l; i++) {
- const group = groups[i];
- this.addGroup(group.start, group.count, group.materialIndex);
- } // bounding box
+ for (let i = 0, l = groups.length; i < l; i++) {
+ const group = groups[i];
+ this.addGroup(group.start, group.count, group.materialIndex);
+ } // bounding box
- const boundingBox = source.boundingBox;
+ const boundingBox = source.boundingBox;
- if (boundingBox !== null) {
- this.boundingBox = boundingBox.clone();
- } // bounding sphere
+ if (boundingBox !== null) {
+ this.boundingBox = boundingBox.clone();
+ } // bounding sphere
- const boundingSphere = source.boundingSphere;
+ const boundingSphere = source.boundingSphere;
- if (boundingSphere !== null) {
- this.boundingSphere = boundingSphere.clone();
- } // draw range
+ if (boundingSphere !== null) {
+ this.boundingSphere = boundingSphere.clone();
+ } // draw range
- this.drawRange.start = source.drawRange.start;
- this.drawRange.count = source.drawRange.count; // user data
+ this.drawRange.start = source.drawRange.start;
+ this.drawRange.count = source.drawRange.count; // user data
- this.userData = source.userData;
- return this;
- }
+ this.userData = source.userData;
+ return this;
+ }
- dispose() {
- this.dispatchEvent({
- type: 'dispose'
- });
- }
+ dispose() {
+ this.dispatchEvent({
+ type: 'dispose'
+ });
+ }
- }
+ }
- BufferGeometry.prototype.isBufferGeometry = true;
+ BufferGeometry.prototype.isBufferGeometry = true;
- const _inverseMatrix$2 = /*@__PURE__*/new Matrix4();
+ const _inverseMatrix$2 = /*@__PURE__*/new Matrix4();
- const _ray$2 = /*@__PURE__*/new Ray();
+ const _ray$2 = /*@__PURE__*/new Ray();
- const _sphere$3 = /*@__PURE__*/new Sphere();
+ const _sphere$3 = /*@__PURE__*/new Sphere();
- const _vA$1 = /*@__PURE__*/new Vector3();
+ const _vA$1 = /*@__PURE__*/new Vector3();
- const _vB$1 = /*@__PURE__*/new Vector3();
+ const _vB$1 = /*@__PURE__*/new Vector3();
- const _vC$1 = /*@__PURE__*/new Vector3();
+ const _vC$1 = /*@__PURE__*/new Vector3();
- const _tempA = /*@__PURE__*/new Vector3();
+ const _tempA = /*@__PURE__*/new Vector3();
- const _tempB = /*@__PURE__*/new Vector3();
+ const _tempB = /*@__PURE__*/new Vector3();
- const _tempC = /*@__PURE__*/new Vector3();
+ const _tempC = /*@__PURE__*/new Vector3();
- const _morphA = /*@__PURE__*/new Vector3();
+ const _morphA = /*@__PURE__*/new Vector3();
- const _morphB = /*@__PURE__*/new Vector3();
+ const _morphB = /*@__PURE__*/new Vector3();
- const _morphC = /*@__PURE__*/new Vector3();
+ const _morphC = /*@__PURE__*/new Vector3();
- const _uvA$1 = /*@__PURE__*/new Vector2();
+ const _uvA$1 = /*@__PURE__*/new Vector2();
- const _uvB$1 = /*@__PURE__*/new Vector2();
+ const _uvB$1 = /*@__PURE__*/new Vector2();
- const _uvC$1 = /*@__PURE__*/new Vector2();
+ const _uvC$1 = /*@__PURE__*/new Vector2();
- const _intersectionPoint = /*@__PURE__*/new Vector3();
+ const _intersectionPoint = /*@__PURE__*/new Vector3();
- const _intersectionPointWorld = /*@__PURE__*/new Vector3();
+ const _intersectionPointWorld = /*@__PURE__*/new Vector3();
- class Mesh extends Object3D {
- constructor(geometry = new BufferGeometry(), material = new MeshBasicMaterial()) {
- super();
- this.type = 'Mesh';
- this.geometry = geometry;
- this.material = material;
- this.updateMorphTargets();
- }
+ class Mesh extends Object3D {
+ constructor(geometry = new BufferGeometry(), material = new MeshBasicMaterial()) {
+ super();
+ this.type = 'Mesh';
+ this.geometry = geometry;
+ this.material = material;
+ this.updateMorphTargets();
+ }
- copy(source) {
- super.copy(source);
+ copy(source) {
+ super.copy(source);
- if (source.morphTargetInfluences !== undefined) {
- this.morphTargetInfluences = source.morphTargetInfluences.slice();
- }
+ if (source.morphTargetInfluences !== undefined) {
+ this.morphTargetInfluences = source.morphTargetInfluences.slice();
+ }
- if (source.morphTargetDictionary !== undefined) {
- this.morphTargetDictionary = Object.assign({}, source.morphTargetDictionary);
- }
+ if (source.morphTargetDictionary !== undefined) {
+ this.morphTargetDictionary = Object.assign({}, source.morphTargetDictionary);
+ }
- this.material = source.material;
- this.geometry = source.geometry;
- return this;
- }
+ this.material = source.material;
+ this.geometry = source.geometry;
+ return this;
+ }
- updateMorphTargets() {
- const geometry = this.geometry;
+ updateMorphTargets() {
+ const geometry = this.geometry;
- if (geometry.isBufferGeometry) {
- const morphAttributes = geometry.morphAttributes;
- const keys = Object.keys(morphAttributes);
+ if (geometry.isBufferGeometry) {
+ const morphAttributes = geometry.morphAttributes;
+ const keys = Object.keys(morphAttributes);
- if (keys.length > 0) {
- const morphAttribute = morphAttributes[keys[0]];
+ if (keys.length > 0) {
+ const morphAttribute = morphAttributes[keys[0]];
- if (morphAttribute !== undefined) {
- this.morphTargetInfluences = [];
- this.morphTargetDictionary = {};
+ if (morphAttribute !== undefined) {
+ this.morphTargetInfluences = [];
+ this.morphTargetDictionary = {};
- for (let m = 0, ml = morphAttribute.length; m < ml; m++) {
- const name = morphAttribute[m].name || String(m);
- this.morphTargetInfluences.push(0);
- this.morphTargetDictionary[name] = m;
+ for (let m = 0, ml = morphAttribute.length; m < ml; m++) {
+ const name = morphAttribute[m].name || String(m);
+ this.morphTargetInfluences.push(0);
+ this.morphTargetDictionary[name] = m;
+ }
+ }
}
- }
- }
- } else {
- const morphTargets = geometry.morphTargets;
+ } else {
+ const morphTargets = geometry.morphTargets;
- if (morphTargets !== undefined && morphTargets.length > 0) {
- console.error('THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
+ if (morphTargets !== undefined && morphTargets.length > 0) {
+ console.error('THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
+ }
+ }
}
- }
- }
-
- raycast(raycaster, intersects) {
- const geometry = this.geometry;
- const material = this.material;
- const matrixWorld = this.matrixWorld;
- if (material === undefined) return; // Checking boundingSphere distance to ray
- if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
+ raycast(raycaster, intersects) {
+ const geometry = this.geometry;
+ const material = this.material;
+ const matrixWorld = this.matrixWorld;
+ if (material === undefined) return; // Checking boundingSphere distance to ray
- _sphere$3.copy(geometry.boundingSphere);
+ if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
- _sphere$3.applyMatrix4(matrixWorld);
+ _sphere$3.copy(geometry.boundingSphere);
- if (raycaster.ray.intersectsSphere(_sphere$3) === false) return; //
+ _sphere$3.applyMatrix4(matrixWorld);
- _inverseMatrix$2.copy(matrixWorld).invert();
+ if (raycaster.ray.intersectsSphere(_sphere$3) === false) return; //
- _ray$2.copy(raycaster.ray).applyMatrix4(_inverseMatrix$2); // Check boundingBox before continuing
+ _inverseMatrix$2.copy(matrixWorld).invert();
+ _ray$2.copy(raycaster.ray).applyMatrix4(_inverseMatrix$2); // Check boundingBox before continuing
- if (geometry.boundingBox !== null) {
- if (_ray$2.intersectsBox(geometry.boundingBox) === false) return;
- }
- let intersection;
+ if (geometry.boundingBox !== null) {
+ if (_ray$2.intersectsBox(geometry.boundingBox) === false) return;
+ }
- if (geometry.isBufferGeometry) {
- const index = geometry.index;
- const position = geometry.attributes.position;
- const morphPosition = geometry.morphAttributes.position;
- const morphTargetsRelative = geometry.morphTargetsRelative;
- const uv = geometry.attributes.uv;
- const uv2 = geometry.attributes.uv2;
- const groups = geometry.groups;
- const drawRange = geometry.drawRange;
+ let intersection;
- if (index !== null) {
- // indexed buffer geometry
- if (Array.isArray(material)) {
- for (let i = 0, il = groups.length; i < il; i++) {
- const group = groups[i];
- const groupMaterial = material[group.materialIndex];
- const start = Math.max(group.start, drawRange.start);
- const end = Math.min(group.start + group.count, drawRange.start + drawRange.count);
+ if (geometry.isBufferGeometry) {
+ const index = geometry.index;
+ const position = geometry.attributes.position;
+ const morphPosition = geometry.morphAttributes.position;
+ const morphTargetsRelative = geometry.morphTargetsRelative;
+ const uv = geometry.attributes.uv;
+ const uv2 = geometry.attributes.uv2;
+ const groups = geometry.groups;
+ const drawRange = geometry.drawRange;
+
+ if (index !== null) {
+ // indexed buffer geometry
+ if (Array.isArray(material)) {
+ for (let i = 0, il = groups.length; i < il; i++) {
+ const group = groups[i];
+ const groupMaterial = material[group.materialIndex];
+ const start = Math.max(group.start, drawRange.start);
+ const end = Math.min(group.start + group.count, drawRange.start + drawRange.count);
+
+ for (let j = start, jl = end; j < jl; j += 3) {
+ const a = index.getX(j);
+ const b = index.getX(j + 1);
+ const c = index.getX(j + 2);
+ intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
+
+ if (intersection) {
+ intersection.faceIndex = Math.floor(j / 3); // triangle number in indexed buffer semantics
+
+ intersection.face.materialIndex = group.materialIndex;
+ intersects.push(intersection);
+ }
+ }
+ }
+ } else {
+ const start = Math.max(0, drawRange.start);
+ const end = Math.min(index.count, drawRange.start + drawRange.count);
- for (let j = start, jl = end; j < jl; j += 3) {
- const a = index.getX(j);
- const b = index.getX(j + 1);
- const c = index.getX(j + 2);
- intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
+ for (let i = start, il = end; i < il; i += 3) {
+ const a = index.getX(i);
+ const b = index.getX(i + 1);
+ const c = index.getX(i + 2);
+ intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
- if (intersection) {
- intersection.faceIndex = Math.floor(j / 3); // triangle number in indexed buffer semantics
+ if (intersection) {
+ intersection.faceIndex = Math.floor(i / 3); // triangle number in indexed buffer semantics
- intersection.face.materialIndex = group.materialIndex;
- intersects.push(intersection);
+ intersects.push(intersection);
+ }
}
}
- }
- } else {
- const start = Math.max(0, drawRange.start);
- const end = Math.min(index.count, drawRange.start + drawRange.count);
+ } else if (position !== undefined) {
+ // non-indexed buffer geometry
+ if (Array.isArray(material)) {
+ for (let i = 0, il = groups.length; i < il; i++) {
+ const group = groups[i];
+ const groupMaterial = material[group.materialIndex];
+ const start = Math.max(group.start, drawRange.start);
+ const end = Math.min(group.start + group.count, drawRange.start + drawRange.count);
+
+ for (let j = start, jl = end; j < jl; j += 3) {
+ const a = j;
+ const b = j + 1;
+ const c = j + 2;
+ intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
+
+ if (intersection) {
+ intersection.faceIndex = Math.floor(j / 3); // triangle number in non-indexed buffer semantics
+
+ intersection.face.materialIndex = group.materialIndex;
+ intersects.push(intersection);
+ }
+ }
+ }
+ } else {
+ const start = Math.max(0, drawRange.start);
+ const end = Math.min(position.count, drawRange.start + drawRange.count);
- for (let i = start, il = end; i < il; i += 3) {
- const a = index.getX(i);
- const b = index.getX(i + 1);
- const c = index.getX(i + 2);
- intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
+ for (let i = start, il = end; i < il; i += 3) {
+ const a = i;
+ const b = i + 1;
+ const c = i + 2;
+ intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
- if (intersection) {
- intersection.faceIndex = Math.floor(i / 3); // triangle number in indexed buffer semantics
+ if (intersection) {
+ intersection.faceIndex = Math.floor(i / 3); // triangle number in non-indexed buffer semantics
- intersects.push(intersection);
+ intersects.push(intersection);
+ }
+ }
}
}
+ } else if (geometry.isGeometry) {
+ console.error('THREE.Mesh.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
}
- } else if (position !== undefined) {
- // non-indexed buffer geometry
- if (Array.isArray(material)) {
- for (let i = 0, il = groups.length; i < il; i++) {
- const group = groups[i];
- const groupMaterial = material[group.materialIndex];
- const start = Math.max(group.start, drawRange.start);
- const end = Math.min(group.start + group.count, drawRange.start + drawRange.count);
-
- for (let j = start, jl = end; j < jl; j += 3) {
- const a = j;
- const b = j + 1;
- const c = j + 2;
- intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
-
- if (intersection) {
- intersection.faceIndex = Math.floor(j / 3); // triangle number in non-indexed buffer semantics
+ }
- intersection.face.materialIndex = group.materialIndex;
- intersects.push(intersection);
- }
- }
- }
- } else {
- const start = Math.max(0, drawRange.start);
- const end = Math.min(position.count, drawRange.start + drawRange.count);
+ }
- for (let i = start, il = end; i < il; i += 3) {
- const a = i;
- const b = i + 1;
- const c = i + 2;
- intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
+ Mesh.prototype.isMesh = true;
- if (intersection) {
- intersection.faceIndex = Math.floor(i / 3); // triangle number in non-indexed buffer semantics
+ function checkIntersection(object, material, raycaster, ray, pA, pB, pC, point) {
+ let intersect;
- intersects.push(intersection);
- }
- }
- }
+ if (material.side === BackSide) {
+ intersect = ray.intersectTriangle(pC, pB, pA, true, point);
+ } else {
+ intersect = ray.intersectTriangle(pA, pB, pC, material.side !== DoubleSide, point);
}
- } else if (geometry.isGeometry) {
- console.error('THREE.Mesh.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
- }
- }
-
- }
- Mesh.prototype.isMesh = true;
+ if (intersect === null) return null;
- function checkIntersection(object, material, raycaster, ray, pA, pB, pC, point) {
- let intersect;
+ _intersectionPointWorld.copy(point);
- if (material.side === BackSide) {
- intersect = ray.intersectTriangle(pC, pB, pA, true, point);
- } else {
- intersect = ray.intersectTriangle(pA, pB, pC, material.side !== DoubleSide, point);
- }
+ _intersectionPointWorld.applyMatrix4(object.matrixWorld);
- if (intersect === null) return null;
+ const distance = raycaster.ray.origin.distanceTo(_intersectionPointWorld);
+ if (distance < raycaster.near || distance > raycaster.far) return null;
+ return {
+ distance: distance,
+ point: _intersectionPointWorld.clone(),
+ object: object
+ };
+ }
- _intersectionPointWorld.copy(point);
+ function checkBufferGeometryIntersection(object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) {
+ _vA$1.fromBufferAttribute(position, a);
- _intersectionPointWorld.applyMatrix4(object.matrixWorld);
+ _vB$1.fromBufferAttribute(position, b);
- const distance = raycaster.ray.origin.distanceTo(_intersectionPointWorld);
- if (distance < raycaster.near || distance > raycaster.far) return null;
- return {
- distance: distance,
- point: _intersectionPointWorld.clone(),
- object: object
- };
- }
+ _vC$1.fromBufferAttribute(position, c);
- function checkBufferGeometryIntersection(object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) {
- _vA$1.fromBufferAttribute(position, a);
+ const morphInfluences = object.morphTargetInfluences;
- _vB$1.fromBufferAttribute(position, b);
+ if (morphPosition && morphInfluences) {
+ _morphA.set(0, 0, 0);
- _vC$1.fromBufferAttribute(position, c);
+ _morphB.set(0, 0, 0);
- const morphInfluences = object.morphTargetInfluences;
+ _morphC.set(0, 0, 0);
- if (morphPosition && morphInfluences) {
- _morphA.set(0, 0, 0);
+ for (let i = 0, il = morphPosition.length; i < il; i++) {
+ const influence = morphInfluences[i];
+ const morphAttribute = morphPosition[i];
+ if (influence === 0) continue;
- _morphB.set(0, 0, 0);
+ _tempA.fromBufferAttribute(morphAttribute, a);
- _morphC.set(0, 0, 0);
+ _tempB.fromBufferAttribute(morphAttribute, b);
- for (let i = 0, il = morphPosition.length; i < il; i++) {
- const influence = morphInfluences[i];
- const morphAttribute = morphPosition[i];
- if (influence === 0) continue;
+ _tempC.fromBufferAttribute(morphAttribute, c);
- _tempA.fromBufferAttribute(morphAttribute, a);
+ if (morphTargetsRelative) {
+ _morphA.addScaledVector(_tempA, influence);
- _tempB.fromBufferAttribute(morphAttribute, b);
+ _morphB.addScaledVector(_tempB, influence);
- _tempC.fromBufferAttribute(morphAttribute, c);
+ _morphC.addScaledVector(_tempC, influence);
+ } else {
+ _morphA.addScaledVector(_tempA.sub(_vA$1), influence);
- if (morphTargetsRelative) {
- _morphA.addScaledVector(_tempA, influence);
+ _morphB.addScaledVector(_tempB.sub(_vB$1), influence);
- _morphB.addScaledVector(_tempB, influence);
+ _morphC.addScaledVector(_tempC.sub(_vC$1), influence);
+ }
+ }
- _morphC.addScaledVector(_tempC, influence);
- } else {
- _morphA.addScaledVector(_tempA.sub(_vA$1), influence);
+ _vA$1.add(_morphA);
- _morphB.addScaledVector(_tempB.sub(_vB$1), influence);
+ _vB$1.add(_morphB);
- _morphC.addScaledVector(_tempC.sub(_vC$1), influence);
+ _vC$1.add(_morphC);
}
- }
- _vA$1.add(_morphA);
-
- _vB$1.add(_morphB);
+ if (object.isSkinnedMesh) {
+ object.boneTransform(a, _vA$1);
+ object.boneTransform(b, _vB$1);
+ object.boneTransform(c, _vC$1);
+ }
- _vC$1.add(_morphC);
- }
+ const intersection = checkIntersection(object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint);
- if (object.isSkinnedMesh) {
- object.boneTransform(a, _vA$1);
- object.boneTransform(b, _vB$1);
- object.boneTransform(c, _vC$1);
- }
+ if (intersection) {
+ if (uv) {
+ _uvA$1.fromBufferAttribute(uv, a);
- const intersection = checkIntersection(object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint);
+ _uvB$1.fromBufferAttribute(uv, b);
- if (intersection) {
- if (uv) {
- _uvA$1.fromBufferAttribute(uv, a);
+ _uvC$1.fromBufferAttribute(uv, c);
- _uvB$1.fromBufferAttribute(uv, b);
+ intersection.uv = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2());
+ }
- _uvC$1.fromBufferAttribute(uv, c);
+ if (uv2) {
+ _uvA$1.fromBufferAttribute(uv2, a);
- intersection.uv = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2());
- }
+ _uvB$1.fromBufferAttribute(uv2, b);
- if (uv2) {
- _uvA$1.fromBufferAttribute(uv2, a);
+ _uvC$1.fromBufferAttribute(uv2, c);
- _uvB$1.fromBufferAttribute(uv2, b);
+ intersection.uv2 = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2());
+ }
- _uvC$1.fromBufferAttribute(uv2, c);
+ const face = {
+ a: a,
+ b: b,
+ c: c,
+ normal: new Vector3(),
+ materialIndex: 0
+ };
+ Triangle.getNormal(_vA$1, _vB$1, _vC$1, face.normal);
+ intersection.face = face;
+ }
- intersection.uv2 = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2());
+ return intersection;
}
- const face = {
- a: a,
- b: b,
- c: c,
- normal: new Vector3(),
- materialIndex: 0
- };
- Triangle.getNormal(_vA$1, _vB$1, _vC$1, face.normal);
- intersection.face = face;
- }
+ class BoxGeometry extends BufferGeometry {
+ constructor(width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1) {
+ super();
+ this.type = 'BoxGeometry';
+ this.parameters = {
+ width: width,
+ height: height,
+ depth: depth,
+ widthSegments: widthSegments,
+ heightSegments: heightSegments,
+ depthSegments: depthSegments
+ };
+ const scope = this; // segments
- return intersection;
- }
+ widthSegments = Math.floor(widthSegments);
+ heightSegments = Math.floor(heightSegments);
+ depthSegments = Math.floor(depthSegments); // buffers
- class BoxGeometry extends BufferGeometry {
- constructor(width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1) {
- super();
- this.type = 'BoxGeometry';
- this.parameters = {
- width: width,
- height: height,
- depth: depth,
- widthSegments: widthSegments,
- heightSegments: heightSegments,
- depthSegments: depthSegments
- };
- const scope = this; // segments
+ const indices = [];
+ const vertices = [];
+ const normals = [];
+ const uvs = []; // helper variables
- widthSegments = Math.floor(widthSegments);
- heightSegments = Math.floor(heightSegments);
- depthSegments = Math.floor(depthSegments); // buffers
+ let numberOfVertices = 0;
+ let groupStart = 0; // build each side of the box geometry
- const indices = [];
- const vertices = [];
- const normals = [];
- const uvs = []; // helper variables
+ buildPlane('z', 'y', 'x', -1, -1, depth, height, width, depthSegments, heightSegments, 0); // px
- let numberOfVertices = 0;
- let groupStart = 0; // build each side of the box geometry
+ buildPlane('z', 'y', 'x', 1, -1, depth, height, -width, depthSegments, heightSegments, 1); // nx
- buildPlane('z', 'y', 'x', -1, -1, depth, height, width, depthSegments, heightSegments, 0); // px
+ buildPlane('x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2); // py
- buildPlane('z', 'y', 'x', 1, -1, depth, height, -width, depthSegments, heightSegments, 1); // nx
+ buildPlane('x', 'z', 'y', 1, -1, width, depth, -height, widthSegments, depthSegments, 3); // ny
- buildPlane('x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2); // py
+ buildPlane('x', 'y', 'z', 1, -1, width, height, depth, widthSegments, heightSegments, 4); // pz
- buildPlane('x', 'z', 'y', 1, -1, width, depth, -height, widthSegments, depthSegments, 3); // ny
+ buildPlane('x', 'y', 'z', -1, -1, width, height, -depth, widthSegments, heightSegments, 5); // nz
+ // build geometry
- buildPlane('x', 'y', 'z', 1, -1, width, height, depth, widthSegments, heightSegments, 4); // pz
+ this.setIndex(indices);
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
- buildPlane('x', 'y', 'z', -1, -1, width, height, -depth, widthSegments, heightSegments, 5); // nz
- // build geometry
+ function buildPlane(u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex) {
+ const segmentWidth = width / gridX;
+ const segmentHeight = height / gridY;
+ const widthHalf = width / 2;
+ const heightHalf = height / 2;
+ const depthHalf = depth / 2;
+ const gridX1 = gridX + 1;
+ const gridY1 = gridY + 1;
+ let vertexCounter = 0;
+ let groupCount = 0;
+ const vector = new Vector3(); // generate vertices, normals and uvs
- this.setIndex(indices);
- this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
- this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
+ for (let iy = 0; iy < gridY1; iy++) {
+ const y = iy * segmentHeight - heightHalf;
- function buildPlane(u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex) {
- const segmentWidth = width / gridX;
- const segmentHeight = height / gridY;
- const widthHalf = width / 2;
- const heightHalf = height / 2;
- const depthHalf = depth / 2;
- const gridX1 = gridX + 1;
- const gridY1 = gridY + 1;
- let vertexCounter = 0;
- let groupCount = 0;
- const vector = new Vector3(); // generate vertices, normals and uvs
+ for (let ix = 0; ix < gridX1; ix++) {
+ const x = ix * segmentWidth - widthHalf; // set values to correct vector component
- for (let iy = 0; iy < gridY1; iy++) {
- const y = iy * segmentHeight - heightHalf;
+ vector[u] = x * udir;
+ vector[v] = y * vdir;
+ vector[w] = depthHalf; // now apply vector to vertex buffer
- for (let ix = 0; ix < gridX1; ix++) {
- const x = ix * segmentWidth - widthHalf; // set values to correct vector component
+ vertices.push(vector.x, vector.y, vector.z); // set values to correct vector component
- vector[u] = x * udir;
- vector[v] = y * vdir;
- vector[w] = depthHalf; // now apply vector to vertex buffer
+ vector[u] = 0;
+ vector[v] = 0;
+ vector[w] = depth > 0 ? 1 : -1; // now apply vector to normal buffer
- vertices.push(vector.x, vector.y, vector.z); // set values to correct vector component
+ normals.push(vector.x, vector.y, vector.z); // uvs
- vector[u] = 0;
- vector[v] = 0;
- vector[w] = depth > 0 ? 1 : -1; // now apply vector to normal buffer
+ uvs.push(ix / gridX);
+ uvs.push(1 - iy / gridY); // counters
- normals.push(vector.x, vector.y, vector.z); // uvs
+ vertexCounter += 1;
+ }
+ } // indices
+ // 1. you need three indices to draw a single face
+ // 2. a single segment consists of two faces
+ // 3. so we need to generate six (2*3) indices per segment
- uvs.push(ix / gridX);
- uvs.push(1 - iy / gridY); // counters
- vertexCounter += 1;
- }
- } // indices
- // 1. you need three indices to draw a single face
- // 2. a single segment consists of two faces
- // 3. so we need to generate six (2*3) indices per segment
+ for (let iy = 0; iy < gridY; iy++) {
+ for (let ix = 0; ix < gridX; ix++) {
+ const a = numberOfVertices + ix + gridX1 * iy;
+ const b = numberOfVertices + ix + gridX1 * (iy + 1);
+ const c = numberOfVertices + (ix + 1) + gridX1 * (iy + 1);
+ const d = numberOfVertices + (ix + 1) + gridX1 * iy; // faces
+ indices.push(a, b, d);
+ indices.push(b, c, d); // increase counter
- for (let iy = 0; iy < gridY; iy++) {
- for (let ix = 0; ix < gridX; ix++) {
- const a = numberOfVertices + ix + gridX1 * iy;
- const b = numberOfVertices + ix + gridX1 * (iy + 1);
- const c = numberOfVertices + (ix + 1) + gridX1 * (iy + 1);
- const d = numberOfVertices + (ix + 1) + gridX1 * iy; // faces
+ groupCount += 6;
+ }
+ } // add a group to the geometry. this will ensure multi material support
- indices.push(a, b, d);
- indices.push(b, c, d); // increase counter
- groupCount += 6;
- }
- } // add a group to the geometry. this will ensure multi material support
+ scope.addGroup(groupStart, groupCount, materialIndex); // calculate new start value for groups
+ groupStart += groupCount; // update total number of vertices
- scope.addGroup(groupStart, groupCount, materialIndex); // calculate new start value for groups
+ numberOfVertices += vertexCounter;
+ }
+ }
- groupStart += groupCount; // update total number of vertices
+ static fromJSON(data) {
+ return new BoxGeometry(data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments);
+ }
- numberOfVertices += vertexCounter;
}
- }
-
- static fromJSON(data) {
- return new BoxGeometry(data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments);
- }
-
- }
- /**
- * Uniform Utilities
- */
- function cloneUniforms(src) {
- const dst = {};
+ /**
+ * Uniform Utilities
+ */
+ function cloneUniforms(src) {
+ const dst = {};
- for (const u in src) {
- dst[u] = {};
+ for (const u in src) {
+ dst[u] = {};
- for (const p in src[u]) {
- const property = src[u][p];
+ for (const p in src[u]) {
+ const property = src[u][p];
- if (property && (property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion)) {
- dst[u][p] = property.clone();
- } else if (Array.isArray(property)) {
- dst[u][p] = property.slice();
- } else {
- dst[u][p] = property;
+ if (property && (property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion)) {
+ dst[u][p] = property.clone();
+ } else if (Array.isArray(property)) {
+ dst[u][p] = property.slice();
+ } else {
+ dst[u][p] = property;
+ }
+ }
}
+
+ return dst;
}
- }
- return dst;
- }
- function mergeUniforms(uniforms) {
- const merged = {};
+ function mergeUniforms(uniforms) {
+ const merged = {};
- for (let u = 0; u < uniforms.length; u++) {
- const tmp = cloneUniforms(uniforms[u]);
+ for (let u = 0; u < uniforms.length; u++) {
+ const tmp = cloneUniforms(uniforms[u]);
- for (const p in tmp) {
- merged[p] = tmp[p];
- }
- }
+ for (const p in tmp) {
+ merged[p] = tmp[p];
+ }
+ }
- return merged;
- } // Legacy
-
- const UniformsUtils = {
- clone: cloneUniforms,
- merge: mergeUniforms
- };
-
- var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}";
-
- var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}";
-
- /**
- * parameters = {
- * defines: { "label" : "value" },
- * uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
- *
- * fragmentShader: <string>,
- * vertexShader: <string>,
- *
- * wireframe: <boolean>,
- * wireframeLinewidth: <float>,
- *
- * lights: <bool>
- * }
- */
-
- class ShaderMaterial extends Material {
- constructor(parameters) {
- super();
- this.type = 'ShaderMaterial';
- this.defines = {};
- this.uniforms = {};
- this.vertexShader = default_vertex;
- this.fragmentShader = default_fragment;
- this.linewidth = 1;
- this.wireframe = false;
- this.wireframeLinewidth = 1;
- this.fog = false; // set to use scene fog
-
- this.lights = false; // set to use scene lights
-
- this.clipping = false; // set to use user-defined clipping planes
-
- this.extensions = {
- derivatives: false,
- // set to use derivatives
- fragDepth: false,
- // set to use fragment depth values
- drawBuffers: false,
- // set to use draw buffers
- shaderTextureLOD: false // set to use shader texture LOD
-
- }; // When rendered geometry doesn't include these attributes but the material does,
- // use these default values in WebGL. This avoids errors when buffer data is missing.
-
- this.defaultAttributeValues = {
- 'color': [1, 1, 1],
- 'uv': [0, 0],
- 'uv2': [0, 0]
+ return merged;
+ } // Legacy
+
+ const UniformsUtils = {
+ clone: cloneUniforms,
+ merge: mergeUniforms
};
- this.index0AttributeName = undefined;
- this.uniformsNeedUpdate = false;
- this.glslVersion = null;
- if (parameters !== undefined) {
- if (parameters.attributes !== undefined) {
- console.error('THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.');
- }
+ var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}";
- this.setValues(parameters);
- }
- }
+ var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}";
- copy(source) {
- super.copy(source);
- this.fragmentShader = source.fragmentShader;
- this.vertexShader = source.vertexShader;
- this.uniforms = cloneUniforms(source.uniforms);
- this.defines = Object.assign({}, source.defines);
- this.wireframe = source.wireframe;
- this.wireframeLinewidth = source.wireframeLinewidth;
- this.lights = source.lights;
- this.clipping = source.clipping;
- this.extensions = Object.assign({}, source.extensions);
- this.glslVersion = source.glslVersion;
- return this;
- }
+ /**
+ * parameters = {
+ * defines: { "label" : "value" },
+ * uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
+ *
+ * fragmentShader: <string>,
+ * vertexShader: <string>,
+ *
+ * wireframe: <boolean>,
+ * wireframeLinewidth: <float>,
+ *
+ * lights: <bool>
+ * }
+ */
- toJSON(meta) {
- const data = super.toJSON(meta);
- data.glslVersion = this.glslVersion;
- data.uniforms = {};
+ class ShaderMaterial extends Material {
+ constructor(parameters) {
+ super();
+ this.type = 'ShaderMaterial';
+ this.defines = {};
+ this.uniforms = {};
+ this.vertexShader = default_vertex;
+ this.fragmentShader = default_fragment;
+ this.linewidth = 1;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.fog = false; // set to use scene fog
+
+ this.lights = false; // set to use scene lights
+
+ this.clipping = false; // set to use user-defined clipping planes
+
+ this.extensions = {
+ derivatives: false,
+ // set to use derivatives
+ fragDepth: false,
+ // set to use fragment depth values
+ drawBuffers: false,
+ // set to use draw buffers
+ shaderTextureLOD: false // set to use shader texture LOD
+
+ }; // When rendered geometry doesn't include these attributes but the material does,
+ // use these default values in WebGL. This avoids errors when buffer data is missing.
+
+ this.defaultAttributeValues = {
+ 'color': [1, 1, 1],
+ 'uv': [0, 0],
+ 'uv2': [0, 0]
+ };
+ this.index0AttributeName = undefined;
+ this.uniformsNeedUpdate = false;
+ this.glslVersion = null;
- for (const name in this.uniforms) {
- const uniform = this.uniforms[name];
- const value = uniform.value;
+ if (parameters !== undefined) {
+ if (parameters.attributes !== undefined) {
+ console.error('THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.');
+ }
- if (value && value.isTexture) {
- data.uniforms[name] = {
- type: 't',
- value: value.toJSON(meta).uuid
- };
- } else if (value && value.isColor) {
- data.uniforms[name] = {
- type: 'c',
- value: value.getHex()
- };
- } else if (value && value.isVector2) {
- data.uniforms[name] = {
- type: 'v2',
- value: value.toArray()
- };
- } else if (value && value.isVector3) {
- data.uniforms[name] = {
- type: 'v3',
- value: value.toArray()
- };
- } else if (value && value.isVector4) {
- data.uniforms[name] = {
- type: 'v4',
- value: value.toArray()
- };
- } else if (value && value.isMatrix3) {
- data.uniforms[name] = {
- type: 'm3',
- value: value.toArray()
- };
- } else if (value && value.isMatrix4) {
- data.uniforms[name] = {
- type: 'm4',
- value: value.toArray()
- };
- } else {
- data.uniforms[name] = {
- value: value
- }; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far
+ this.setValues(parameters);
+ }
}
- }
-
- if (Object.keys(this.defines).length > 0) data.defines = this.defines;
- data.vertexShader = this.vertexShader;
- data.fragmentShader = this.fragmentShader;
- const extensions = {};
-
- for (const key in this.extensions) {
- if (this.extensions[key] === true) extensions[key] = true;
- }
-
- if (Object.keys(extensions).length > 0) data.extensions = extensions;
- return data;
- }
-
- }
- ShaderMaterial.prototype.isShaderMaterial = true;
-
- class Camera extends Object3D {
- constructor() {
- super();
- this.type = 'Camera';
- this.matrixWorldInverse = new Matrix4();
- this.projectionMatrix = new Matrix4();
- this.projectionMatrixInverse = new Matrix4();
- }
+ copy(source) {
+ super.copy(source);
+ this.fragmentShader = source.fragmentShader;
+ this.vertexShader = source.vertexShader;
+ this.uniforms = cloneUniforms(source.uniforms);
+ this.defines = Object.assign({}, source.defines);
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ this.lights = source.lights;
+ this.clipping = source.clipping;
+ this.extensions = Object.assign({}, source.extensions);
+ this.glslVersion = source.glslVersion;
+ return this;
+ }
- copy(source, recursive) {
- super.copy(source, recursive);
- this.matrixWorldInverse.copy(source.matrixWorldInverse);
- this.projectionMatrix.copy(source.projectionMatrix);
- this.projectionMatrixInverse.copy(source.projectionMatrixInverse);
- return this;
- }
+ toJSON(meta) {
+ const data = super.toJSON(meta);
+ data.glslVersion = this.glslVersion;
+ data.uniforms = {};
- getWorldDirection(target) {
- this.updateWorldMatrix(true, false);
- const e = this.matrixWorld.elements;
- return target.set(-e[8], -e[9], -e[10]).normalize();
- }
+ for (const name in this.uniforms) {
+ const uniform = this.uniforms[name];
+ const value = uniform.value;
- updateMatrixWorld(force) {
- super.updateMatrixWorld(force);
- this.matrixWorldInverse.copy(this.matrixWorld).invert();
- }
+ if (value && value.isTexture) {
+ data.uniforms[name] = {
+ type: 't',
+ value: value.toJSON(meta).uuid
+ };
+ } else if (value && value.isColor) {
+ data.uniforms[name] = {
+ type: 'c',
+ value: value.getHex()
+ };
+ } else if (value && value.isVector2) {
+ data.uniforms[name] = {
+ type: 'v2',
+ value: value.toArray()
+ };
+ } else if (value && value.isVector3) {
+ data.uniforms[name] = {
+ type: 'v3',
+ value: value.toArray()
+ };
+ } else if (value && value.isVector4) {
+ data.uniforms[name] = {
+ type: 'v4',
+ value: value.toArray()
+ };
+ } else if (value && value.isMatrix3) {
+ data.uniforms[name] = {
+ type: 'm3',
+ value: value.toArray()
+ };
+ } else if (value && value.isMatrix4) {
+ data.uniforms[name] = {
+ type: 'm4',
+ value: value.toArray()
+ };
+ } else {
+ data.uniforms[name] = {
+ value: value
+ }; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far
+ }
+ }
- updateWorldMatrix(updateParents, updateChildren) {
- super.updateWorldMatrix(updateParents, updateChildren);
- this.matrixWorldInverse.copy(this.matrixWorld).invert();
- }
+ if (Object.keys(this.defines).length > 0) data.defines = this.defines;
+ data.vertexShader = this.vertexShader;
+ data.fragmentShader = this.fragmentShader;
+ const extensions = {};
- clone() {
- return new this.constructor().copy(this);
- }
+ for (const key in this.extensions) {
+ if (this.extensions[key] === true) extensions[key] = true;
+ }
- }
+ if (Object.keys(extensions).length > 0) data.extensions = extensions;
+ return data;
+ }
- Camera.prototype.isCamera = true;
+ }
- class PerspectiveCamera extends Camera {
- constructor(fov = 50, aspect = 1, near = 0.1, far = 2000) {
- super();
- this.type = 'PerspectiveCamera';
- this.fov = fov;
- this.zoom = 1;
- this.near = near;
- this.far = far;
- this.focus = 10;
- this.aspect = aspect;
- this.view = null;
- this.filmGauge = 35; // width of the film (default in millimeters)
+ ShaderMaterial.prototype.isShaderMaterial = true;
- this.filmOffset = 0; // horizontal film offset (same unit as gauge)
+ class Camera extends Object3D {
+ constructor() {
+ super();
+ this.type = 'Camera';
+ this.matrixWorldInverse = new Matrix4();
+ this.projectionMatrix = new Matrix4();
+ this.projectionMatrixInverse = new Matrix4();
+ }
- this.updateProjectionMatrix();
- }
+ copy(source, recursive) {
+ super.copy(source, recursive);
+ this.matrixWorldInverse.copy(source.matrixWorldInverse);
+ this.projectionMatrix.copy(source.projectionMatrix);
+ this.projectionMatrixInverse.copy(source.projectionMatrixInverse);
+ return this;
+ }
- copy(source, recursive) {
- super.copy(source, recursive);
- this.fov = source.fov;
- this.zoom = source.zoom;
- this.near = source.near;
- this.far = source.far;
- this.focus = source.focus;
- this.aspect = source.aspect;
- this.view = source.view === null ? null : Object.assign({}, source.view);
- this.filmGauge = source.filmGauge;
- this.filmOffset = source.filmOffset;
- return this;
- }
- /**
- * Sets the FOV by focal length in respect to the current .filmGauge.
- *
- * The default film gauge is 35, so that the focal length can be specified for
- * a 35mm (full frame) camera.
- *
- * Values for focal length and film gauge must have the same unit.
- */
+ getWorldDirection(target) {
+ this.updateWorldMatrix(true, false);
+ const e = this.matrixWorld.elements;
+ return target.set(-e[8], -e[9], -e[10]).normalize();
+ }
+ updateMatrixWorld(force) {
+ super.updateMatrixWorld(force);
+ this.matrixWorldInverse.copy(this.matrixWorld).invert();
+ }
- setFocalLength(focalLength) {
- /** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */
- const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
- this.fov = RAD2DEG * 2 * Math.atan(vExtentSlope);
- this.updateProjectionMatrix();
- }
- /**
- * Calculates the focal length from the current .fov and .filmGauge.
- */
+ updateWorldMatrix(updateParents, updateChildren) {
+ super.updateWorldMatrix(updateParents, updateChildren);
+ this.matrixWorldInverse.copy(this.matrixWorld).invert();
+ }
+ clone() {
+ return new this.constructor().copy(this);
+ }
- getFocalLength() {
- const vExtentSlope = Math.tan(DEG2RAD * 0.5 * this.fov);
- return 0.5 * this.getFilmHeight() / vExtentSlope;
- }
+ }
- getEffectiveFOV() {
- return RAD2DEG * 2 * Math.atan(Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom);
- }
+ Camera.prototype.isCamera = true;
- getFilmWidth() {
- // film not completely covered in portrait format (aspect < 1)
- return this.filmGauge * Math.min(this.aspect, 1);
- }
+ class PerspectiveCamera extends Camera {
+ constructor(fov = 50, aspect = 1, near = 0.1, far = 2000) {
+ super();
+ this.type = 'PerspectiveCamera';
+ this.fov = fov;
+ this.zoom = 1;
+ this.near = near;
+ this.far = far;
+ this.focus = 10;
+ this.aspect = aspect;
+ this.view = null;
+ this.filmGauge = 35; // width of the film (default in millimeters)
- getFilmHeight() {
- // film not completely covered in landscape format (aspect > 1)
- return this.filmGauge / Math.max(this.aspect, 1);
- }
- /**
- * Sets an offset in a larger frustum. This is useful for multi-window or
- * multi-monitor/multi-machine setups.
- *
- * For example, if you have 3x2 monitors and each monitor is 1920x1080 and
- * the monitors are in grid like this
- *
- * +---+---+---+
- * | A | B | C |
- * +---+---+---+
- * | D | E | F |
- * +---+---+---+
- *
- * then for each monitor you would call it like this
- *
- * const w = 1920;
- * const h = 1080;
- * const fullWidth = w * 3;
- * const fullHeight = h * 2;
- *
- * --A--
- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
- * --B--
- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
- * --C--
- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
- * --D--
- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
- * --E--
- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
- * --F--
- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
- *
- * Note there is no reason monitors have to be the same size or in a grid.
- */
+ this.filmOffset = 0; // horizontal film offset (same unit as gauge)
+ this.updateProjectionMatrix();
+ }
- setViewOffset(fullWidth, fullHeight, x, y, width, height) {
- this.aspect = fullWidth / fullHeight;
+ copy(source, recursive) {
+ super.copy(source, recursive);
+ this.fov = source.fov;
+ this.zoom = source.zoom;
+ this.near = source.near;
+ this.far = source.far;
+ this.focus = source.focus;
+ this.aspect = source.aspect;
+ this.view = source.view === null ? null : Object.assign({}, source.view);
+ this.filmGauge = source.filmGauge;
+ this.filmOffset = source.filmOffset;
+ return this;
+ }
- if (this.view === null) {
- this.view = {
- enabled: true,
- fullWidth: 1,
- fullHeight: 1,
- offsetX: 0,
- offsetY: 0,
- width: 1,
- height: 1
- };
- }
+ /**
+ * Sets the FOV by focal length in respect to the current .filmGauge.
+ *
+ * The default film gauge is 35, so that the focal length can be specified for
+ * a 35mm (full frame) camera.
+ *
+ * Values for focal length and film gauge must have the same unit.
+ */
+
+
+ setFocalLength(focalLength) {
+ /** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */
+ const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
+ this.fov = RAD2DEG * 2 * Math.atan(vExtentSlope);
+ this.updateProjectionMatrix();
+ }
+
+ /**
+ * Calculates the focal length from the current .fov and .filmGauge.
+ */
+
+
+ getFocalLength() {
+ const vExtentSlope = Math.tan(DEG2RAD * 0.5 * this.fov);
+ return 0.5 * this.getFilmHeight() / vExtentSlope;
+ }
+
+ getEffectiveFOV() {
+ return RAD2DEG * 2 * Math.atan(Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom);
+ }
+
+ getFilmWidth() {
+ // film not completely covered in portrait format (aspect < 1)
+ return this.filmGauge * Math.min(this.aspect, 1);
+ }
+
+ getFilmHeight() {
+ // film not completely covered in landscape format (aspect > 1)
+ return this.filmGauge / Math.max(this.aspect, 1);
+ }
+
+ /**
+ * Sets an offset in a larger frustum. This is useful for multi-window or
+ * multi-monitor/multi-machine setups.
+ *
+ * For example, if you have 3x2 monitors and each monitor is 1920x1080 and
+ * the monitors are in grid like this
+ *
+ * +---+---+---+
+ * | A | B | C |
+ * +---+---+---+
+ * | D | E | F |
+ * +---+---+---+
+ *
+ * then for each monitor you would call it like this
+ *
+ * const w = 1920;
+ * const h = 1080;
+ * const fullWidth = w * 3;
+ * const fullHeight = h * 2;
+ *
+ * --A--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
+ * --B--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
+ * --C--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
+ * --D--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
+ * --E--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
+ * --F--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
+ *
+ * Note there is no reason monitors have to be the same size or in a grid.
+ */
+
+
+ setViewOffset(fullWidth, fullHeight, x, y, width, height) {
+ this.aspect = fullWidth / fullHeight;
+
+ if (this.view === null) {
+ this.view = {
+ enabled: true,
+ fullWidth: 1,
+ fullHeight: 1,
+ offsetX: 0,
+ offsetY: 0,
+ width: 1,
+ height: 1
+ };
+ }
- this.view.enabled = true;
- this.view.fullWidth = fullWidth;
- this.view.fullHeight = fullHeight;
- this.view.offsetX = x;
- this.view.offsetY = y;
- this.view.width = width;
- this.view.height = height;
- this.updateProjectionMatrix();
- }
+ this.view.enabled = true;
+ this.view.fullWidth = fullWidth;
+ this.view.fullHeight = fullHeight;
+ this.view.offsetX = x;
+ this.view.offsetY = y;
+ this.view.width = width;
+ this.view.height = height;
+ this.updateProjectionMatrix();
+ }
- clearViewOffset() {
- if (this.view !== null) {
- this.view.enabled = false;
- }
+ clearViewOffset() {
+ if (this.view !== null) {
+ this.view.enabled = false;
+ }
- this.updateProjectionMatrix();
- }
+ this.updateProjectionMatrix();
+ }
- updateProjectionMatrix() {
- const near = this.near;
- let top = near * Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom;
- let height = 2 * top;
- let width = this.aspect * height;
- let left = -0.5 * width;
- const view = this.view;
+ updateProjectionMatrix() {
+ const near = this.near;
+ let top = near * Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom;
+ let height = 2 * top;
+ let width = this.aspect * height;
+ let left = -0.5 * width;
+ const view = this.view;
- if (this.view !== null && this.view.enabled) {
- const fullWidth = view.fullWidth,
+ if (this.view !== null && this.view.enabled) {
+ const fullWidth = view.fullWidth,
fullHeight = view.fullHeight;
- left += view.offsetX * width / fullWidth;
- top -= view.offsetY * height / fullHeight;
- width *= view.width / fullWidth;
- height *= view.height / fullHeight;
- }
+ left += view.offsetX * width / fullWidth;
+ top -= view.offsetY * height / fullHeight;
+ width *= view.width / fullWidth;
+ height *= view.height / fullHeight;
+ }
- const skew = this.filmOffset;
- if (skew !== 0) left += near * skew / this.getFilmWidth();
- this.projectionMatrix.makePerspective(left, left + width, top, top - height, near, this.far);
- this.projectionMatrixInverse.copy(this.projectionMatrix).invert();
- }
+ const skew = this.filmOffset;
+ if (skew !== 0) left += near * skew / this.getFilmWidth();
+ this.projectionMatrix.makePerspective(left, left + width, top, top - height, near, this.far);
+ this.projectionMatrixInverse.copy(this.projectionMatrix).invert();
+ }
- toJSON(meta) {
- const data = super.toJSON(meta);
- data.object.fov = this.fov;
- data.object.zoom = this.zoom;
- data.object.near = this.near;
- data.object.far = this.far;
- data.object.focus = this.focus;
- data.object.aspect = this.aspect;
- if (this.view !== null) data.object.view = Object.assign({}, this.view);
- data.object.filmGauge = this.filmGauge;
- data.object.filmOffset = this.filmOffset;
- return data;
- }
+ toJSON(meta) {
+ const data = super.toJSON(meta);
+ data.object.fov = this.fov;
+ data.object.zoom = this.zoom;
+ data.object.near = this.near;
+ data.object.far = this.far;
+ data.object.focus = this.focus;
+ data.object.aspect = this.aspect;
+ if (this.view !== null) data.object.view = Object.assign({}, this.view);
+ data.object.filmGauge = this.filmGauge;
+ data.object.filmOffset = this.filmOffset;
+ return data;
+ }
- }
+ }
- PerspectiveCamera.prototype.isPerspectiveCamera = true;
+ PerspectiveCamera.prototype.isPerspectiveCamera = true;
- const fov = 90,
+ const fov = 90,
aspect = 1;
- class CubeCamera extends Object3D {
- constructor(near, far, renderTarget) {
- super();
- this.type = 'CubeCamera';
-
- if (renderTarget.isWebGLCubeRenderTarget !== true) {
- console.error('THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.');
- return;
- }
-
- this.renderTarget = renderTarget;
- const cameraPX = new PerspectiveCamera(fov, aspect, near, far);
- cameraPX.layers = this.layers;
- cameraPX.up.set(0, -1, 0);
- cameraPX.lookAt(new Vector3(1, 0, 0));
- this.add(cameraPX);
- const cameraNX = new PerspectiveCamera(fov, aspect, near, far);
- cameraNX.layers = this.layers;
- cameraNX.up.set(0, -1, 0);
- cameraNX.lookAt(new Vector3(-1, 0, 0));
- this.add(cameraNX);
- const cameraPY = new PerspectiveCamera(fov, aspect, near, far);
- cameraPY.layers = this.layers;
- cameraPY.up.set(0, 0, 1);
- cameraPY.lookAt(new Vector3(0, 1, 0));
- this.add(cameraPY);
- const cameraNY = new PerspectiveCamera(fov, aspect, near, far);
- cameraNY.layers = this.layers;
- cameraNY.up.set(0, 0, -1);
- cameraNY.lookAt(new Vector3(0, -1, 0));
- this.add(cameraNY);
- const cameraPZ = new PerspectiveCamera(fov, aspect, near, far);
- cameraPZ.layers = this.layers;
- cameraPZ.up.set(0, -1, 0);
- cameraPZ.lookAt(new Vector3(0, 0, 1));
- this.add(cameraPZ);
- const cameraNZ = new PerspectiveCamera(fov, aspect, near, far);
- cameraNZ.layers = this.layers;
- cameraNZ.up.set(0, -1, 0);
- cameraNZ.lookAt(new Vector3(0, 0, -1));
- this.add(cameraNZ);
- }
-
- update(renderer, scene) {
- if (this.parent === null) this.updateMatrixWorld();
- const renderTarget = this.renderTarget;
- const [cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ] = this.children;
- const currentXrEnabled = renderer.xr.enabled;
- const currentRenderTarget = renderer.getRenderTarget();
- renderer.xr.enabled = false;
- const generateMipmaps = renderTarget.texture.generateMipmaps;
- renderTarget.texture.generateMipmaps = false;
- renderer.setRenderTarget(renderTarget, 0);
- renderer.render(scene, cameraPX);
- renderer.setRenderTarget(renderTarget, 1);
- renderer.render(scene, cameraNX);
- renderer.setRenderTarget(renderTarget, 2);
- renderer.render(scene, cameraPY);
- renderer.setRenderTarget(renderTarget, 3);
- renderer.render(scene, cameraNY);
- renderer.setRenderTarget(renderTarget, 4);
- renderer.render(scene, cameraPZ);
- renderTarget.texture.generateMipmaps = generateMipmaps;
- renderer.setRenderTarget(renderTarget, 5);
- renderer.render(scene, cameraNZ);
- renderer.setRenderTarget(currentRenderTarget);
- renderer.xr.enabled = currentXrEnabled;
- }
-
- }
-
- class CubeTexture extends Texture {
- constructor(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) {
- images = images !== undefined ? images : [];
- mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
- format = format !== undefined ? format : RGBFormat;
- super(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
- this.flipY = false;
- }
-
- get images() {
- return this.image;
- }
-
- set images(value) {
- this.image = value;
- }
-
- }
-
- CubeTexture.prototype.isCubeTexture = true;
-
- class WebGLCubeRenderTarget extends WebGLRenderTarget {
- constructor(size, options, dummy) {
- if (Number.isInteger(options)) {
- console.warn('THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )');
- options = dummy;
- }
-
- super(size, size, options);
- options = options || {}; // By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js)
- // in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words,
- // in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly.
- // three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped
- // and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture
- // as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures).
+ class CubeCamera extends Object3D {
+ constructor(near, far, renderTarget) {
+ super();
+ this.type = 'CubeCamera';
- this.texture = new CubeTexture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding);
- this.texture.isRenderTargetTexture = true;
- this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
- this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
- this.texture._needsFlipEnvMap = false;
- }
+ if (renderTarget.isWebGLCubeRenderTarget !== true) {
+ console.error('THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.');
+ return;
+ }
- fromEquirectangularTexture(renderer, texture) {
- this.texture.type = texture.type;
- this.texture.format = RGBAFormat; // see #18859
-
- this.texture.encoding = texture.encoding;
- this.texture.generateMipmaps = texture.generateMipmaps;
- this.texture.minFilter = texture.minFilter;
- this.texture.magFilter = texture.magFilter;
- const shader = {
- uniforms: {
- tEquirect: {
- value: null
+ this.renderTarget = renderTarget;
+ const cameraPX = new PerspectiveCamera(fov, aspect, near, far);
+ cameraPX.layers = this.layers;
+ cameraPX.up.set(0, -1, 0);
+ cameraPX.lookAt(new Vector3(1, 0, 0));
+ this.add(cameraPX);
+ const cameraNX = new PerspectiveCamera(fov, aspect, near, far);
+ cameraNX.layers = this.layers;
+ cameraNX.up.set(0, -1, 0);
+ cameraNX.lookAt(new Vector3(-1, 0, 0));
+ this.add(cameraNX);
+ const cameraPY = new PerspectiveCamera(fov, aspect, near, far);
+ cameraPY.layers = this.layers;
+ cameraPY.up.set(0, 0, 1);
+ cameraPY.lookAt(new Vector3(0, 1, 0));
+ this.add(cameraPY);
+ const cameraNY = new PerspectiveCamera(fov, aspect, near, far);
+ cameraNY.layers = this.layers;
+ cameraNY.up.set(0, 0, -1);
+ cameraNY.lookAt(new Vector3(0, -1, 0));
+ this.add(cameraNY);
+ const cameraPZ = new PerspectiveCamera(fov, aspect, near, far);
+ cameraPZ.layers = this.layers;
+ cameraPZ.up.set(0, -1, 0);
+ cameraPZ.lookAt(new Vector3(0, 0, 1));
+ this.add(cameraPZ);
+ const cameraNZ = new PerspectiveCamera(fov, aspect, near, far);
+ cameraNZ.layers = this.layers;
+ cameraNZ.up.set(0, -1, 0);
+ cameraNZ.lookAt(new Vector3(0, 0, -1));
+ this.add(cameraNZ);
+ }
+
+ update(renderer, scene) {
+ if (this.parent === null) this.updateMatrixWorld();
+ const renderTarget = this.renderTarget;
+ const [cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ] = this.children;
+ const currentXrEnabled = renderer.xr.enabled;
+ const currentRenderTarget = renderer.getRenderTarget();
+ renderer.xr.enabled = false;
+ const generateMipmaps = renderTarget.texture.generateMipmaps;
+ renderTarget.texture.generateMipmaps = false;
+ renderer.setRenderTarget(renderTarget, 0);
+ renderer.render(scene, cameraPX);
+ renderer.setRenderTarget(renderTarget, 1);
+ renderer.render(scene, cameraNX);
+ renderer.setRenderTarget(renderTarget, 2);
+ renderer.render(scene, cameraPY);
+ renderer.setRenderTarget(renderTarget, 3);
+ renderer.render(scene, cameraNY);
+ renderer.setRenderTarget(renderTarget, 4);
+ renderer.render(scene, cameraPZ);
+ renderTarget.texture.generateMipmaps = generateMipmaps;
+ renderer.setRenderTarget(renderTarget, 5);
+ renderer.render(scene, cameraNZ);
+ renderer.setRenderTarget(currentRenderTarget);
+ renderer.xr.enabled = currentXrEnabled;
+ }
+
+ }
+
+ class CubeTexture extends Texture {
+ constructor(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) {
+ images = images !== undefined ? images : [];
+ mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
+ format = format !== undefined ? format : RGBFormat;
+ super(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
+ this.flipY = false;
+ }
+
+ get images() {
+ return this.image;
+ }
+
+ set images(value) {
+ this.image = value;
+ }
+
+ }
+
+ CubeTexture.prototype.isCubeTexture = true;
+
+ class WebGLCubeRenderTarget extends WebGLRenderTarget {
+ constructor(size, options, dummy) {
+ if (Number.isInteger(options)) {
+ console.warn('THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )');
+ options = dummy;
}
- },
- vertexShader:
- /* glsl */
- `
+
+ super(size, size, options);
+ options = options || {}; // By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js)
+ // in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words,
+ // in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly.
+ // three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped
+ // and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture
+ // as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures).
+
+ this.texture = new CubeTexture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding);
+ this.texture.isRenderTargetTexture = true;
+ this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
+ this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
+ this.texture._needsFlipEnvMap = false;
+ }
+
+ fromEquirectangularTexture(renderer, texture) {
+ this.texture.type = texture.type;
+ this.texture.format = RGBAFormat; // see #18859
+
+ this.texture.encoding = texture.encoding;
+ this.texture.generateMipmaps = texture.generateMipmaps;
+ this.texture.minFilter = texture.minFilter;
+ this.texture.magFilter = texture.magFilter;
+ const shader = {
+ uniforms: {
+ tEquirect: {
+ value: null
+ }
+ },
+ vertexShader:
+ /* glsl */
+ `
varying vec3 vWorldDirection;
}
`,
- fragmentShader:
- /* glsl */
- `
+ fragmentShader:
+ /* glsl */
+ `
uniform sampler2D tEquirect;
}
`
- };
- const geometry = new BoxGeometry(5, 5, 5);
- const material = new ShaderMaterial({
- name: 'CubemapFromEquirect',
- uniforms: cloneUniforms(shader.uniforms),
- vertexShader: shader.vertexShader,
- fragmentShader: shader.fragmentShader,
- side: BackSide,
- blending: NoBlending
- });
- material.uniforms.tEquirect.value = texture;
- const mesh = new Mesh(geometry, material);
- const currentMinFilter = texture.minFilter; // Avoid blurred poles
-
- if (texture.minFilter === LinearMipmapLinearFilter) texture.minFilter = LinearFilter;
- const camera = new CubeCamera(1, 10, this);
- camera.update(renderer, mesh);
- texture.minFilter = currentMinFilter;
- mesh.geometry.dispose();
- mesh.material.dispose();
- return this;
- }
+ };
+ const geometry = new BoxGeometry(5, 5, 5);
+ const material = new ShaderMaterial({
+ name: 'CubemapFromEquirect',
+ uniforms: cloneUniforms(shader.uniforms),
+ vertexShader: shader.vertexShader,
+ fragmentShader: shader.fragmentShader,
+ side: BackSide,
+ blending: NoBlending
+ });
+ material.uniforms.tEquirect.value = texture;
+ const mesh = new Mesh(geometry, material);
+ const currentMinFilter = texture.minFilter; // Avoid blurred poles
+
+ if (texture.minFilter === LinearMipmapLinearFilter) texture.minFilter = LinearFilter;
+ const camera = new CubeCamera(1, 10, this);
+ camera.update(renderer, mesh);
+ texture.minFilter = currentMinFilter;
+ mesh.geometry.dispose();
+ mesh.material.dispose();
+ return this;
+ }
- clear(renderer, color, depth, stencil) {
- const currentRenderTarget = renderer.getRenderTarget();
+ clear(renderer, color, depth, stencil) {
+ const currentRenderTarget = renderer.getRenderTarget();
- for (let i = 0; i < 6; i++) {
- renderer.setRenderTarget(this, i);
- renderer.clear(color, depth, stencil);
- }
+ for (let i = 0; i < 6; i++) {
+ renderer.setRenderTarget(this, i);
+ renderer.clear(color, depth, stencil);
+ }
- renderer.setRenderTarget(currentRenderTarget);
- }
+ renderer.setRenderTarget(currentRenderTarget);
+ }
- }
+ }
- WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true;
+ WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true;
- const _vector1 = /*@__PURE__*/new Vector3();
+ const _vector1 = /*@__PURE__*/new Vector3();
- const _vector2 = /*@__PURE__*/new Vector3();
+ const _vector2 = /*@__PURE__*/new Vector3();
- const _normalMatrix = /*@__PURE__*/new Matrix3();
+ const _normalMatrix = /*@__PURE__*/new Matrix3();
- class Plane {
- constructor(normal = new Vector3(1, 0, 0), constant = 0) {
- // normal is assumed to be normalized
- this.normal = normal;
- this.constant = constant;
- }
+ class Plane {
+ constructor(normal = new Vector3(1, 0, 0), constant = 0) {
+ // normal is assumed to be normalized
+ this.normal = normal;
+ this.constant = constant;
+ }
- set(normal, constant) {
- this.normal.copy(normal);
- this.constant = constant;
- return this;
- }
+ set(normal, constant) {
+ this.normal.copy(normal);
+ this.constant = constant;
+ return this;
+ }
- setComponents(x, y, z, w) {
- this.normal.set(x, y, z);
- this.constant = w;
- return this;
- }
+ setComponents(x, y, z, w) {
+ this.normal.set(x, y, z);
+ this.constant = w;
+ return this;
+ }
- setFromNormalAndCoplanarPoint(normal, point) {
- this.normal.copy(normal);
- this.constant = -point.dot(this.normal);
- return this;
- }
+ setFromNormalAndCoplanarPoint(normal, point) {
+ this.normal.copy(normal);
+ this.constant = -point.dot(this.normal);
+ return this;
+ }
- setFromCoplanarPoints(a, b, c) {
- const normal = _vector1.subVectors(c, b).cross(_vector2.subVectors(a, b)).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
+ setFromCoplanarPoints(a, b, c) {
+ const normal = _vector1.subVectors(c, b).cross(_vector2.subVectors(a, b)).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
- this.setFromNormalAndCoplanarPoint(normal, a);
- return this;
- }
+ this.setFromNormalAndCoplanarPoint(normal, a);
+ return this;
+ }
- copy(plane) {
- this.normal.copy(plane.normal);
- this.constant = plane.constant;
- return this;
- }
+ copy(plane) {
+ this.normal.copy(plane.normal);
+ this.constant = plane.constant;
+ return this;
+ }
- normalize() {
- // Note: will lead to a divide by zero if the plane is invalid.
- const inverseNormalLength = 1.0 / this.normal.length();
- this.normal.multiplyScalar(inverseNormalLength);
- this.constant *= inverseNormalLength;
- return this;
- }
+ normalize() {
+ // Note: will lead to a divide by zero if the plane is invalid.
+ const inverseNormalLength = 1.0 / this.normal.length();
+ this.normal.multiplyScalar(inverseNormalLength);
+ this.constant *= inverseNormalLength;
+ return this;
+ }
- negate() {
- this.constant *= -1;
- this.normal.negate();
- return this;
- }
+ negate() {
+ this.constant *= -1;
+ this.normal.negate();
+ return this;
+ }
- distanceToPoint(point) {
- return this.normal.dot(point) + this.constant;
- }
+ distanceToPoint(point) {
+ return this.normal.dot(point) + this.constant;
+ }
- distanceToSphere(sphere) {
- return this.distanceToPoint(sphere.center) - sphere.radius;
- }
+ distanceToSphere(sphere) {
+ return this.distanceToPoint(sphere.center) - sphere.radius;
+ }
- projectPoint(point, target) {
- return target.copy(this.normal).multiplyScalar(-this.distanceToPoint(point)).add(point);
- }
+ projectPoint(point, target) {
+ return target.copy(this.normal).multiplyScalar(-this.distanceToPoint(point)).add(point);
+ }
- intersectLine(line, target) {
- const direction = line.delta(_vector1);
- const denominator = this.normal.dot(direction);
+ intersectLine(line, target) {
+ const direction = line.delta(_vector1);
+ const denominator = this.normal.dot(direction);
- if (denominator === 0) {
- // line is coplanar, return origin
- if (this.distanceToPoint(line.start) === 0) {
- return target.copy(line.start);
- } // Unsure if this is the correct method to handle this case.
+ if (denominator === 0) {
+ // line is coplanar, return origin
+ if (this.distanceToPoint(line.start) === 0) {
+ return target.copy(line.start);
+ } // Unsure if this is the correct method to handle this case.
- return null;
- }
+ return null;
+ }
- const t = -(line.start.dot(this.normal) + this.constant) / denominator;
+ const t = -(line.start.dot(this.normal) + this.constant) / denominator;
- if (t < 0 || t > 1) {
- return null;
- }
+ if (t < 0 || t > 1) {
+ return null;
+ }
- return target.copy(direction).multiplyScalar(t).add(line.start);
- }
+ return target.copy(direction).multiplyScalar(t).add(line.start);
+ }
- intersectsLine(line) {
- // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
- const startSign = this.distanceToPoint(line.start);
- const endSign = this.distanceToPoint(line.end);
- return startSign < 0 && endSign > 0 || endSign < 0 && startSign > 0;
- }
+ intersectsLine(line) {
+ // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
+ const startSign = this.distanceToPoint(line.start);
+ const endSign = this.distanceToPoint(line.end);
+ return startSign < 0 && endSign > 0 || endSign < 0 && startSign > 0;
+ }
- intersectsBox(box) {
- return box.intersectsPlane(this);
- }
+ intersectsBox(box) {
+ return box.intersectsPlane(this);
+ }
- intersectsSphere(sphere) {
- return sphere.intersectsPlane(this);
- }
+ intersectsSphere(sphere) {
+ return sphere.intersectsPlane(this);
+ }
- coplanarPoint(target) {
- return target.copy(this.normal).multiplyScalar(-this.constant);
- }
+ coplanarPoint(target) {
+ return target.copy(this.normal).multiplyScalar(-this.constant);
+ }
- applyMatrix4(matrix, optionalNormalMatrix) {
- const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix(matrix);
+ applyMatrix4(matrix, optionalNormalMatrix) {
+ const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix(matrix);
- const referencePoint = this.coplanarPoint(_vector1).applyMatrix4(matrix);
- const normal = this.normal.applyMatrix3(normalMatrix).normalize();
- this.constant = -referencePoint.dot(normal);
- return this;
- }
+ const referencePoint = this.coplanarPoint(_vector1).applyMatrix4(matrix);
+ const normal = this.normal.applyMatrix3(normalMatrix).normalize();
+ this.constant = -referencePoint.dot(normal);
+ return this;
+ }
- translate(offset) {
- this.constant -= offset.dot(this.normal);
- return this;
- }
+ translate(offset) {
+ this.constant -= offset.dot(this.normal);
+ return this;
+ }
- equals(plane) {
- return plane.normal.equals(this.normal) && plane.constant === this.constant;
- }
+ equals(plane) {
+ return plane.normal.equals(this.normal) && plane.constant === this.constant;
+ }
- clone() {
- return new this.constructor().copy(this);
- }
+ clone() {
+ return new this.constructor().copy(this);
+ }
- }
+ }
- Plane.prototype.isPlane = true;
+ Plane.prototype.isPlane = true;
- const _sphere$2 = /*@__PURE__*/new Sphere();
+ const _sphere$2 = /*@__PURE__*/new Sphere();
- const _vector$7 = /*@__PURE__*/new Vector3();
+ const _vector$7 = /*@__PURE__*/new Vector3();
- class Frustum {
- constructor(p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane()) {
- this.planes = [p0, p1, p2, p3, p4, p5];
- }
+ class Frustum {
+ constructor(p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane()) {
+ this.planes = [p0, p1, p2, p3, p4, p5];
+ }
- set(p0, p1, p2, p3, p4, p5) {
- const planes = this.planes;
- planes[0].copy(p0);
- planes[1].copy(p1);
- planes[2].copy(p2);
- planes[3].copy(p3);
- planes[4].copy(p4);
- planes[5].copy(p5);
- return this;
- }
+ set(p0, p1, p2, p3, p4, p5) {
+ const planes = this.planes;
+ planes[0].copy(p0);
+ planes[1].copy(p1);
+ planes[2].copy(p2);
+ planes[3].copy(p3);
+ planes[4].copy(p4);
+ planes[5].copy(p5);
+ return this;
+ }
- copy(frustum) {
- const planes = this.planes;
+ copy(frustum) {
+ const planes = this.planes;
- for (let i = 0; i < 6; i++) {
- planes[i].copy(frustum.planes[i]);
- }
+ for (let i = 0; i < 6; i++) {
+ planes[i].copy(frustum.planes[i]);
+ }
- return this;
- }
+ return this;
+ }
- setFromProjectionMatrix(m) {
- const planes = this.planes;
- const me = m.elements;
- const me0 = me[0],
+ setFromProjectionMatrix(m) {
+ const planes = this.planes;
+ const me = m.elements;
+ const me0 = me[0],
me1 = me[1],
me2 = me[2],
me3 = me[3];
- const me4 = me[4],
+ const me4 = me[4],
me5 = me[5],
me6 = me[6],
me7 = me[7];
- const me8 = me[8],
+ const me8 = me[8],
me9 = me[9],
me10 = me[10],
me11 = me[11];
- const me12 = me[12],
+ const me12 = me[12],
me13 = me[13],
me14 = me[14],
me15 = me[15];
- planes[0].setComponents(me3 - me0, me7 - me4, me11 - me8, me15 - me12).normalize();
- planes[1].setComponents(me3 + me0, me7 + me4, me11 + me8, me15 + me12).normalize();
- planes[2].setComponents(me3 + me1, me7 + me5, me11 + me9, me15 + me13).normalize();
- planes[3].setComponents(me3 - me1, me7 - me5, me11 - me9, me15 - me13).normalize();
- planes[4].setComponents(me3 - me2, me7 - me6, me11 - me10, me15 - me14).normalize();
- planes[5].setComponents(me3 + me2, me7 + me6, me11 + me10, me15 + me14).normalize();
- return this;
- }
+ planes[0].setComponents(me3 - me0, me7 - me4, me11 - me8, me15 - me12).normalize();
+ planes[1].setComponents(me3 + me0, me7 + me4, me11 + me8, me15 + me12).normalize();
+ planes[2].setComponents(me3 + me1, me7 + me5, me11 + me9, me15 + me13).normalize();
+ planes[3].setComponents(me3 - me1, me7 - me5, me11 - me9, me15 - me13).normalize();
+ planes[4].setComponents(me3 - me2, me7 - me6, me11 - me10, me15 - me14).normalize();
+ planes[5].setComponents(me3 + me2, me7 + me6, me11 + me10, me15 + me14).normalize();
+ return this;
+ }
- intersectsObject(object) {
- const geometry = object.geometry;
- if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
+ intersectsObject(object) {
+ const geometry = object.geometry;
+ if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
- _sphere$2.copy(geometry.boundingSphere).applyMatrix4(object.matrixWorld);
+ _sphere$2.copy(geometry.boundingSphere).applyMatrix4(object.matrixWorld);
- return this.intersectsSphere(_sphere$2);
- }
+ return this.intersectsSphere(_sphere$2);
+ }
- intersectsSprite(sprite) {
- _sphere$2.center.set(0, 0, 0);
+ intersectsSprite(sprite) {
+ _sphere$2.center.set(0, 0, 0);
- _sphere$2.radius = 0.7071067811865476;
+ _sphere$2.radius = 0.7071067811865476;
- _sphere$2.applyMatrix4(sprite.matrixWorld);
+ _sphere$2.applyMatrix4(sprite.matrixWorld);
- return this.intersectsSphere(_sphere$2);
- }
+ return this.intersectsSphere(_sphere$2);
+ }
+
+ intersectsSphere(sphere) {
+ const planes = this.planes;
+ const center = sphere.center;
+ const negRadius = -sphere.radius;
- intersectsSphere(sphere) {
- const planes = this.planes;
- const center = sphere.center;
- const negRadius = -sphere.radius;
+ for (let i = 0; i < 6; i++) {
+ const distance = planes[i].distanceToPoint(center);
- for (let i = 0; i < 6; i++) {
- const distance = planes[i].distanceToPoint(center);
+ if (distance < negRadius) {
+ return false;
+ }
+ }
- if (distance < negRadius) {
- return false;
+ return true;
}
- }
- return true;
- }
+ intersectsBox(box) {
+ const planes = this.planes;
- intersectsBox(box) {
- const planes = this.planes;
+ for (let i = 0; i < 6; i++) {
+ const plane = planes[i]; // corner at max distance
- for (let i = 0; i < 6; i++) {
- const plane = planes[i]; // corner at max distance
+ _vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x;
+ _vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y;
+ _vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z;
- _vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x;
- _vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y;
- _vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z;
+ if (plane.distanceToPoint(_vector$7) < 0) {
+ return false;
+ }
+ }
- if (plane.distanceToPoint(_vector$7) < 0) {
- return false;
+ return true;
}
- }
- return true;
- }
+ containsPoint(point) {
+ const planes = this.planes;
- containsPoint(point) {
- const planes = this.planes;
+ for (let i = 0; i < 6; i++) {
+ if (planes[i].distanceToPoint(point) < 0) {
+ return false;
+ }
+ }
- for (let i = 0; i < 6; i++) {
- if (planes[i].distanceToPoint(point) < 0) {
- return false;
+ return true;
}
+
+ clone() {
+ return new this.constructor().copy(this);
+ }
+
}
- return true;
- }
+ function WebGLAnimation() {
+ let context = null;
+ let isAnimating = false;
+ let animationLoop = null;
+ let requestId = null;
- clone() {
- return new this.constructor().copy(this);
- }
+ function onAnimationFrame(time, frame) {
+ animationLoop(time, frame);
+ requestId = context.requestAnimationFrame(onAnimationFrame);
+ }
- }
+ return {
+ start: function () {
+ if (isAnimating === true) return;
+ if (animationLoop === null) return;
+ requestId = context.requestAnimationFrame(onAnimationFrame);
+ isAnimating = true;
+ },
+ stop: function () {
+ context.cancelAnimationFrame(requestId);
+ isAnimating = false;
+ },
+ setAnimationLoop: function (callback) {
+ animationLoop = callback;
+ },
+ setContext: function (value) {
+ context = value;
+ }
+ };
+ }
- function WebGLAnimation() {
- let context = null;
- let isAnimating = false;
- let animationLoop = null;
- let requestId = null;
+ function WebGLAttributes(gl, capabilities) {
+ const isWebGL2 = capabilities.isWebGL2;
+ const buffers = new WeakMap();
+
+ function createBuffer(attribute, bufferType) {
+ const array = attribute.array;
+ const usage = attribute.usage;
+ const buffer = gl.createBuffer();
+ gl.bindBuffer(bufferType, buffer);
+ gl.bufferData(bufferType, array, usage);
+ attribute.onUploadCallback();
+ let type = gl.FLOAT;
+
+ if (array instanceof Float32Array) {
+ type = gl.FLOAT;
+ } else if (array instanceof Float64Array) {
+ console.warn('THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.');
+ } else if (array instanceof Uint16Array) {
+ if (attribute.isFloat16BufferAttribute) {
+ if (isWebGL2) {
+ type = gl.HALF_FLOAT;
+ } else {
+ console.warn('THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2.');
+ }
+ } else {
+ type = gl.UNSIGNED_SHORT;
+ }
+ } else if (array instanceof Int16Array) {
+ type = gl.SHORT;
+ } else if (array instanceof Uint32Array) {
+ type = gl.UNSIGNED_INT;
+ } else if (array instanceof Int32Array) {
+ type = gl.INT;
+ } else if (array instanceof Int8Array) {
+ type = gl.BYTE;
+ } else if (array instanceof Uint8Array) {
+ type = gl.UNSIGNED_BYTE;
+ } else if (array instanceof Uint8ClampedArray) {
+ type = gl.UNSIGNED_BYTE;
+ }
- function onAnimationFrame(time, frame) {
- animationLoop(time, frame);
- requestId = context.requestAnimationFrame(onAnimationFrame);
- }
+ return {
+ buffer: buffer,
+ type: type,
+ bytesPerElement: array.BYTES_PER_ELEMENT,
+ version: attribute.version
+ };
+ }
- return {
- start: function () {
- if (isAnimating === true) return;
- if (animationLoop === null) return;
- requestId = context.requestAnimationFrame(onAnimationFrame);
- isAnimating = true;
- },
- stop: function () {
- context.cancelAnimationFrame(requestId);
- isAnimating = false;
- },
- setAnimationLoop: function (callback) {
- animationLoop = callback;
- },
- setContext: function (value) {
- context = value;
- }
- };
- }
+ function updateBuffer(buffer, attribute, bufferType) {
+ const array = attribute.array;
+ const updateRange = attribute.updateRange;
+ gl.bindBuffer(bufferType, buffer);
- function WebGLAttributes(gl, capabilities) {
- const isWebGL2 = capabilities.isWebGL2;
- const buffers = new WeakMap();
-
- function createBuffer(attribute, bufferType) {
- const array = attribute.array;
- const usage = attribute.usage;
- const buffer = gl.createBuffer();
- gl.bindBuffer(bufferType, buffer);
- gl.bufferData(bufferType, array, usage);
- attribute.onUploadCallback();
- let type = gl.FLOAT;
-
- if (array instanceof Float32Array) {
- type = gl.FLOAT;
- } else if (array instanceof Float64Array) {
- console.warn('THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.');
- } else if (array instanceof Uint16Array) {
- if (attribute.isFloat16BufferAttribute) {
- if (isWebGL2) {
- type = gl.HALF_FLOAT;
+ if (updateRange.count === -1) {
+ // Not using update ranges
+ gl.bufferSubData(bufferType, 0, array);
} else {
- console.warn('THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2.');
+ if (isWebGL2) {
+ gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count);
+ } else {
+ gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray(updateRange.offset, updateRange.offset + updateRange.count));
+ }
+
+ updateRange.count = -1; // reset range
}
- } else {
- type = gl.UNSIGNED_SHORT;
- }
- } else if (array instanceof Int16Array) {
- type = gl.SHORT;
- } else if (array instanceof Uint32Array) {
- type = gl.UNSIGNED_INT;
- } else if (array instanceof Int32Array) {
- type = gl.INT;
- } else if (array instanceof Int8Array) {
- type = gl.BYTE;
- } else if (array instanceof Uint8Array) {
- type = gl.UNSIGNED_BYTE;
- } else if (array instanceof Uint8ClampedArray) {
- type = gl.UNSIGNED_BYTE;
- }
-
- return {
- buffer: buffer,
- type: type,
- bytesPerElement: array.BYTES_PER_ELEMENT,
- version: attribute.version
- };
- }
+ } //
- function updateBuffer(buffer, attribute, bufferType) {
- const array = attribute.array;
- const updateRange = attribute.updateRange;
- gl.bindBuffer(bufferType, buffer);
- if (updateRange.count === -1) {
- // Not using update ranges
- gl.bufferSubData(bufferType, 0, array);
- } else {
- if (isWebGL2) {
- gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count);
- } else {
- gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray(updateRange.offset, updateRange.offset + updateRange.count));
+ function get(attribute) {
+ if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
+ return buffers.get(attribute);
}
- updateRange.count = -1; // reset range
- }
- } //
-
+ function remove(attribute) {
+ if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
+ const data = buffers.get(attribute);
- function get(attribute) {
- if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
- return buffers.get(attribute);
- }
+ if (data) {
+ gl.deleteBuffer(data.buffer);
+ buffers.delete(attribute);
+ }
+ }
- function remove(attribute) {
- if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
- const data = buffers.get(attribute);
+ function update(attribute, bufferType) {
+ if (attribute.isGLBufferAttribute) {
+ const cached = buffers.get(attribute);
- if (data) {
- gl.deleteBuffer(data.buffer);
- buffers.delete(attribute);
- }
- }
+ if (!cached || cached.version < attribute.version) {
+ buffers.set(attribute, {
+ buffer: attribute.buffer,
+ type: attribute.type,
+ bytesPerElement: attribute.elementSize,
+ version: attribute.version
+ });
+ }
- function update(attribute, bufferType) {
- if (attribute.isGLBufferAttribute) {
- const cached = buffers.get(attribute);
+ return;
+ }
- if (!cached || cached.version < attribute.version) {
- buffers.set(attribute, {
- buffer: attribute.buffer,
- type: attribute.type,
- bytesPerElement: attribute.elementSize,
- version: attribute.version
- });
+ if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
+ const data = buffers.get(attribute);
+
+ if (data === undefined) {
+ buffers.set(attribute, createBuffer(attribute, bufferType));
+ } else if (data.version < attribute.version) {
+ updateBuffer(data.buffer, attribute, bufferType);
+ data.version = attribute.version;
+ }
}
- return;
+ return {
+ get: get,
+ remove: remove,
+ update: update
+ };
}
- if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
- const data = buffers.get(attribute);
-
- if (data === undefined) {
- buffers.set(attribute, createBuffer(attribute, bufferType));
- } else if (data.version < attribute.version) {
- updateBuffer(data.buffer, attribute, bufferType);
- data.version = attribute.version;
- }
- }
+ class PlaneGeometry extends BufferGeometry {
+ constructor(width = 1, height = 1, widthSegments = 1, heightSegments = 1) {
+ super();
+ this.type = 'PlaneGeometry';
+ this.parameters = {
+ width: width,
+ height: height,
+ widthSegments: widthSegments,
+ heightSegments: heightSegments
+ };
+ const width_half = width / 2;
+ const height_half = height / 2;
+ const gridX = Math.floor(widthSegments);
+ const gridY = Math.floor(heightSegments);
+ const gridX1 = gridX + 1;
+ const gridY1 = gridY + 1;
+ const segment_width = width / gridX;
+ const segment_height = height / gridY; //
+
+ const indices = [];
+ const vertices = [];
+ const normals = [];
+ const uvs = [];
+
+ for (let iy = 0; iy < gridY1; iy++) {
+ const y = iy * segment_height - height_half;
+
+ for (let ix = 0; ix < gridX1; ix++) {
+ const x = ix * segment_width - width_half;
+ vertices.push(x, -y, 0);
+ normals.push(0, 0, 1);
+ uvs.push(ix / gridX);
+ uvs.push(1 - iy / gridY);
+ }
+ }
- return {
- get: get,
- remove: remove,
- update: update
- };
- }
+ for (let iy = 0; iy < gridY; iy++) {
+ for (let ix = 0; ix < gridX; ix++) {
+ const a = ix + gridX1 * iy;
+ const b = ix + gridX1 * (iy + 1);
+ const c = ix + 1 + gridX1 * (iy + 1);
+ const d = ix + 1 + gridX1 * iy;
+ indices.push(a, b, d);
+ indices.push(b, c, d);
+ }
+ }
- class PlaneGeometry extends BufferGeometry {
- constructor(width = 1, height = 1, widthSegments = 1, heightSegments = 1) {
- super();
- this.type = 'PlaneGeometry';
- this.parameters = {
- width: width,
- height: height,
- widthSegments: widthSegments,
- heightSegments: heightSegments
- };
- const width_half = width / 2;
- const height_half = height / 2;
- const gridX = Math.floor(widthSegments);
- const gridY = Math.floor(heightSegments);
- const gridX1 = gridX + 1;
- const gridY1 = gridY + 1;
- const segment_width = width / gridX;
- const segment_height = height / gridY; //
-
- const indices = [];
- const vertices = [];
- const normals = [];
- const uvs = [];
-
- for (let iy = 0; iy < gridY1; iy++) {
- const y = iy * segment_height - height_half;
-
- for (let ix = 0; ix < gridX1; ix++) {
- const x = ix * segment_width - width_half;
- vertices.push(x, -y, 0);
- normals.push(0, 0, 1);
- uvs.push(ix / gridX);
- uvs.push(1 - iy / gridY);
+ this.setIndex(indices);
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
}
- }
- for (let iy = 0; iy < gridY; iy++) {
- for (let ix = 0; ix < gridX; ix++) {
- const a = ix + gridX1 * iy;
- const b = ix + gridX1 * (iy + 1);
- const c = ix + 1 + gridX1 * (iy + 1);
- const d = ix + 1 + gridX1 * iy;
- indices.push(a, b, d);
- indices.push(b, c, d);
+ static fromJSON(data) {
+ return new PlaneGeometry(data.width, data.height, data.widthSegments, data.heightSegments);
}
+
}
- this.setIndex(indices);
- this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
- this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
- }
+ var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif";
- static fromJSON(data) {
- return new PlaneGeometry(data.width, data.height, data.widthSegments, data.heightSegments);
- }
+ var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
- }
+ var alphatest_fragment = "#ifdef USE_ALPHATEST\n\tif ( diffuseColor.a < alphaTest ) discard;\n#endif";
- var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif";
+ var alphatest_pars_fragment = "#ifdef USE_ALPHATEST\n\tuniform float alphaTest;\n#endif";
- var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
+ var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );\n\t#endif\n#endif";
- var alphatest_fragment = "#ifdef USE_ALPHATEST\n\tif ( diffuseColor.a < alphaTest ) discard;\n#endif";
+ var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif";
- var alphatest_pars_fragment = "#ifdef USE_ALPHATEST\n\tuniform float alphaTest;\n#endif";
+ var begin_vertex = "vec3 transformed = vec3( position );";
- var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );\n\t#endif\n#endif";
+ var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif";
- var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif";
+ var bsdfs = "vec3 BRDF_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nfloat V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_GGX( const in IncidentLight incidentLight, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + viewDir );\n\tfloat dotNL = saturate( dot( normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( f0, f90, dotVH );\n\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( V * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotVH = saturate( dot( geometry.viewDir, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, 1.0, dotVH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float NoH ) {\n\tfloat invAlpha = 1.0 / roughness;\n\tfloat cos2h = NoH * NoH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float NoV, float NoL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( NoL + NoV - NoL * NoV ) ) );\n}\nvec3 BRDF_Sheen( const in float roughness, const in vec3 L, const in GeometricContext geometry, vec3 specularColor ) {\n\tvec3 N = geometry.normal;\n\tvec3 V = geometry.viewDir;\n\tvec3 H = normalize( V + L );\n\tfloat dotNH = saturate( dot( N, H ) );\n\treturn specularColor * D_Charlie( roughness, dotNH ) * V_Neubelt( dot(N, V), dot(N, L) );\n}\n#endif";
- var begin_vertex = "vec3 transformed = vec3( position );";
+ var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif";
- var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif";
+ var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif";
- var bsdfs = "vec3 BRDF_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nfloat V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_GGX( const in IncidentLight incidentLight, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + viewDir );\n\tfloat dotNL = saturate( dot( normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( f0, f90, dotVH );\n\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( V * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotVH = saturate( dot( geometry.viewDir, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, 1.0, dotVH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float NoH ) {\n\tfloat invAlpha = 1.0 / roughness;\n\tfloat cos2h = NoH * NoH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float NoV, float NoL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( NoL + NoV - NoL * NoV ) ) );\n}\nvec3 BRDF_Sheen( const in float roughness, const in vec3 L, const in GeometricContext geometry, vec3 specularColor ) {\n\tvec3 N = geometry.normal;\n\tvec3 V = geometry.viewDir;\n\tvec3 H = normalize( V + L );\n\tfloat dotNH = saturate( dot( N, H ) );\n\treturn specularColor * D_Charlie( roughness, dotNH ) * V_Neubelt( dot(N, V), dot(N, L) );\n}\n#endif";
+ var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif";
- var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif";
+ var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif";
- var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif";
+ var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif";
- var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif";
+ var color_fragment = "#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif";
- var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif";
+ var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif";
- var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif";
+ var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif";
- var color_fragment = "#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif";
+ var color_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif";
- var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif";
+ var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}";
- var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif";
+ var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_maxMipLevel 8.0\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_maxTileSize 256.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tfloat texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 1.0 );\n\t\tvec2 f = fract( uv );\n\t\tuv += 0.5 - f;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tif ( mipInt < cubeUV_maxMipLevel ) {\n\t\t\tuv.y += 2.0 * cubeUV_maxTileSize;\n\t\t}\n\t\tuv.y += filterInt * 2.0 * cubeUV_minTileSize;\n\t\tuv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n\t\tuv *= texelSize;\n\t\tvec3 tl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x += texelSize;\n\t\tvec3 tr = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.y += texelSize;\n\t\tvec3 br = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x -= texelSize;\n\t\tvec3 bl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tvec3 tm = mix( tl, tr, f.x );\n\t\tvec3 bm = mix( bl, br, f.x );\n\t\treturn mix( tm, bm, f.y );\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif";
- var color_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif";
+ var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif";
- var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}";
+ var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif";
- var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_maxMipLevel 8.0\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_maxTileSize 256.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tfloat texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 1.0 );\n\t\tvec2 f = fract( uv );\n\t\tuv += 0.5 - f;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tif ( mipInt < cubeUV_maxMipLevel ) {\n\t\t\tuv.y += 2.0 * cubeUV_maxTileSize;\n\t\t}\n\t\tuv.y += filterInt * 2.0 * cubeUV_minTileSize;\n\t\tuv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n\t\tuv *= texelSize;\n\t\tvec3 tl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x += texelSize;\n\t\tvec3 tr = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.y += texelSize;\n\t\tvec3 br = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x -= texelSize;\n\t\tvec3 bl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tvec3 tm = mix( tl, tr, f.x );\n\t\tvec3 bm = mix( bl, br, f.x );\n\t\treturn mix( tm, bm, f.y );\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif";
+ var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif";
- var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif";
+ var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif";
- var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif";
+ var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif";
- var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif";
+ var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );";
- var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif";
+ var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}";
- var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif";
+ var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif";
- var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );";
+ var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif";
- var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}";
+ var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif";
- var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif";
+ var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif";
- var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif";
+ var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif";
- var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif";
+ var fog_vertex = "#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif";
- var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif";
+ var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif";
- var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif";
+ var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif";
- var fog_vertex = "#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif";
+ var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif";
- var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif";
+ var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}";
- var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif";
+ var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tlightMapIrradiance *= PI;\n\t#endif\n\treflectedLight.indirectDiffuse += lightMapIrradiance;\n#endif";
- var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif";
+ var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif";
- var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}";
+ var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointLightInfo( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotLightInfo( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalLightInfo( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif";
- var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tlightMapIrradiance *= PI;\n\t#endif\n\treflectedLight.indirectDiffuse += lightMapIrradiance;\n#endif";
+ var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in GeometricContext geometry ) {\n\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\t#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tif ( cutoffDistance > 0.0 ) {\n\t\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\t}\n\t\treturn distanceFalloff;\n\t#else\n\t\tif ( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\t\treturn pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t\t}\n\t\treturn 1.0;\n\t#endif\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif";
- var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif";
+ var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getIBLIrradiance( const in GeometricContext geometry ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 reflectVec;\n\t\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\t\treflectVec = reflect( - viewDir, normal );\n\t\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\t#else\n\t\t\t\treflectVec = refract( - viewDir, normal, refractionRatio );\n\t\t\t#endif\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n#endif";
- var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointLightInfo( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotLightInfo( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalLightInfo( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif";
+ var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;";
- var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in GeometricContext geometry ) {\n\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\t#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tif ( cutoffDistance > 0.0 ) {\n\t\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\t}\n\t\treturn distanceFalloff;\n\t#else\n\t\tif ( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\t\treturn pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t\t}\n\t\treturn 1.0;\n\t#endif\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif";
+ var lights_toon_pars_fragment = "varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)";
- var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getIBLIrradiance( const in GeometricContext geometry ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 reflectVec;\n\t\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\t\treflectVec = reflect( - viewDir, normal );\n\t\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\t#else\n\t\t\t\treflectVec = refract( - viewDir, normal, refractionRatio );\n\t\t\t#endif\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n#endif";
+ var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;";
- var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;";
+ var lights_phong_pars_fragment = "varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tvec3 specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength.rgb;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)";
- var lights_toon_pars_fragment = "varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)";
+ var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\t#ifdef SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularTintFactor = specularTint;\n\t\t#ifdef USE_SPECULARINTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vUv ).a;\n\t\t#endif\n\t\t#ifdef USE_SPECULARTINTMAP\n\t\t\tspecularTintFactor *= specularTintMapTexelToLinear( texture2D( specularTintMap, vUv ) ).rgb;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularTintFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( ior - 1.0 ) / ( ior + 1.0 ) ) * specularTintFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenTint = sheenTint;\n#endif";
- var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;";
+ var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenTint;\n\t#endif\n};\nvec3 clearcoatSpecular = vec3( 0.0 );\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\tvec3 FssEss = specularColor * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecular += ccIrradiance * BRDF_GGX( directLight, geometry.viewDir, geometry.clearcoatNormal, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += irradiance * BRDF_Sheen( material.roughness, directLight.direction, geometry, material.sheenTint );\n\t#else\n\t\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness );\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tcomputeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}";
- var lights_phong_pars_fragment = "varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tvec3 specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength.rgb;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)";
+ var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef USE_CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif";
- var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\t#ifdef SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularTintFactor = specularTint;\n\t\t#ifdef USE_SPECULARINTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vUv ).a;\n\t\t#endif\n\t\t#ifdef USE_SPECULARTINTMAP\n\t\t\tspecularTintFactor *= specularTintMapTexelToLinear( texture2D( specularTintMap, vUv ) ).rgb;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularTintFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( ior - 1.0 ) / ( ior + 1.0 ) ) * specularTintFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenTint = sheenTint;\n#endif";
+ var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometry );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getIBLRadiance( geometry.viewDir, geometry.normal, material.roughness );\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif";
- var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenTint;\n\t#endif\n};\nvec3 clearcoatSpecular = vec3( 0.0 );\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\tvec3 FssEss = specularColor * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecular += ccIrradiance * BRDF_GGX( directLight, geometry.viewDir, geometry.clearcoatNormal, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += irradiance * BRDF_Sheen( material.roughness, directLight.direction, geometry, material.sheenTint );\n\t#else\n\t\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness );\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tcomputeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}";
+ var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif";
- var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef USE_CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif";
+ var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif";
- var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometry );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getIBLRadiance( geometry.viewDir, geometry.normal, material.roughness );\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif";
+ var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif";
- var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif";
+ var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif";
- var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif";
+ var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif";
- var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif";
+ var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif";
- var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif";
+ var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif";
- var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif";
+ var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif";
- var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif";
+ var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
- var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif";
+ var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif";
- var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif";
+ var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif";
- var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
+ var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n#endif";
- var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif";
+ var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifndef USE_MORPHNORMALS\n\t\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\t\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif";
- var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif";
+ var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t#endif\n#endif";
- var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n#endif";
+ var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * faceDirection;\n\t\t\tbitangent = bitangent * faceDirection;\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;";
- var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifndef USE_MORPHNORMALS\n\t\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\t\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif";
+ var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( - vViewPosition, normal, mapN, faceDirection );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif";
- var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t#endif\n#endif";
+ var normal_pars_fragment = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif";
- var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * faceDirection;\n\t\t\tbitangent = bitangent * faceDirection;\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;";
+ var normal_pars_vertex = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif";
- var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( - vViewPosition, normal, mapN, faceDirection );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif";
+ var normal_vertex = "#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif";
- var normal_pars_fragment = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif";
+ var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det );\n\t\treturn normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z );\n\t}\n#endif";
- var normal_pars_vertex = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif";
+ var clearcoat_normal_fragment_begin = "#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif";
- var normal_vertex = "#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif";
+ var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );\n\t#endif\n#endif";
- var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det );\n\t\treturn normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z );\n\t}\n#endif";
+ var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif";
- var clearcoat_normal_fragment_begin = "#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif";
+ var output_fragment = "#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= transmissionAlpha + 0.1;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );";
- var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );\n\t#endif\n#endif";
+ var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}";
- var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif";
+ var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif";
- var output_fragment = "#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= transmissionAlpha + 0.1;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );";
+ var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;";
- var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}";
+ var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif";
- var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif";
+ var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif";
- var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;";
+ var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif";
- var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif";
+ var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif";
- var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif";
+ var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif";
- var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif";
+ var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif";
- var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif";
+ var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif";
- var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif";
+ var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}";
- var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif";
+ var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";
- var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif";
+ var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif";
- var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}";
+ var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif";
- var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";
+ var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif";
- var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif";
+ var specularmap_fragment = "vec3 specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.rgb;\n#else\n\tspecularStrength = vec3( 1.0, 1.0, 1.0 );\n#endif";
- var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif";
+ var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif";
- var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif";
+ var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif";
- var specularmap_fragment = "vec3 specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.rgb;\n#else\n\tspecularStrength = vec3( 1.0, 1.0, 1.0 );\n#endif";
+ var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }";
- var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif";
+ var transmission_fragment = "#ifdef USE_TRANSMISSION\n\tfloat transmissionAlpha = 1.0;\n\tfloat transmissionFactor = transmission;\n\tfloat thicknessFactor = thickness;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\ttransmissionFactor *= texture2D( transmissionMap, vUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tthicknessFactor *= texture2D( thicknessMap, vUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmission = getIBLVolumeRefraction(\n\t\tn, v, roughnessFactor, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor,\n\t\tattenuationTint, attenuationDistance );\n\ttotalDiffuse = mix( totalDiffuse, transmission.rgb, transmissionFactor );\n\ttransmissionAlpha = transmission.a;\n#endif";
- var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif";
+ var transmission_pars_fragment = "#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationTint;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tvec3 getVolumeTransmissionRay( vec3 n, vec3 v, float thickness, float ior, mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( float roughness, float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( vec2 fragCoord, float roughness, float ior ) {\n\t\tfloat framebufferLod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\treturn texture2DLodEXT( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#else\n\t\t\treturn texture2D( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#endif\n\t}\n\tvec3 applyVolumeAttenuation( vec3 radiance, float transmissionDistance, vec3 attenuationColor, float attenuationDistance ) {\n\t\tif ( attenuationDistance == 0.0 ) {\n\t\t\treturn radiance;\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance * radiance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( vec3 n, vec3 v, float roughness, vec3 diffuseColor, vec3 specularColor, float specularF90,\n\t\tvec3 position, mat4 modelMatrix, mat4 viewMatrix, mat4 projMatrix, float ior, float thickness,\n\t\tvec3 attenuationColor, float attenuationDistance ) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\tvec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a );\n\t}\n#endif";
- var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }";
+ var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif";
- var transmission_fragment = "#ifdef USE_TRANSMISSION\n\tfloat transmissionAlpha = 1.0;\n\tfloat transmissionFactor = transmission;\n\tfloat thicknessFactor = thickness;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\ttransmissionFactor *= texture2D( transmissionMap, vUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tthicknessFactor *= texture2D( thicknessMap, vUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmission = getIBLVolumeRefraction(\n\t\tn, v, roughnessFactor, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor,\n\t\tattenuationTint, attenuationDistance );\n\ttotalDiffuse = mix( totalDiffuse, transmission.rgb, transmissionFactor );\n\ttransmissionAlpha = transmission.a;\n#endif";
+ var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif";
- var transmission_pars_fragment = "#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationTint;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tvec3 getVolumeTransmissionRay( vec3 n, vec3 v, float thickness, float ior, mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( float roughness, float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( vec2 fragCoord, float roughness, float ior ) {\n\t\tfloat framebufferLod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\treturn texture2DLodEXT( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#else\n\t\t\treturn texture2D( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#endif\n\t}\n\tvec3 applyVolumeAttenuation( vec3 radiance, float transmissionDistance, vec3 attenuationColor, float attenuationDistance ) {\n\t\tif ( attenuationDistance == 0.0 ) {\n\t\t\treturn radiance;\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance * radiance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( vec3 n, vec3 v, float roughness, vec3 diffuseColor, vec3 specularColor, float specularF90,\n\t\tvec3 position, mat4 modelMatrix, mat4 viewMatrix, mat4 projMatrix, float ior, float thickness,\n\t\tvec3 attenuationColor, float attenuationDistance ) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\tvec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a );\n\t}\n#endif";
+ var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif";
- var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif";
+ var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif";
- var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif";
+ var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif";
- var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif";
+ var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif";
- var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif";
+ var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif";
- var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif";
+ var background_frag = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
- var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif";
+ var background_vert = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}";
- var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif";
+ var cube_frag = "#include <envmap_common_pars_fragment>\nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include <cube_uv_reflection_fragment>\nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include <envmap_fragment>\n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
- var background_frag = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
+ var cube_vert = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\tgl_Position.z = gl_Position.w;\n}";
- var background_vert = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}";
+ var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <logdepthbuf_fragment>\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}";
- var cube_frag = "#include <envmap_common_pars_fragment>\nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include <cube_uv_reflection_fragment>\nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include <envmap_fragment>\n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
+ var depth_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}";
- var cube_vert = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\tgl_Position.z = gl_Position.w;\n}";
+ var distanceRGBA_frag = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main () {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}";
- var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <logdepthbuf_fragment>\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}";
+ var distanceRGBA_vert = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}";
- var depth_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}";
+ var equirect_frag = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
- var distanceRGBA_frag = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main () {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}";
+ var equirect_vert = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n}";
- var distanceRGBA_vert = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}";
+ var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <color_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";
- var equirect_frag = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
+ var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";
- var equirect_vert = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n}";
+ var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include <aomap_fragment>\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
- var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <color_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";
+ var meshbasic_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinbase_vertex>\n\t\t#include <skinnormal_vertex>\n\t\t#include <defaultnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <fog_vertex>\n}";
- var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";
+ var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <emissivemap_fragment>\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include <lightmap_fragment>\n\treflectedLight.indirectDiffuse *= BRDF_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
- var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include <aomap_fragment>\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
+ var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <lights_lambert_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
- var meshbasic_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinbase_vertex>\n\t\t#include <skinnormal_vertex>\n\t\t#include <defaultnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <fog_vertex>\n}";
+ var meshmatcap_frag = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <fog_pars_fragment>\n#include <normal_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
- var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <emissivemap_fragment>\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include <lightmap_fragment>\n\treflectedLight.indirectDiffuse *= BRDF_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
+ var meshmatcap_vert = "#define MATCAP\nvarying vec3 vViewPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <color_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n\tvViewPosition = - mvPosition.xyz;\n}";
- var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <lights_lambert_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
+ var meshnormal_frag = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include <packing>\n#include <uv_pars_fragment>\n#include <normal_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\t#include <logdepthbuf_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}";
- var meshmatcap_frag = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <fog_pars_fragment>\n#include <normal_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
+ var meshnormal_vert = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}";
- var meshmatcap_vert = "#define MATCAP\nvarying vec3 vViewPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <color_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n\tvViewPosition = - mvPosition.xyz;\n}";
+ var meshphong_frag = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_phong_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_phong_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
- var meshnormal_frag = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include <packing>\n#include <uv_pars_fragment>\n#include <normal_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\t#include <logdepthbuf_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}";
+ var meshphong_vert = "#define PHONG\nvarying vec3 vViewPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
- var meshnormal_vert = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}";
+ var meshphysical_frag = "#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularTint;\n\t#ifdef USE_SPECULARINTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n\t#ifdef USE_SPECULARTINTMAP\n\t\tuniform sampler2D specularTintMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenTint;\n#endif\nvarying vec3 vViewPosition;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <bsdfs>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_physical_pars_fragment>\n#include <transmission_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <roughnessmap_fragment>\n\t#include <metalnessmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include <transmission_fragment>\n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - clearcoat * Fcc ) + clearcoatSpecular * clearcoat;\n\t#endif\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
- var meshphong_frag = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_phong_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_phong_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
+ var meshphysical_vert = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}";
- var meshphong_vert = "#define PHONG\nvarying vec3 vViewPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
+ var meshtoon_frag = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <gradientmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_toon_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_toon_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
- var meshphysical_frag = "#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularTint;\n\t#ifdef USE_SPECULARINTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n\t#ifdef USE_SPECULARTINTMAP\n\t\tuniform sampler2D specularTintMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenTint;\n#endif\nvarying vec3 vViewPosition;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <bsdfs>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_physical_pars_fragment>\n#include <transmission_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <roughnessmap_fragment>\n\t#include <metalnessmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include <transmission_fragment>\n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - clearcoat * Fcc ) + clearcoatSpecular * clearcoat;\n\t#endif\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
+ var meshtoon_vert = "#define TOON\nvarying vec3 vViewPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
- var meshphysical_vert = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}";
+ var points_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <color_pars_fragment>\n#include <map_particle_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_particle_fragment>\n\t#include <color_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";
- var meshtoon_frag = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <gradientmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_toon_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_toon_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
+ var points_vert = "uniform float size;\nuniform float scale;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <fog_vertex>\n}";
- var meshtoon_vert = "#define TOON\nvarying vec3 vViewPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
+ var shadow_frag = "uniform vec3 color;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";
- var points_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <color_pars_fragment>\n#include <map_particle_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_particle_fragment>\n\t#include <color_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";
+ var shadow_vert = "#include <common>\n#include <fog_pars_vertex>\n#include <shadowmap_pars_vertex>\nvoid main() {\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
- var points_vert = "uniform float size;\nuniform float scale;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <fog_vertex>\n}";
+ var sprite_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";
- var shadow_frag = "uniform vec3 color;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";
+ var sprite_vert = "uniform float rotation;\nuniform vec2 center;\n#include <common>\n#include <uv_pars_vertex>\n#include <fog_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";
- var shadow_vert = "#include <common>\n#include <fog_pars_vertex>\n#include <shadowmap_pars_vertex>\nvoid main() {\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
+ const ShaderChunk = {
+ alphamap_fragment: alphamap_fragment,
+ alphamap_pars_fragment: alphamap_pars_fragment,
+ alphatest_fragment: alphatest_fragment,
+ alphatest_pars_fragment: alphatest_pars_fragment,
+ aomap_fragment: aomap_fragment,
+ aomap_pars_fragment: aomap_pars_fragment,
+ begin_vertex: begin_vertex,
+ beginnormal_vertex: beginnormal_vertex,
+ bsdfs: bsdfs,
+ bumpmap_pars_fragment: bumpmap_pars_fragment,
+ clipping_planes_fragment: clipping_planes_fragment,
+ clipping_planes_pars_fragment: clipping_planes_pars_fragment,
+ clipping_planes_pars_vertex: clipping_planes_pars_vertex,
+ clipping_planes_vertex: clipping_planes_vertex,
+ color_fragment: color_fragment,
+ color_pars_fragment: color_pars_fragment,
+ color_pars_vertex: color_pars_vertex,
+ color_vertex: color_vertex,
+ common: common,
+ cube_uv_reflection_fragment: cube_uv_reflection_fragment,
+ defaultnormal_vertex: defaultnormal_vertex,
+ displacementmap_pars_vertex: displacementmap_pars_vertex,
+ displacementmap_vertex: displacementmap_vertex,
+ emissivemap_fragment: emissivemap_fragment,
+ emissivemap_pars_fragment: emissivemap_pars_fragment,
+ encodings_fragment: encodings_fragment,
+ encodings_pars_fragment: encodings_pars_fragment,
+ envmap_fragment: envmap_fragment,
+ envmap_common_pars_fragment: envmap_common_pars_fragment,
+ envmap_pars_fragment: envmap_pars_fragment,
+ envmap_pars_vertex: envmap_pars_vertex,
+ envmap_physical_pars_fragment: envmap_physical_pars_fragment,
+ envmap_vertex: envmap_vertex,
+ fog_vertex: fog_vertex,
+ fog_pars_vertex: fog_pars_vertex,
+ fog_fragment: fog_fragment,
+ fog_pars_fragment: fog_pars_fragment,
+ gradientmap_pars_fragment: gradientmap_pars_fragment,
+ lightmap_fragment: lightmap_fragment,
+ lightmap_pars_fragment: lightmap_pars_fragment,
+ lights_lambert_vertex: lights_lambert_vertex,
+ lights_pars_begin: lights_pars_begin,
+ lights_toon_fragment: lights_toon_fragment,
+ lights_toon_pars_fragment: lights_toon_pars_fragment,
+ lights_phong_fragment: lights_phong_fragment,
+ lights_phong_pars_fragment: lights_phong_pars_fragment,
+ lights_physical_fragment: lights_physical_fragment,
+ lights_physical_pars_fragment: lights_physical_pars_fragment,
+ lights_fragment_begin: lights_fragment_begin,
+ lights_fragment_maps: lights_fragment_maps,
+ lights_fragment_end: lights_fragment_end,
+ logdepthbuf_fragment: logdepthbuf_fragment,
+ logdepthbuf_pars_fragment: logdepthbuf_pars_fragment,
+ logdepthbuf_pars_vertex: logdepthbuf_pars_vertex,
+ logdepthbuf_vertex: logdepthbuf_vertex,
+ map_fragment: map_fragment,
+ map_pars_fragment: map_pars_fragment,
+ map_particle_fragment: map_particle_fragment,
+ map_particle_pars_fragment: map_particle_pars_fragment,
+ metalnessmap_fragment: metalnessmap_fragment,
+ metalnessmap_pars_fragment: metalnessmap_pars_fragment,
+ morphnormal_vertex: morphnormal_vertex,
+ morphtarget_pars_vertex: morphtarget_pars_vertex,
+ morphtarget_vertex: morphtarget_vertex,
+ normal_fragment_begin: normal_fragment_begin,
+ normal_fragment_maps: normal_fragment_maps,
+ normal_pars_fragment: normal_pars_fragment,
+ normal_pars_vertex: normal_pars_vertex,
+ normal_vertex: normal_vertex,
+ normalmap_pars_fragment: normalmap_pars_fragment,
+ clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin,
+ clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps,
+ clearcoat_pars_fragment: clearcoat_pars_fragment,
+ output_fragment: output_fragment,
+ packing: packing,
+ premultiplied_alpha_fragment: premultiplied_alpha_fragment,
+ project_vertex: project_vertex,
+ dithering_fragment: dithering_fragment,
+ dithering_pars_fragment: dithering_pars_fragment,
+ roughnessmap_fragment: roughnessmap_fragment,
+ roughnessmap_pars_fragment: roughnessmap_pars_fragment,
+ shadowmap_pars_fragment: shadowmap_pars_fragment,
+ shadowmap_pars_vertex: shadowmap_pars_vertex,
+ shadowmap_vertex: shadowmap_vertex,
+ shadowmask_pars_fragment: shadowmask_pars_fragment,
+ skinbase_vertex: skinbase_vertex,
+ skinning_pars_vertex: skinning_pars_vertex,
+ skinning_vertex: skinning_vertex,
+ skinnormal_vertex: skinnormal_vertex,
+ specularmap_fragment: specularmap_fragment,
+ specularmap_pars_fragment: specularmap_pars_fragment,
+ tonemapping_fragment: tonemapping_fragment,
+ tonemapping_pars_fragment: tonemapping_pars_fragment,
+ transmission_fragment: transmission_fragment,
+ transmission_pars_fragment: transmission_pars_fragment,
+ uv_pars_fragment: uv_pars_fragment,
+ uv_pars_vertex: uv_pars_vertex,
+ uv_vertex: uv_vertex,
+ uv2_pars_fragment: uv2_pars_fragment,
+ uv2_pars_vertex: uv2_pars_vertex,
+ uv2_vertex: uv2_vertex,
+ worldpos_vertex: worldpos_vertex,
+ background_frag: background_frag,
+ background_vert: background_vert,
+ cube_frag: cube_frag,
+ cube_vert: cube_vert,
+ depth_frag: depth_frag,
+ depth_vert: depth_vert,
+ distanceRGBA_frag: distanceRGBA_frag,
+ distanceRGBA_vert: distanceRGBA_vert,
+ equirect_frag: equirect_frag,
+ equirect_vert: equirect_vert,
+ linedashed_frag: linedashed_frag,
+ linedashed_vert: linedashed_vert,
+ meshbasic_frag: meshbasic_frag,
+ meshbasic_vert: meshbasic_vert,
+ meshlambert_frag: meshlambert_frag,
+ meshlambert_vert: meshlambert_vert,
+ meshmatcap_frag: meshmatcap_frag,
+ meshmatcap_vert: meshmatcap_vert,
+ meshnormal_frag: meshnormal_frag,
+ meshnormal_vert: meshnormal_vert,
+ meshphong_frag: meshphong_frag,
+ meshphong_vert: meshphong_vert,
+ meshphysical_frag: meshphysical_frag,
+ meshphysical_vert: meshphysical_vert,
+ meshtoon_frag: meshtoon_frag,
+ meshtoon_vert: meshtoon_vert,
+ points_frag: points_frag,
+ points_vert: points_vert,
+ shadow_frag: shadow_frag,
+ shadow_vert: shadow_vert,
+ sprite_frag: sprite_frag,
+ sprite_vert: sprite_vert
+ };
- var sprite_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";
+ /**
+ * Uniforms library for shared webgl shaders
+ */
- var sprite_vert = "uniform float rotation;\nuniform vec2 center;\n#include <common>\n#include <uv_pars_vertex>\n#include <fog_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";
+ const UniformsLib = {
+ common: {
+ diffuse: {
+ value: new Color(0xffffff)
+ },
+ opacity: {
+ value: 1.0
+ },
+ map: {
+ value: null
+ },
+ uvTransform: {
+ value: new Matrix3()
+ },
+ uv2Transform: {
+ value: new Matrix3()
+ },
+ alphaMap: {
+ value: null
+ },
+ alphaTest: {
+ value: 0
+ }
+ },
+ specularmap: {
+ specularMap: {
+ value: null
+ }
+ },
+ envmap: {
+ envMap: {
+ value: null
+ },
+ flipEnvMap: {
+ value: -1
+ },
+ reflectivity: {
+ value: 1.0
+ },
+ // basic, lambert, phong
+ ior: {
+ value: 1.5
+ },
+ // standard, physical
+ refractionRatio: {
+ value: 0.98
+ },
+ maxMipLevel: {
+ value: 0
+ }
+ },
+ aomap: {
+ aoMap: {
+ value: null
+ },
+ aoMapIntensity: {
+ value: 1
+ }
+ },
+ lightmap: {
+ lightMap: {
+ value: null
+ },
+ lightMapIntensity: {
+ value: 1
+ }
+ },
+ emissivemap: {
+ emissiveMap: {
+ value: null
+ }
+ },
+ bumpmap: {
+ bumpMap: {
+ value: null
+ },
+ bumpScale: {
+ value: 1
+ }
+ },
+ normalmap: {
+ normalMap: {
+ value: null
+ },
+ normalScale: {
+ value: new Vector2(1, 1)
+ }
+ },
+ displacementmap: {
+ displacementMap: {
+ value: null
+ },
+ displacementScale: {
+ value: 1
+ },
+ displacementBias: {
+ value: 0
+ }
+ },
+ roughnessmap: {
+ roughnessMap: {
+ value: null
+ }
+ },
+ metalnessmap: {
+ metalnessMap: {
+ value: null
+ }
+ },
+ gradientmap: {
+ gradientMap: {
+ value: null
+ }
+ },
+ fog: {
+ fogDensity: {
+ value: 0.00025
+ },
+ fogNear: {
+ value: 1
+ },
+ fogFar: {
+ value: 2000
+ },
+ fogColor: {
+ value: new Color(0xffffff)
+ }
+ },
+ lights: {
+ ambientLightColor: {
+ value: []
+ },
+ lightProbe: {
+ value: []
+ },
+ directionalLights: {
+ value: [],
+ properties: {
+ direction: {},
+ color: {}
+ }
+ },
+ directionalLightShadows: {
+ value: [],
+ properties: {
+ shadowBias: {},
+ shadowNormalBias: {},
+ shadowRadius: {},
+ shadowMapSize: {}
+ }
+ },
+ directionalShadowMap: {
+ value: []
+ },
+ directionalShadowMatrix: {
+ value: []
+ },
+ spotLights: {
+ value: [],
+ properties: {
+ color: {},
+ position: {},
+ direction: {},
+ distance: {},
+ coneCos: {},
+ penumbraCos: {},
+ decay: {}
+ }
+ },
+ spotLightShadows: {
+ value: [],
+ properties: {
+ shadowBias: {},
+ shadowNormalBias: {},
+ shadowRadius: {},
+ shadowMapSize: {}
+ }
+ },
+ spotShadowMap: {
+ value: []
+ },
+ spotShadowMatrix: {
+ value: []
+ },
+ pointLights: {
+ value: [],
+ properties: {
+ color: {},
+ position: {},
+ decay: {},
+ distance: {}
+ }
+ },
+ pointLightShadows: {
+ value: [],
+ properties: {
+ shadowBias: {},
+ shadowNormalBias: {},
+ shadowRadius: {},
+ shadowMapSize: {},
+ shadowCameraNear: {},
+ shadowCameraFar: {}
+ }
+ },
+ pointShadowMap: {
+ value: []
+ },
+ pointShadowMatrix: {
+ value: []
+ },
+ hemisphereLights: {
+ value: [],
+ properties: {
+ direction: {},
+ skyColor: {},
+ groundColor: {}
+ }
+ },
+ // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src
+ rectAreaLights: {
+ value: [],
+ properties: {
+ color: {},
+ position: {},
+ width: {},
+ height: {}
+ }
+ },
+ ltc_1: {
+ value: null
+ },
+ ltc_2: {
+ value: null
+ }
+ },
+ points: {
+ diffuse: {
+ value: new Color(0xffffff)
+ },
+ opacity: {
+ value: 1.0
+ },
+ size: {
+ value: 1.0
+ },
+ scale: {
+ value: 1.0
+ },
+ map: {
+ value: null
+ },
+ alphaMap: {
+ value: null
+ },
+ alphaTest: {
+ value: 0
+ },
+ uvTransform: {
+ value: new Matrix3()
+ }
+ },
+ sprite: {
+ diffuse: {
+ value: new Color(0xffffff)
+ },
+ opacity: {
+ value: 1.0
+ },
+ center: {
+ value: new Vector2(0.5, 0.5)
+ },
+ rotation: {
+ value: 0.0
+ },
+ map: {
+ value: null
+ },
+ alphaMap: {
+ value: null
+ },
+ alphaTest: {
+ value: 0
+ },
+ uvTransform: {
+ value: new Matrix3()
+ }
+ }
+ };
- const ShaderChunk = {
- alphamap_fragment: alphamap_fragment,
- alphamap_pars_fragment: alphamap_pars_fragment,
- alphatest_fragment: alphatest_fragment,
- alphatest_pars_fragment: alphatest_pars_fragment,
- aomap_fragment: aomap_fragment,
- aomap_pars_fragment: aomap_pars_fragment,
- begin_vertex: begin_vertex,
- beginnormal_vertex: beginnormal_vertex,
- bsdfs: bsdfs,
- bumpmap_pars_fragment: bumpmap_pars_fragment,
- clipping_planes_fragment: clipping_planes_fragment,
- clipping_planes_pars_fragment: clipping_planes_pars_fragment,
- clipping_planes_pars_vertex: clipping_planes_pars_vertex,
- clipping_planes_vertex: clipping_planes_vertex,
- color_fragment: color_fragment,
- color_pars_fragment: color_pars_fragment,
- color_pars_vertex: color_pars_vertex,
- color_vertex: color_vertex,
- common: common,
- cube_uv_reflection_fragment: cube_uv_reflection_fragment,
- defaultnormal_vertex: defaultnormal_vertex,
- displacementmap_pars_vertex: displacementmap_pars_vertex,
- displacementmap_vertex: displacementmap_vertex,
- emissivemap_fragment: emissivemap_fragment,
- emissivemap_pars_fragment: emissivemap_pars_fragment,
- encodings_fragment: encodings_fragment,
- encodings_pars_fragment: encodings_pars_fragment,
- envmap_fragment: envmap_fragment,
- envmap_common_pars_fragment: envmap_common_pars_fragment,
- envmap_pars_fragment: envmap_pars_fragment,
- envmap_pars_vertex: envmap_pars_vertex,
- envmap_physical_pars_fragment: envmap_physical_pars_fragment,
- envmap_vertex: envmap_vertex,
- fog_vertex: fog_vertex,
- fog_pars_vertex: fog_pars_vertex,
- fog_fragment: fog_fragment,
- fog_pars_fragment: fog_pars_fragment,
- gradientmap_pars_fragment: gradientmap_pars_fragment,
- lightmap_fragment: lightmap_fragment,
- lightmap_pars_fragment: lightmap_pars_fragment,
- lights_lambert_vertex: lights_lambert_vertex,
- lights_pars_begin: lights_pars_begin,
- lights_toon_fragment: lights_toon_fragment,
- lights_toon_pars_fragment: lights_toon_pars_fragment,
- lights_phong_fragment: lights_phong_fragment,
- lights_phong_pars_fragment: lights_phong_pars_fragment,
- lights_physical_fragment: lights_physical_fragment,
- lights_physical_pars_fragment: lights_physical_pars_fragment,
- lights_fragment_begin: lights_fragment_begin,
- lights_fragment_maps: lights_fragment_maps,
- lights_fragment_end: lights_fragment_end,
- logdepthbuf_fragment: logdepthbuf_fragment,
- logdepthbuf_pars_fragment: logdepthbuf_pars_fragment,
- logdepthbuf_pars_vertex: logdepthbuf_pars_vertex,
- logdepthbuf_vertex: logdepthbuf_vertex,
- map_fragment: map_fragment,
- map_pars_fragment: map_pars_fragment,
- map_particle_fragment: map_particle_fragment,
- map_particle_pars_fragment: map_particle_pars_fragment,
- metalnessmap_fragment: metalnessmap_fragment,
- metalnessmap_pars_fragment: metalnessmap_pars_fragment,
- morphnormal_vertex: morphnormal_vertex,
- morphtarget_pars_vertex: morphtarget_pars_vertex,
- morphtarget_vertex: morphtarget_vertex,
- normal_fragment_begin: normal_fragment_begin,
- normal_fragment_maps: normal_fragment_maps,
- normal_pars_fragment: normal_pars_fragment,
- normal_pars_vertex: normal_pars_vertex,
- normal_vertex: normal_vertex,
- normalmap_pars_fragment: normalmap_pars_fragment,
- clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin,
- clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps,
- clearcoat_pars_fragment: clearcoat_pars_fragment,
- output_fragment: output_fragment,
- packing: packing,
- premultiplied_alpha_fragment: premultiplied_alpha_fragment,
- project_vertex: project_vertex,
- dithering_fragment: dithering_fragment,
- dithering_pars_fragment: dithering_pars_fragment,
- roughnessmap_fragment: roughnessmap_fragment,
- roughnessmap_pars_fragment: roughnessmap_pars_fragment,
- shadowmap_pars_fragment: shadowmap_pars_fragment,
- shadowmap_pars_vertex: shadowmap_pars_vertex,
- shadowmap_vertex: shadowmap_vertex,
- shadowmask_pars_fragment: shadowmask_pars_fragment,
- skinbase_vertex: skinbase_vertex,
- skinning_pars_vertex: skinning_pars_vertex,
- skinning_vertex: skinning_vertex,
- skinnormal_vertex: skinnormal_vertex,
- specularmap_fragment: specularmap_fragment,
- specularmap_pars_fragment: specularmap_pars_fragment,
- tonemapping_fragment: tonemapping_fragment,
- tonemapping_pars_fragment: tonemapping_pars_fragment,
- transmission_fragment: transmission_fragment,
- transmission_pars_fragment: transmission_pars_fragment,
- uv_pars_fragment: uv_pars_fragment,
- uv_pars_vertex: uv_pars_vertex,
- uv_vertex: uv_vertex,
- uv2_pars_fragment: uv2_pars_fragment,
- uv2_pars_vertex: uv2_pars_vertex,
- uv2_vertex: uv2_vertex,
- worldpos_vertex: worldpos_vertex,
- background_frag: background_frag,
- background_vert: background_vert,
- cube_frag: cube_frag,
- cube_vert: cube_vert,
- depth_frag: depth_frag,
- depth_vert: depth_vert,
- distanceRGBA_frag: distanceRGBA_frag,
- distanceRGBA_vert: distanceRGBA_vert,
- equirect_frag: equirect_frag,
- equirect_vert: equirect_vert,
- linedashed_frag: linedashed_frag,
- linedashed_vert: linedashed_vert,
- meshbasic_frag: meshbasic_frag,
- meshbasic_vert: meshbasic_vert,
- meshlambert_frag: meshlambert_frag,
- meshlambert_vert: meshlambert_vert,
- meshmatcap_frag: meshmatcap_frag,
- meshmatcap_vert: meshmatcap_vert,
- meshnormal_frag: meshnormal_frag,
- meshnormal_vert: meshnormal_vert,
- meshphong_frag: meshphong_frag,
- meshphong_vert: meshphong_vert,
- meshphysical_frag: meshphysical_frag,
- meshphysical_vert: meshphysical_vert,
- meshtoon_frag: meshtoon_frag,
- meshtoon_vert: meshtoon_vert,
- points_frag: points_frag,
- points_vert: points_vert,
- shadow_frag: shadow_frag,
- shadow_vert: shadow_vert,
- sprite_frag: sprite_frag,
- sprite_vert: sprite_vert
- };
-
- /**
- * Uniforms library for shared webgl shaders
- */
-
- const UniformsLib = {
- common: {
- diffuse: {
- value: new Color(0xffffff)
- },
- opacity: {
- value: 1.0
- },
- map: {
- value: null
- },
- uvTransform: {
- value: new Matrix3()
- },
- uv2Transform: {
- value: new Matrix3()
- },
- alphaMap: {
- value: null
- },
- alphaTest: {
- value: 0
- }
- },
- specularmap: {
- specularMap: {
- value: null
- }
- },
- envmap: {
- envMap: {
- value: null
- },
- flipEnvMap: {
- value: -1
- },
- reflectivity: {
- value: 1.0
- },
- // basic, lambert, phong
- ior: {
- value: 1.5
- },
- // standard, physical
- refractionRatio: {
- value: 0.98
- },
- maxMipLevel: {
- value: 0
- }
- },
- aomap: {
- aoMap: {
- value: null
- },
- aoMapIntensity: {
- value: 1
- }
- },
- lightmap: {
- lightMap: {
- value: null
- },
- lightMapIntensity: {
- value: 1
- }
- },
- emissivemap: {
- emissiveMap: {
- value: null
- }
- },
- bumpmap: {
- bumpMap: {
- value: null
- },
- bumpScale: {
- value: 1
- }
- },
- normalmap: {
- normalMap: {
- value: null
- },
- normalScale: {
- value: new Vector2(1, 1)
- }
- },
- displacementmap: {
- displacementMap: {
- value: null
- },
- displacementScale: {
- value: 1
- },
- displacementBias: {
- value: 0
- }
- },
- roughnessmap: {
- roughnessMap: {
- value: null
- }
- },
- metalnessmap: {
- metalnessMap: {
- value: null
- }
- },
- gradientmap: {
- gradientMap: {
- value: null
- }
- },
- fog: {
- fogDensity: {
- value: 0.00025
- },
- fogNear: {
- value: 1
- },
- fogFar: {
- value: 2000
- },
- fogColor: {
- value: new Color(0xffffff)
- }
- },
- lights: {
- ambientLightColor: {
- value: []
- },
- lightProbe: {
- value: []
- },
- directionalLights: {
- value: [],
- properties: {
- direction: {},
- color: {}
- }
- },
- directionalLightShadows: {
- value: [],
- properties: {
- shadowBias: {},
- shadowNormalBias: {},
- shadowRadius: {},
- shadowMapSize: {}
- }
- },
- directionalShadowMap: {
- value: []
- },
- directionalShadowMatrix: {
- value: []
- },
- spotLights: {
- value: [],
- properties: {
- color: {},
- position: {},
- direction: {},
- distance: {},
- coneCos: {},
- penumbraCos: {},
- decay: {}
- }
- },
- spotLightShadows: {
- value: [],
- properties: {
- shadowBias: {},
- shadowNormalBias: {},
- shadowRadius: {},
- shadowMapSize: {}
- }
- },
- spotShadowMap: {
- value: []
- },
- spotShadowMatrix: {
- value: []
- },
- pointLights: {
- value: [],
- properties: {
- color: {},
- position: {},
- decay: {},
- distance: {}
- }
- },
- pointLightShadows: {
- value: [],
- properties: {
- shadowBias: {},
- shadowNormalBias: {},
- shadowRadius: {},
- shadowMapSize: {},
- shadowCameraNear: {},
- shadowCameraFar: {}
- }
- },
- pointShadowMap: {
- value: []
- },
- pointShadowMatrix: {
- value: []
- },
- hemisphereLights: {
- value: [],
- properties: {
- direction: {},
- skyColor: {},
- groundColor: {}
- }
- },
- // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src
- rectAreaLights: {
- value: [],
- properties: {
- color: {},
- position: {},
- width: {},
- height: {}
- }
- },
- ltc_1: {
- value: null
- },
- ltc_2: {
- value: null
- }
- },
- points: {
- diffuse: {
- value: new Color(0xffffff)
- },
- opacity: {
- value: 1.0
- },
- size: {
- value: 1.0
- },
- scale: {
- value: 1.0
- },
- map: {
- value: null
- },
- alphaMap: {
- value: null
- },
- alphaTest: {
- value: 0
- },
- uvTransform: {
- value: new Matrix3()
- }
- },
- sprite: {
- diffuse: {
- value: new Color(0xffffff)
- },
- opacity: {
- value: 1.0
- },
- center: {
- value: new Vector2(0.5, 0.5)
- },
- rotation: {
- value: 0.0
- },
- map: {
- value: null
- },
- alphaMap: {
- value: null
- },
- alphaTest: {
- value: 0
- },
- uvTransform: {
- value: new Matrix3()
- }
- }
- };
-
- const ShaderLib = {
- basic: {
- uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog]),
- vertexShader: ShaderChunk.meshbasic_vert,
- fragmentShader: ShaderChunk.meshbasic_frag
- },
- lambert: {
- uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, {
- emissive: {
- value: new Color(0x000000)
- }
- }]),
- vertexShader: ShaderChunk.meshlambert_vert,
- fragmentShader: ShaderChunk.meshlambert_frag
- },
- phong: {
- uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, {
- emissive: {
- value: new Color(0x000000)
+ const ShaderLib = {
+ basic: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog]),
+ vertexShader: ShaderChunk.meshbasic_vert,
+ fragmentShader: ShaderChunk.meshbasic_frag
},
- specular: {
- value: new Color(0x111111)
+ lambert: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, {
+ emissive: {
+ value: new Color(0x000000)
+ }
+ }]),
+ vertexShader: ShaderChunk.meshlambert_vert,
+ fragmentShader: ShaderChunk.meshlambert_frag
},
- shininess: {
- value: 30
- }
- }]),
- vertexShader: ShaderChunk.meshphong_vert,
- fragmentShader: ShaderChunk.meshphong_frag
- },
- standard: {
- uniforms: mergeUniforms([UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, {
- emissive: {
- value: new Color(0x000000)
+ phong: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, {
+ emissive: {
+ value: new Color(0x000000)
+ },
+ specular: {
+ value: new Color(0x111111)
+ },
+ shininess: {
+ value: 30
+ }
+ }]),
+ vertexShader: ShaderChunk.meshphong_vert,
+ fragmentShader: ShaderChunk.meshphong_frag
},
- roughness: {
- value: 1.0
+ standard: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, {
+ emissive: {
+ value: new Color(0x000000)
+ },
+ roughness: {
+ value: 1.0
+ },
+ metalness: {
+ value: 0.0
+ },
+ envMapIntensity: {
+ value: 1
+ } // temporary
+
+ }]),
+ vertexShader: ShaderChunk.meshphysical_vert,
+ fragmentShader: ShaderChunk.meshphysical_frag
},
- metalness: {
- value: 0.0
+ toon: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, {
+ emissive: {
+ value: new Color(0x000000)
+ }
+ }]),
+ vertexShader: ShaderChunk.meshtoon_vert,
+ fragmentShader: ShaderChunk.meshtoon_frag
},
- envMapIntensity: {
- value: 1
- } // temporary
-
- }]),
- vertexShader: ShaderChunk.meshphysical_vert,
- fragmentShader: ShaderChunk.meshphysical_frag
- },
- toon: {
- uniforms: mergeUniforms([UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, {
- emissive: {
- value: new Color(0x000000)
- }
- }]),
- vertexShader: ShaderChunk.meshtoon_vert,
- fragmentShader: ShaderChunk.meshtoon_frag
- },
- matcap: {
- uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, {
matcap: {
- value: null
- }
- }]),
- vertexShader: ShaderChunk.meshmatcap_vert,
- fragmentShader: ShaderChunk.meshmatcap_frag
- },
- points: {
- uniforms: mergeUniforms([UniformsLib.points, UniformsLib.fog]),
- vertexShader: ShaderChunk.points_vert,
- fragmentShader: ShaderChunk.points_frag
- },
- dashed: {
- uniforms: mergeUniforms([UniformsLib.common, UniformsLib.fog, {
- scale: {
- value: 1
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, {
+ matcap: {
+ value: null
+ }
+ }]),
+ vertexShader: ShaderChunk.meshmatcap_vert,
+ fragmentShader: ShaderChunk.meshmatcap_frag
},
- dashSize: {
- value: 1
+ points: {
+ uniforms: mergeUniforms([UniformsLib.points, UniformsLib.fog]),
+ vertexShader: ShaderChunk.points_vert,
+ fragmentShader: ShaderChunk.points_frag
},
- totalSize: {
- value: 2
- }
- }]),
- vertexShader: ShaderChunk.linedashed_vert,
- fragmentShader: ShaderChunk.linedashed_frag
- },
- depth: {
- uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap]),
- vertexShader: ShaderChunk.depth_vert,
- fragmentShader: ShaderChunk.depth_frag
- },
- normal: {
- uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, {
- opacity: {
- value: 1.0
- }
- }]),
- vertexShader: ShaderChunk.meshnormal_vert,
- fragmentShader: ShaderChunk.meshnormal_frag
- },
- sprite: {
- uniforms: mergeUniforms([UniformsLib.sprite, UniformsLib.fog]),
- vertexShader: ShaderChunk.sprite_vert,
- fragmentShader: ShaderChunk.sprite_frag
- },
- background: {
- uniforms: {
- uvTransform: {
- value: new Matrix3()
+ dashed: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.fog, {
+ scale: {
+ value: 1
+ },
+ dashSize: {
+ value: 1
+ },
+ totalSize: {
+ value: 2
+ }
+ }]),
+ vertexShader: ShaderChunk.linedashed_vert,
+ fragmentShader: ShaderChunk.linedashed_frag
+ },
+ depth: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap]),
+ vertexShader: ShaderChunk.depth_vert,
+ fragmentShader: ShaderChunk.depth_frag
+ },
+ normal: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, {
+ opacity: {
+ value: 1.0
+ }
+ }]),
+ vertexShader: ShaderChunk.meshnormal_vert,
+ fragmentShader: ShaderChunk.meshnormal_frag
+ },
+ sprite: {
+ uniforms: mergeUniforms([UniformsLib.sprite, UniformsLib.fog]),
+ vertexShader: ShaderChunk.sprite_vert,
+ fragmentShader: ShaderChunk.sprite_frag
+ },
+ background: {
+ uniforms: {
+ uvTransform: {
+ value: new Matrix3()
+ },
+ t2D: {
+ value: null
+ }
+ },
+ vertexShader: ShaderChunk.background_vert,
+ fragmentShader: ShaderChunk.background_frag
},
- t2D: {
- value: null
- }
- },
- vertexShader: ShaderChunk.background_vert,
- fragmentShader: ShaderChunk.background_frag
- },
- /* -------------------------------------------------------------------------
+ /* -------------------------------------------------------------------------
// Cube map shader
------------------------------------------------------------------------- */
- cube: {
- uniforms: mergeUniforms([UniformsLib.envmap, {
- opacity: {
- value: 1.0
- }
- }]),
- vertexShader: ShaderChunk.cube_vert,
- fragmentShader: ShaderChunk.cube_frag
- },
- equirect: {
- uniforms: {
- tEquirect: {
- value: null
- }
- },
- vertexShader: ShaderChunk.equirect_vert,
- fragmentShader: ShaderChunk.equirect_frag
- },
- distanceRGBA: {
- uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap, {
- referencePosition: {
- value: new Vector3()
+ cube: {
+ uniforms: mergeUniforms([UniformsLib.envmap, {
+ opacity: {
+ value: 1.0
+ }
+ }]),
+ vertexShader: ShaderChunk.cube_vert,
+ fragmentShader: ShaderChunk.cube_frag
},
- nearDistance: {
- value: 1
+ equirect: {
+ uniforms: {
+ tEquirect: {
+ value: null
+ }
+ },
+ vertexShader: ShaderChunk.equirect_vert,
+ fragmentShader: ShaderChunk.equirect_frag
},
- farDistance: {
- value: 1000
- }
- }]),
- vertexShader: ShaderChunk.distanceRGBA_vert,
- fragmentShader: ShaderChunk.distanceRGBA_frag
- },
- shadow: {
- uniforms: mergeUniforms([UniformsLib.lights, UniformsLib.fog, {
- color: {
- value: new Color(0x00000)
+ distanceRGBA: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap, {
+ referencePosition: {
+ value: new Vector3()
+ },
+ nearDistance: {
+ value: 1
+ },
+ farDistance: {
+ value: 1000
+ }
+ }]),
+ vertexShader: ShaderChunk.distanceRGBA_vert,
+ fragmentShader: ShaderChunk.distanceRGBA_frag
},
- opacity: {
- value: 1.0
- }
- }]),
- vertexShader: ShaderChunk.shadow_vert,
- fragmentShader: ShaderChunk.shadow_frag
- }
- };
- ShaderLib.physical = {
- uniforms: mergeUniforms([ShaderLib.standard.uniforms, {
- clearcoat: {
- value: 0
- },
- clearcoatMap: {
- value: null
- },
- clearcoatRoughness: {
- value: 0
- },
- clearcoatRoughnessMap: {
- value: null
- },
- clearcoatNormalScale: {
- value: new Vector2(1, 1)
- },
- clearcoatNormalMap: {
- value: null
- },
- sheenTint: {
- value: new Color(0x000000)
- },
- transmission: {
- value: 0
- },
- transmissionMap: {
- value: null
- },
- transmissionSamplerSize: {
- value: new Vector2()
- },
- transmissionSamplerMap: {
- value: null
- },
- thickness: {
- value: 0
- },
- thicknessMap: {
- value: null
- },
- attenuationDistance: {
- value: 0
- },
- attenuationTint: {
- value: new Color(0x000000)
- },
- specularIntensity: {
- value: 0
- },
- specularIntensityMap: {
- value: null
- },
- specularTint: {
- value: new Color(1, 1, 1)
- },
- specularTintMap: {
- value: null
- }
- }]),
- vertexShader: ShaderChunk.meshphysical_vert,
- fragmentShader: ShaderChunk.meshphysical_frag
- };
-
- function WebGLBackground(renderer, cubemaps, state, objects, premultipliedAlpha) {
- const clearColor = new Color(0x000000);
- let clearAlpha = 0;
- let planeMesh;
- let boxMesh;
- let currentBackground = null;
- let currentBackgroundVersion = 0;
- let currentTonemapping = null;
-
- function render(renderList, scene) {
- let forceClear = false;
- let background = scene.isScene === true ? scene.background : null;
-
- if (background && background.isTexture) {
- background = cubemaps.get(background);
- } // Ignore background in AR
- // TODO: Reconsider this.
-
-
- const xr = renderer.xr;
- const session = xr.getSession && xr.getSession();
-
- if (session && session.environmentBlendMode === 'additive') {
- background = null;
- }
-
- if (background === null) {
- setClear(clearColor, clearAlpha);
- } else if (background && background.isColor) {
- setClear(background, 1);
- forceClear = true;
- }
-
- if (renderer.autoClear || forceClear) {
- renderer.clear(renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil);
- }
-
- if (background && (background.isCubeTexture || background.mapping === CubeUVReflectionMapping)) {
- if (boxMesh === undefined) {
- boxMesh = new Mesh(new BoxGeometry(1, 1, 1), new ShaderMaterial({
- name: 'BackgroundCubeMaterial',
- uniforms: cloneUniforms(ShaderLib.cube.uniforms),
- vertexShader: ShaderLib.cube.vertexShader,
- fragmentShader: ShaderLib.cube.fragmentShader,
- side: BackSide,
- depthTest: false,
- depthWrite: false,
- fog: false
- }));
- boxMesh.geometry.deleteAttribute('normal');
- boxMesh.geometry.deleteAttribute('uv');
-
- boxMesh.onBeforeRender = function (renderer, scene, camera) {
- this.matrixWorld.copyPosition(camera.matrixWorld);
- }; // enable code injection for non-built-in material
-
-
- Object.defineProperty(boxMesh.material, 'envMap', {
- get: function () {
- return this.uniforms.envMap.value;
+ shadow: {
+ uniforms: mergeUniforms([UniformsLib.lights, UniformsLib.fog, {
+ color: {
+ value: new Color(0x00000)
+ },
+ opacity: {
+ value: 1.0
}
- });
- objects.update(boxMesh);
+ }]),
+ vertexShader: ShaderChunk.shadow_vert,
+ fragmentShader: ShaderChunk.shadow_frag
}
+ };
+ ShaderLib.physical = {
+ uniforms: mergeUniforms([ShaderLib.standard.uniforms, {
+ clearcoat: {
+ value: 0
+ },
+ clearcoatMap: {
+ value: null
+ },
+ clearcoatRoughness: {
+ value: 0
+ },
+ clearcoatRoughnessMap: {
+ value: null
+ },
+ clearcoatNormalScale: {
+ value: new Vector2(1, 1)
+ },
+ clearcoatNormalMap: {
+ value: null
+ },
+ sheenTint: {
+ value: new Color(0x000000)
+ },
+ transmission: {
+ value: 0
+ },
+ transmissionMap: {
+ value: null
+ },
+ transmissionSamplerSize: {
+ value: new Vector2()
+ },
+ transmissionSamplerMap: {
+ value: null
+ },
+ thickness: {
+ value: 0
+ },
+ thicknessMap: {
+ value: null
+ },
+ attenuationDistance: {
+ value: 0
+ },
+ attenuationTint: {
+ value: new Color(0x000000)
+ },
+ specularIntensity: {
+ value: 0
+ },
+ specularIntensityMap: {
+ value: null
+ },
+ specularTint: {
+ value: new Color(1, 1, 1)
+ },
+ specularTintMap: {
+ value: null
+ }
+ }]),
+ vertexShader: ShaderChunk.meshphysical_vert,
+ fragmentShader: ShaderChunk.meshphysical_frag
+ };
- boxMesh.material.uniforms.envMap.value = background;
- boxMesh.material.uniforms.flipEnvMap.value = background.isCubeTexture && background.isRenderTargetTexture === false ? -1 : 1;
-
- if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) {
- boxMesh.material.needsUpdate = true;
- currentBackground = background;
- currentBackgroundVersion = background.version;
- currentTonemapping = renderer.toneMapping;
- } // push to the pre-sorted opaque render list
+ function WebGLBackground(renderer, cubemaps, state, objects, premultipliedAlpha) {
+ const clearColor = new Color(0x000000);
+ let clearAlpha = 0;
+ let planeMesh;
+ let boxMesh;
+ let currentBackground = null;
+ let currentBackgroundVersion = 0;
+ let currentTonemapping = null;
+ function render(renderList, scene) {
+ let forceClear = false;
+ let background = scene.isScene === true ? scene.background : null;
- renderList.unshift(boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null);
- } else if (background && background.isTexture) {
- if (planeMesh === undefined) {
- planeMesh = new Mesh(new PlaneGeometry(2, 2), new ShaderMaterial({
- name: 'BackgroundMaterial',
- uniforms: cloneUniforms(ShaderLib.background.uniforms),
- vertexShader: ShaderLib.background.vertexShader,
- fragmentShader: ShaderLib.background.fragmentShader,
- side: FrontSide,
- depthTest: false,
- depthWrite: false,
- fog: false
- }));
- planeMesh.geometry.deleteAttribute('normal'); // enable code injection for non-built-in material
+ if (background && background.isTexture) {
+ background = cubemaps.get(background);
+ } // Ignore background in AR
+ // TODO: Reconsider this.
- Object.defineProperty(planeMesh.material, 'map', {
- get: function () {
- return this.uniforms.t2D.value;
- }
- });
- objects.update(planeMesh);
- }
- planeMesh.material.uniforms.t2D.value = background;
+ const xr = renderer.xr;
+ const session = xr.getSession && xr.getSession();
- if (background.matrixAutoUpdate === true) {
- background.updateMatrix();
- }
+ if (session && session.environmentBlendMode === 'additive') {
+ background = null;
+ }
- planeMesh.material.uniforms.uvTransform.value.copy(background.matrix);
+ if (background === null) {
+ setClear(clearColor, clearAlpha);
+ } else if (background && background.isColor) {
+ setClear(background, 1);
+ forceClear = true;
+ }
- if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) {
- planeMesh.material.needsUpdate = true;
- currentBackground = background;
- currentBackgroundVersion = background.version;
- currentTonemapping = renderer.toneMapping;
- } // push to the pre-sorted opaque render list
+ if (renderer.autoClear || forceClear) {
+ renderer.clear(renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil);
+ }
+ if (background && (background.isCubeTexture || background.mapping === CubeUVReflectionMapping)) {
+ if (boxMesh === undefined) {
+ boxMesh = new Mesh(new BoxGeometry(1, 1, 1), new ShaderMaterial({
+ name: 'BackgroundCubeMaterial',
+ uniforms: cloneUniforms(ShaderLib.cube.uniforms),
+ vertexShader: ShaderLib.cube.vertexShader,
+ fragmentShader: ShaderLib.cube.fragmentShader,
+ side: BackSide,
+ depthTest: false,
+ depthWrite: false,
+ fog: false
+ }));
+ boxMesh.geometry.deleteAttribute('normal');
+ boxMesh.geometry.deleteAttribute('uv');
+
+ boxMesh.onBeforeRender = function (renderer, scene, camera) {
+ this.matrixWorld.copyPosition(camera.matrixWorld);
+ }; // enable code injection for non-built-in material
+
+
+ Object.defineProperty(boxMesh.material, 'envMap', {
+ get: function () {
+ return this.uniforms.envMap.value;
+ }
+ });
+ objects.update(boxMesh);
+ }
- renderList.unshift(planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null);
- }
- }
+ boxMesh.material.uniforms.envMap.value = background;
+ boxMesh.material.uniforms.flipEnvMap.value = background.isCubeTexture && background.isRenderTargetTexture === false ? -1 : 1;
+
+ if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) {
+ boxMesh.material.needsUpdate = true;
+ currentBackground = background;
+ currentBackgroundVersion = background.version;
+ currentTonemapping = renderer.toneMapping;
+ } // push to the pre-sorted opaque render list
+
+
+ renderList.unshift(boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null);
+ } else if (background && background.isTexture) {
+ if (planeMesh === undefined) {
+ planeMesh = new Mesh(new PlaneGeometry(2, 2), new ShaderMaterial({
+ name: 'BackgroundMaterial',
+ uniforms: cloneUniforms(ShaderLib.background.uniforms),
+ vertexShader: ShaderLib.background.vertexShader,
+ fragmentShader: ShaderLib.background.fragmentShader,
+ side: FrontSide,
+ depthTest: false,
+ depthWrite: false,
+ fog: false
+ }));
+ planeMesh.geometry.deleteAttribute('normal'); // enable code injection for non-built-in material
+
+ Object.defineProperty(planeMesh.material, 'map', {
+ get: function () {
+ return this.uniforms.t2D.value;
+ }
+ });
+ objects.update(planeMesh);
+ }
- function setClear(color, alpha) {
- state.buffers.color.setClear(color.r, color.g, color.b, alpha, premultipliedAlpha);
- }
+ planeMesh.material.uniforms.t2D.value = background;
- return {
- getClearColor: function () {
- return clearColor;
- },
- setClearColor: function (color, alpha = 1) {
- clearColor.set(color);
- clearAlpha = alpha;
- setClear(clearColor, clearAlpha);
- },
- getClearAlpha: function () {
- return clearAlpha;
- },
- setClearAlpha: function (alpha) {
- clearAlpha = alpha;
- setClear(clearColor, clearAlpha);
- },
- render: render
- };
- }
+ if (background.matrixAutoUpdate === true) {
+ background.updateMatrix();
+ }
- function WebGLBindingStates(gl, extensions, attributes, capabilities) {
- const maxVertexAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS);
- const extension = capabilities.isWebGL2 ? null : extensions.get('OES_vertex_array_object');
- const vaoAvailable = capabilities.isWebGL2 || extension !== null;
- const bindingStates = {};
- const defaultState = createBindingState(null);
- let currentState = defaultState;
+ planeMesh.material.uniforms.uvTransform.value.copy(background.matrix);
- function setup(object, material, program, geometry, index) {
- let updateBuffers = false;
+ if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) {
+ planeMesh.material.needsUpdate = true;
+ currentBackground = background;
+ currentBackgroundVersion = background.version;
+ currentTonemapping = renderer.toneMapping;
+ } // push to the pre-sorted opaque render list
- if (vaoAvailable) {
- const state = getBindingState(geometry, program, material);
- if (currentState !== state) {
- currentState = state;
- bindVertexArrayObject(currentState.object);
+ renderList.unshift(planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null);
+ }
}
- updateBuffers = needsUpdate(geometry, index);
- if (updateBuffers) saveCache(geometry, index);
- } else {
- const wireframe = material.wireframe === true;
-
- if (currentState.geometry !== geometry.id || currentState.program !== program.id || currentState.wireframe !== wireframe) {
- currentState.geometry = geometry.id;
- currentState.program = program.id;
- currentState.wireframe = wireframe;
- updateBuffers = true;
+ function setClear(color, alpha) {
+ state.buffers.color.setClear(color.r, color.g, color.b, alpha, premultipliedAlpha);
}
- }
- if (object.isInstancedMesh === true) {
- updateBuffers = true;
+ return {
+ getClearColor: function () {
+ return clearColor;
+ },
+ setClearColor: function (color, alpha = 1) {
+ clearColor.set(color);
+ clearAlpha = alpha;
+ setClear(clearColor, clearAlpha);
+ },
+ getClearAlpha: function () {
+ return clearAlpha;
+ },
+ setClearAlpha: function (alpha) {
+ clearAlpha = alpha;
+ setClear(clearColor, clearAlpha);
+ },
+ render: render
+ };
}
- if (index !== null) {
- attributes.update(index, gl.ELEMENT_ARRAY_BUFFER);
- }
+ function WebGLBindingStates(gl, extensions, attributes, capabilities) {
+ const maxVertexAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS);
+ const extension = capabilities.isWebGL2 ? null : extensions.get('OES_vertex_array_object');
+ const vaoAvailable = capabilities.isWebGL2 || extension !== null;
+ const bindingStates = {};
+ const defaultState = createBindingState(null);
+ let currentState = defaultState;
- if (updateBuffers) {
- setupVertexAttributes(object, material, program, geometry);
+ function setup(object, material, program, geometry, index) {
+ let updateBuffers = false;
- if (index !== null) {
- gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, attributes.get(index).buffer);
- }
- }
- }
+ if (vaoAvailable) {
+ const state = getBindingState(geometry, program, material);
- function createVertexArrayObject() {
- if (capabilities.isWebGL2) return gl.createVertexArray();
- return extension.createVertexArrayOES();
- }
+ if (currentState !== state) {
+ currentState = state;
+ bindVertexArrayObject(currentState.object);
+ }
- function bindVertexArrayObject(vao) {
- if (capabilities.isWebGL2) return gl.bindVertexArray(vao);
- return extension.bindVertexArrayOES(vao);
- }
+ updateBuffers = needsUpdate(geometry, index);
+ if (updateBuffers) saveCache(geometry, index);
+ } else {
+ const wireframe = material.wireframe === true;
- function deleteVertexArrayObject(vao) {
- if (capabilities.isWebGL2) return gl.deleteVertexArray(vao);
- return extension.deleteVertexArrayOES(vao);
- }
+ if (currentState.geometry !== geometry.id || currentState.program !== program.id || currentState.wireframe !== wireframe) {
+ currentState.geometry = geometry.id;
+ currentState.program = program.id;
+ currentState.wireframe = wireframe;
+ updateBuffers = true;
+ }
+ }
- function getBindingState(geometry, program, material) {
- const wireframe = material.wireframe === true;
- let programMap = bindingStates[geometry.id];
+ if (object.isInstancedMesh === true) {
+ updateBuffers = true;
+ }
- if (programMap === undefined) {
- programMap = {};
- bindingStates[geometry.id] = programMap;
- }
+ if (index !== null) {
+ attributes.update(index, gl.ELEMENT_ARRAY_BUFFER);
+ }
- let stateMap = programMap[program.id];
+ if (updateBuffers) {
+ setupVertexAttributes(object, material, program, geometry);
- if (stateMap === undefined) {
- stateMap = {};
- programMap[program.id] = stateMap;
- }
+ if (index !== null) {
+ gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, attributes.get(index).buffer);
+ }
+ }
+ }
- let state = stateMap[wireframe];
+ function createVertexArrayObject() {
+ if (capabilities.isWebGL2) return gl.createVertexArray();
+ return extension.createVertexArrayOES();
+ }
- if (state === undefined) {
- state = createBindingState(createVertexArrayObject());
- stateMap[wireframe] = state;
- }
+ function bindVertexArrayObject(vao) {
+ if (capabilities.isWebGL2) return gl.bindVertexArray(vao);
+ return extension.bindVertexArrayOES(vao);
+ }
- return state;
- }
+ function deleteVertexArrayObject(vao) {
+ if (capabilities.isWebGL2) return gl.deleteVertexArray(vao);
+ return extension.deleteVertexArrayOES(vao);
+ }
- function createBindingState(vao) {
- const newAttributes = [];
- const enabledAttributes = [];
- const attributeDivisors = [];
-
- for (let i = 0; i < maxVertexAttributes; i++) {
- newAttributes[i] = 0;
- enabledAttributes[i] = 0;
- attributeDivisors[i] = 0;
- }
-
- return {
- // for backward compatibility on non-VAO support browser
- geometry: null,
- program: null,
- wireframe: false,
- newAttributes: newAttributes,
- enabledAttributes: enabledAttributes,
- attributeDivisors: attributeDivisors,
- object: vao,
- attributes: {},
- index: null
- };
- }
+ function getBindingState(geometry, program, material) {
+ const wireframe = material.wireframe === true;
+ let programMap = bindingStates[geometry.id];
- function needsUpdate(geometry, index) {
- const cachedAttributes = currentState.attributes;
- const geometryAttributes = geometry.attributes;
- let attributesNum = 0;
+ if (programMap === undefined) {
+ programMap = {};
+ bindingStates[geometry.id] = programMap;
+ }
- for (const key in geometryAttributes) {
- const cachedAttribute = cachedAttributes[key];
- const geometryAttribute = geometryAttributes[key];
- if (cachedAttribute === undefined) return true;
- if (cachedAttribute.attribute !== geometryAttribute) return true;
- if (cachedAttribute.data !== geometryAttribute.data) return true;
- attributesNum++;
- }
+ let stateMap = programMap[program.id];
- if (currentState.attributesNum !== attributesNum) return true;
- if (currentState.index !== index) return true;
- return false;
- }
+ if (stateMap === undefined) {
+ stateMap = {};
+ programMap[program.id] = stateMap;
+ }
- function saveCache(geometry, index) {
- const cache = {};
- const attributes = geometry.attributes;
- let attributesNum = 0;
+ let state = stateMap[wireframe];
- for (const key in attributes) {
- const attribute = attributes[key];
- const data = {};
- data.attribute = attribute;
+ if (state === undefined) {
+ state = createBindingState(createVertexArrayObject());
+ stateMap[wireframe] = state;
+ }
- if (attribute.data) {
- data.data = attribute.data;
+ return state;
}
- cache[key] = data;
- attributesNum++;
- }
+ function createBindingState(vao) {
+ const newAttributes = [];
+ const enabledAttributes = [];
+ const attributeDivisors = [];
- currentState.attributes = cache;
- currentState.attributesNum = attributesNum;
- currentState.index = index;
- }
+ for (let i = 0; i < maxVertexAttributes; i++) {
+ newAttributes[i] = 0;
+ enabledAttributes[i] = 0;
+ attributeDivisors[i] = 0;
+ }
- function initAttributes() {
- const newAttributes = currentState.newAttributes;
+ return {
+ // for backward compatibility on non-VAO support browser
+ geometry: null,
+ program: null,
+ wireframe: false,
+ newAttributes: newAttributes,
+ enabledAttributes: enabledAttributes,
+ attributeDivisors: attributeDivisors,
+ object: vao,
+ attributes: {},
+ index: null
+ };
+ }
- for (let i = 0, il = newAttributes.length; i < il; i++) {
- newAttributes[i] = 0;
- }
- }
+ function needsUpdate(geometry, index) {
+ const cachedAttributes = currentState.attributes;
+ const geometryAttributes = geometry.attributes;
+ let attributesNum = 0;
- function enableAttribute(attribute) {
- enableAttributeAndDivisor(attribute, 0);
- }
+ for (const key in geometryAttributes) {
+ const cachedAttribute = cachedAttributes[key];
+ const geometryAttribute = geometryAttributes[key];
+ if (cachedAttribute === undefined) return true;
+ if (cachedAttribute.attribute !== geometryAttribute) return true;
+ if (cachedAttribute.data !== geometryAttribute.data) return true;
+ attributesNum++;
+ }
- function enableAttributeAndDivisor(attribute, meshPerAttribute) {
- const newAttributes = currentState.newAttributes;
- const enabledAttributes = currentState.enabledAttributes;
- const attributeDivisors = currentState.attributeDivisors;
- newAttributes[attribute] = 1;
+ if (currentState.attributesNum !== attributesNum) return true;
+ if (currentState.index !== index) return true;
+ return false;
+ }
- if (enabledAttributes[attribute] === 0) {
- gl.enableVertexAttribArray(attribute);
- enabledAttributes[attribute] = 1;
- }
+ function saveCache(geometry, index) {
+ const cache = {};
+ const attributes = geometry.attributes;
+ let attributesNum = 0;
- if (attributeDivisors[attribute] !== meshPerAttribute) {
- const extension = capabilities.isWebGL2 ? gl : extensions.get('ANGLE_instanced_arrays');
- extension[capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE'](attribute, meshPerAttribute);
- attributeDivisors[attribute] = meshPerAttribute;
- }
- }
+ for (const key in attributes) {
+ const attribute = attributes[key];
+ const data = {};
+ data.attribute = attribute;
+
+ if (attribute.data) {
+ data.data = attribute.data;
+ }
- function disableUnusedAttributes() {
- const newAttributes = currentState.newAttributes;
- const enabledAttributes = currentState.enabledAttributes;
+ cache[key] = data;
+ attributesNum++;
+ }
- for (let i = 0, il = enabledAttributes.length; i < il; i++) {
- if (enabledAttributes[i] !== newAttributes[i]) {
- gl.disableVertexAttribArray(i);
- enabledAttributes[i] = 0;
+ currentState.attributes = cache;
+ currentState.attributesNum = attributesNum;
+ currentState.index = index;
}
- }
- }
- function vertexAttribPointer(index, size, type, normalized, stride, offset) {
- if (capabilities.isWebGL2 === true && (type === gl.INT || type === gl.UNSIGNED_INT)) {
- gl.vertexAttribIPointer(index, size, type, stride, offset);
- } else {
- gl.vertexAttribPointer(index, size, type, normalized, stride, offset);
- }
- }
+ function initAttributes() {
+ const newAttributes = currentState.newAttributes;
- function setupVertexAttributes(object, material, program, geometry) {
- if (capabilities.isWebGL2 === false && (object.isInstancedMesh || geometry.isInstancedBufferGeometry)) {
- if (extensions.get('ANGLE_instanced_arrays') === null) return;
- }
+ for (let i = 0, il = newAttributes.length; i < il; i++) {
+ newAttributes[i] = 0;
+ }
+ }
- initAttributes();
- const geometryAttributes = geometry.attributes;
- const programAttributes = program.getAttributes();
- const materialDefaultAttributeValues = material.defaultAttributeValues;
+ function enableAttribute(attribute) {
+ enableAttributeAndDivisor(attribute, 0);
+ }
- for (const name in programAttributes) {
- const programAttribute = programAttributes[name];
+ function enableAttributeAndDivisor(attribute, meshPerAttribute) {
+ const newAttributes = currentState.newAttributes;
+ const enabledAttributes = currentState.enabledAttributes;
+ const attributeDivisors = currentState.attributeDivisors;
+ newAttributes[attribute] = 1;
- if (programAttribute.location >= 0) {
- let geometryAttribute = geometryAttributes[name];
+ if (enabledAttributes[attribute] === 0) {
+ gl.enableVertexAttribArray(attribute);
+ enabledAttributes[attribute] = 1;
+ }
- if (geometryAttribute === undefined) {
- if (name === 'instanceMatrix' && object.instanceMatrix) geometryAttribute = object.instanceMatrix;
- if (name === 'instanceColor' && object.instanceColor) geometryAttribute = object.instanceColor;
+ if (attributeDivisors[attribute] !== meshPerAttribute) {
+ const extension = capabilities.isWebGL2 ? gl : extensions.get('ANGLE_instanced_arrays');
+ extension[capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE'](attribute, meshPerAttribute);
+ attributeDivisors[attribute] = meshPerAttribute;
}
+ }
- if (geometryAttribute !== undefined) {
- const normalized = geometryAttribute.normalized;
- const size = geometryAttribute.itemSize;
- const attribute = attributes.get(geometryAttribute); // TODO Attribute may not be available on context restore
+ function disableUnusedAttributes() {
+ const newAttributes = currentState.newAttributes;
+ const enabledAttributes = currentState.enabledAttributes;
- if (attribute === undefined) continue;
- const buffer = attribute.buffer;
- const type = attribute.type;
- const bytesPerElement = attribute.bytesPerElement;
+ for (let i = 0, il = enabledAttributes.length; i < il; i++) {
+ if (enabledAttributes[i] !== newAttributes[i]) {
+ gl.disableVertexAttribArray(i);
+ enabledAttributes[i] = 0;
+ }
+ }
+ }
- if (geometryAttribute.isInterleavedBufferAttribute) {
- const data = geometryAttribute.data;
- const stride = data.stride;
- const offset = geometryAttribute.offset;
+ function vertexAttribPointer(index, size, type, normalized, stride, offset) {
+ if (capabilities.isWebGL2 === true && (type === gl.INT || type === gl.UNSIGNED_INT)) {
+ gl.vertexAttribIPointer(index, size, type, stride, offset);
+ } else {
+ gl.vertexAttribPointer(index, size, type, normalized, stride, offset);
+ }
+ }
- if (data && data.isInstancedInterleavedBuffer) {
- for (let i = 0; i < programAttribute.locationSize; i++) {
- enableAttributeAndDivisor(programAttribute.location + i, data.meshPerAttribute);
- }
+ function setupVertexAttributes(object, material, program, geometry) {
+ if (capabilities.isWebGL2 === false && (object.isInstancedMesh || geometry.isInstancedBufferGeometry)) {
+ if (extensions.get('ANGLE_instanced_arrays') === null) return;
+ }
- if (object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined) {
- geometry._maxInstanceCount = data.meshPerAttribute * data.count;
- }
- } else {
- for (let i = 0; i < programAttribute.locationSize; i++) {
- enableAttribute(programAttribute.location + i);
- }
- }
+ initAttributes();
+ const geometryAttributes = geometry.attributes;
+ const programAttributes = program.getAttributes();
+ const materialDefaultAttributeValues = material.defaultAttributeValues;
- gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
+ for (const name in programAttributes) {
+ const programAttribute = programAttributes[name];
- for (let i = 0; i < programAttribute.locationSize; i++) {
- vertexAttribPointer(programAttribute.location + i, size / programAttribute.locationSize, type, normalized, stride * bytesPerElement, (offset + size / programAttribute.locationSize * i) * bytesPerElement);
+ if (programAttribute.location >= 0) {
+ let geometryAttribute = geometryAttributes[name];
+
+ if (geometryAttribute === undefined) {
+ if (name === 'instanceMatrix' && object.instanceMatrix) geometryAttribute = object.instanceMatrix;
+ if (name === 'instanceColor' && object.instanceColor) geometryAttribute = object.instanceColor;
}
- } else {
- if (geometryAttribute.isInstancedBufferAttribute) {
- for (let i = 0; i < programAttribute.locationSize; i++) {
- enableAttributeAndDivisor(programAttribute.location + i, geometryAttribute.meshPerAttribute);
- }
- if (object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined) {
- geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;
+ if (geometryAttribute !== undefined) {
+ const normalized = geometryAttribute.normalized;
+ const size = geometryAttribute.itemSize;
+ const attribute = attributes.get(geometryAttribute); // TODO Attribute may not be available on context restore
+
+ if (attribute === undefined) continue;
+ const buffer = attribute.buffer;
+ const type = attribute.type;
+ const bytesPerElement = attribute.bytesPerElement;
+
+ if (geometryAttribute.isInterleavedBufferAttribute) {
+ const data = geometryAttribute.data;
+ const stride = data.stride;
+ const offset = geometryAttribute.offset;
+
+ if (data && data.isInstancedInterleavedBuffer) {
+ for (let i = 0; i < programAttribute.locationSize; i++) {
+ enableAttributeAndDivisor(programAttribute.location + i, data.meshPerAttribute);
+ }
+
+ if (object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined) {
+ geometry._maxInstanceCount = data.meshPerAttribute * data.count;
+ }
+ } else {
+ for (let i = 0; i < programAttribute.locationSize; i++) {
+ enableAttribute(programAttribute.location + i);
+ }
+ }
+
+ gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
+
+ for (let i = 0; i < programAttribute.locationSize; i++) {
+ vertexAttribPointer(programAttribute.location + i, size / programAttribute.locationSize, type, normalized, stride * bytesPerElement, (offset + size / programAttribute.locationSize * i) * bytesPerElement);
+ }
+ } else {
+ if (geometryAttribute.isInstancedBufferAttribute) {
+ for (let i = 0; i < programAttribute.locationSize; i++) {
+ enableAttributeAndDivisor(programAttribute.location + i, geometryAttribute.meshPerAttribute);
+ }
+
+ if (object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined) {
+ geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;
+ }
+ } else {
+ for (let i = 0; i < programAttribute.locationSize; i++) {
+ enableAttribute(programAttribute.location + i);
+ }
+ }
+
+ gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
+
+ for (let i = 0; i < programAttribute.locationSize; i++) {
+ vertexAttribPointer(programAttribute.location + i, size / programAttribute.locationSize, type, normalized, size * bytesPerElement, size / programAttribute.locationSize * i * bytesPerElement);
+ }
}
- } else {
- for (let i = 0; i < programAttribute.locationSize; i++) {
- enableAttribute(programAttribute.location + i);
+ } else if (materialDefaultAttributeValues !== undefined) {
+ const value = materialDefaultAttributeValues[name];
+
+ if (value !== undefined) {
+ switch (value.length) {
+ case 2:
+ gl.vertexAttrib2fv(programAttribute.location, value);
+ break;
+
+ case 3:
+ gl.vertexAttrib3fv(programAttribute.location, value);
+ break;
+
+ case 4:
+ gl.vertexAttrib4fv(programAttribute.location, value);
+ break;
+
+ default:
+ gl.vertexAttrib1fv(programAttribute.location, value);
+ }
}
}
-
- gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
-
- for (let i = 0; i < programAttribute.locationSize; i++) {
- vertexAttribPointer(programAttribute.location + i, size / programAttribute.locationSize, type, normalized, size * bytesPerElement, size / programAttribute.locationSize * i * bytesPerElement);
- }
}
- } else if (materialDefaultAttributeValues !== undefined) {
- const value = materialDefaultAttributeValues[name];
+ }
- if (value !== undefined) {
- switch (value.length) {
- case 2:
- gl.vertexAttrib2fv(programAttribute.location, value);
- break;
+ disableUnusedAttributes();
+ }
- case 3:
- gl.vertexAttrib3fv(programAttribute.location, value);
- break;
+ function dispose() {
+ reset();
- case 4:
- gl.vertexAttrib4fv(programAttribute.location, value);
- break;
+ for (const geometryId in bindingStates) {
+ const programMap = bindingStates[geometryId];
- default:
- gl.vertexAttrib1fv(programAttribute.location, value);
+ for (const programId in programMap) {
+ const stateMap = programMap[programId];
+
+ for (const wireframe in stateMap) {
+ deleteVertexArrayObject(stateMap[wireframe].object);
+ delete stateMap[wireframe];
}
+
+ delete programMap[programId];
}
+
+ delete bindingStates[geometryId];
}
}
- }
-
- disableUnusedAttributes();
- }
- function dispose() {
- reset();
+ function releaseStatesOfGeometry(geometry) {
+ if (bindingStates[geometry.id] === undefined) return;
+ const programMap = bindingStates[geometry.id];
- for (const geometryId in bindingStates) {
- const programMap = bindingStates[geometryId];
+ for (const programId in programMap) {
+ const stateMap = programMap[programId];
- for (const programId in programMap) {
- const stateMap = programMap[programId];
+ for (const wireframe in stateMap) {
+ deleteVertexArrayObject(stateMap[wireframe].object);
+ delete stateMap[wireframe];
+ }
- for (const wireframe in stateMap) {
- deleteVertexArrayObject(stateMap[wireframe].object);
- delete stateMap[wireframe];
+ delete programMap[programId];
}
- delete programMap[programId];
+ delete bindingStates[geometry.id];
}
- delete bindingStates[geometryId];
- }
- }
-
- function releaseStatesOfGeometry(geometry) {
- if (bindingStates[geometry.id] === undefined) return;
- const programMap = bindingStates[geometry.id];
+ function releaseStatesOfProgram(program) {
+ for (const geometryId in bindingStates) {
+ const programMap = bindingStates[geometryId];
+ if (programMap[program.id] === undefined) continue;
+ const stateMap = programMap[program.id];
- for (const programId in programMap) {
- const stateMap = programMap[programId];
+ for (const wireframe in stateMap) {
+ deleteVertexArrayObject(stateMap[wireframe].object);
+ delete stateMap[wireframe];
+ }
- for (const wireframe in stateMap) {
- deleteVertexArrayObject(stateMap[wireframe].object);
- delete stateMap[wireframe];
+ delete programMap[program.id];
+ }
}
- delete programMap[programId];
- }
-
- delete bindingStates[geometry.id];
- }
+ function reset() {
+ resetDefaultState();
+ if (currentState === defaultState) return;
+ currentState = defaultState;
+ bindVertexArrayObject(currentState.object);
+ } // for backward-compatilibity
- function releaseStatesOfProgram(program) {
- for (const geometryId in bindingStates) {
- const programMap = bindingStates[geometryId];
- if (programMap[program.id] === undefined) continue;
- const stateMap = programMap[program.id];
- for (const wireframe in stateMap) {
- deleteVertexArrayObject(stateMap[wireframe].object);
- delete stateMap[wireframe];
+ function resetDefaultState() {
+ defaultState.geometry = null;
+ defaultState.program = null;
+ defaultState.wireframe = false;
}
- delete programMap[program.id];
+ return {
+ setup: setup,
+ reset: reset,
+ resetDefaultState: resetDefaultState,
+ dispose: dispose,
+ releaseStatesOfGeometry: releaseStatesOfGeometry,
+ releaseStatesOfProgram: releaseStatesOfProgram,
+ initAttributes: initAttributes,
+ enableAttribute: enableAttribute,
+ disableUnusedAttributes: disableUnusedAttributes
+ };
}
- }
-
- function reset() {
- resetDefaultState();
- if (currentState === defaultState) return;
- currentState = defaultState;
- bindVertexArrayObject(currentState.object);
- } // for backward-compatilibity
+ function WebGLBufferRenderer(gl, extensions, info, capabilities) {
+ const isWebGL2 = capabilities.isWebGL2;
+ let mode;
- function resetDefaultState() {
- defaultState.geometry = null;
- defaultState.program = null;
- defaultState.wireframe = false;
- }
+ function setMode(value) {
+ mode = value;
+ }
- return {
- setup: setup,
- reset: reset,
- resetDefaultState: resetDefaultState,
- dispose: dispose,
- releaseStatesOfGeometry: releaseStatesOfGeometry,
- releaseStatesOfProgram: releaseStatesOfProgram,
- initAttributes: initAttributes,
- enableAttribute: enableAttribute,
- disableUnusedAttributes: disableUnusedAttributes
- };
- }
+ function render(start, count) {
+ gl.drawArrays(mode, start, count);
+ info.update(count, mode, 1);
+ }
- function WebGLBufferRenderer(gl, extensions, info, capabilities) {
- const isWebGL2 = capabilities.isWebGL2;
- let mode;
+ function renderInstances(start, count, primcount) {
+ if (primcount === 0) return;
+ let extension, methodName;
- function setMode(value) {
- mode = value;
- }
+ if (isWebGL2) {
+ extension = gl;
+ methodName = 'drawArraysInstanced';
+ } else {
+ extension = extensions.get('ANGLE_instanced_arrays');
+ methodName = 'drawArraysInstancedANGLE';
- function render(start, count) {
- gl.drawArrays(mode, start, count);
- info.update(count, mode, 1);
- }
+ if (extension === null) {
+ console.error('THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.');
+ return;
+ }
+ }
- function renderInstances(start, count, primcount) {
- if (primcount === 0) return;
- let extension, methodName;
+ extension[methodName](mode, start, count, primcount);
+ info.update(count, mode, primcount);
+ } //
- if (isWebGL2) {
- extension = gl;
- methodName = 'drawArraysInstanced';
- } else {
- extension = extensions.get('ANGLE_instanced_arrays');
- methodName = 'drawArraysInstancedANGLE';
- if (extension === null) {
- console.error('THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.');
- return;
- }
+ this.setMode = setMode;
+ this.render = render;
+ this.renderInstances = renderInstances;
}
- extension[methodName](mode, start, count, primcount);
- info.update(count, mode, primcount);
- } //
-
-
- this.setMode = setMode;
- this.render = render;
- this.renderInstances = renderInstances;
- }
+ function WebGLCapabilities(gl, extensions, parameters) {
+ let maxAnisotropy;
- function WebGLCapabilities(gl, extensions, parameters) {
- let maxAnisotropy;
+ function getMaxAnisotropy() {
+ if (maxAnisotropy !== undefined) return maxAnisotropy;
- function getMaxAnisotropy() {
- if (maxAnisotropy !== undefined) return maxAnisotropy;
+ if (extensions.has('EXT_texture_filter_anisotropic') === true) {
+ const extension = extensions.get('EXT_texture_filter_anisotropic');
+ maxAnisotropy = gl.getParameter(extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT);
+ } else {
+ maxAnisotropy = 0;
+ }
- if (extensions.has('EXT_texture_filter_anisotropic') === true) {
- const extension = extensions.get('EXT_texture_filter_anisotropic');
- maxAnisotropy = gl.getParameter(extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT);
- } else {
- maxAnisotropy = 0;
- }
+ return maxAnisotropy;
+ }
- return maxAnisotropy;
- }
+ function getMaxPrecision(precision) {
+ if (precision === 'highp') {
+ if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.HIGH_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.HIGH_FLOAT).precision > 0) {
+ return 'highp';
+ }
- function getMaxPrecision(precision) {
- if (precision === 'highp') {
- if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.HIGH_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.HIGH_FLOAT).precision > 0) {
- return 'highp';
- }
+ precision = 'mediump';
+ }
- precision = 'mediump';
- }
+ if (precision === 'mediump') {
+ if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.MEDIUM_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT).precision > 0) {
+ return 'mediump';
+ }
+ }
- if (precision === 'mediump') {
- if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.MEDIUM_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT).precision > 0) {
- return 'mediump';
+ return 'lowp';
}
- }
- return 'lowp';
- }
- /* eslint-disable no-undef */
+ /* eslint-disable no-undef */
- const isWebGL2 = typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext || typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext;
- /* eslint-enable no-undef */
+ const isWebGL2 = typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext || typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext;
+ /* eslint-enable no-undef */
- let precision = parameters.precision !== undefined ? parameters.precision : 'highp';
- const maxPrecision = getMaxPrecision(precision);
+ let precision = parameters.precision !== undefined ? parameters.precision : 'highp';
+ const maxPrecision = getMaxPrecision(precision);
- if (maxPrecision !== precision) {
- console.warn('THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.');
- precision = maxPrecision;
- }
+ if (maxPrecision !== precision) {
+ console.warn('THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.');
+ precision = maxPrecision;
+ }
- const drawBuffers = isWebGL2 || extensions.has('WEBGL_draw_buffers');
- const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true;
- const maxTextures = gl.getParameter(gl.MAX_TEXTURE_IMAGE_UNITS);
- const maxVertexTextures = gl.getParameter(gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS);
- const maxTextureSize = gl.getParameter(gl.MAX_TEXTURE_SIZE);
- const maxCubemapSize = gl.getParameter(gl.MAX_CUBE_MAP_TEXTURE_SIZE);
- const maxAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS);
- const maxVertexUniforms = gl.getParameter(gl.MAX_VERTEX_UNIFORM_VECTORS);
- const maxVaryings = gl.getParameter(gl.MAX_VARYING_VECTORS);
- const maxFragmentUniforms = gl.getParameter(gl.MAX_FRAGMENT_UNIFORM_VECTORS);
- const vertexTextures = maxVertexTextures > 0;
- const floatFragmentTextures = isWebGL2 || extensions.has('OES_texture_float');
- const floatVertexTextures = vertexTextures && floatFragmentTextures;
- const maxSamples = isWebGL2 ? gl.getParameter(gl.MAX_SAMPLES) : 0;
- return {
- isWebGL2: isWebGL2,
- drawBuffers: drawBuffers,
- getMaxAnisotropy: getMaxAnisotropy,
- getMaxPrecision: getMaxPrecision,
- precision: precision,
- logarithmicDepthBuffer: logarithmicDepthBuffer,
- maxTextures: maxTextures,
- maxVertexTextures: maxVertexTextures,
- maxTextureSize: maxTextureSize,
- maxCubemapSize: maxCubemapSize,
- maxAttributes: maxAttributes,
- maxVertexUniforms: maxVertexUniforms,
- maxVaryings: maxVaryings,
- maxFragmentUniforms: maxFragmentUniforms,
- vertexTextures: vertexTextures,
- floatFragmentTextures: floatFragmentTextures,
- floatVertexTextures: floatVertexTextures,
- maxSamples: maxSamples
- };
- }
+ const drawBuffers = isWebGL2 || extensions.has('WEBGL_draw_buffers');
+ const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true;
+ const maxTextures = gl.getParameter(gl.MAX_TEXTURE_IMAGE_UNITS);
+ const maxVertexTextures = gl.getParameter(gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS);
+ const maxTextureSize = gl.getParameter(gl.MAX_TEXTURE_SIZE);
+ const maxCubemapSize = gl.getParameter(gl.MAX_CUBE_MAP_TEXTURE_SIZE);
+ const maxAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS);
+ const maxVertexUniforms = gl.getParameter(gl.MAX_VERTEX_UNIFORM_VECTORS);
+ const maxVaryings = gl.getParameter(gl.MAX_VARYING_VECTORS);
+ const maxFragmentUniforms = gl.getParameter(gl.MAX_FRAGMENT_UNIFORM_VECTORS);
+ const vertexTextures = maxVertexTextures > 0;
+ const floatFragmentTextures = isWebGL2 || extensions.has('OES_texture_float');
+ const floatVertexTextures = vertexTextures && floatFragmentTextures;
+ const maxSamples = isWebGL2 ? gl.getParameter(gl.MAX_SAMPLES) : 0;
+ return {
+ isWebGL2: isWebGL2,
+ drawBuffers: drawBuffers,
+ getMaxAnisotropy: getMaxAnisotropy,
+ getMaxPrecision: getMaxPrecision,
+ precision: precision,
+ logarithmicDepthBuffer: logarithmicDepthBuffer,
+ maxTextures: maxTextures,
+ maxVertexTextures: maxVertexTextures,
+ maxTextureSize: maxTextureSize,
+ maxCubemapSize: maxCubemapSize,
+ maxAttributes: maxAttributes,
+ maxVertexUniforms: maxVertexUniforms,
+ maxVaryings: maxVaryings,
+ maxFragmentUniforms: maxFragmentUniforms,
+ vertexTextures: vertexTextures,
+ floatFragmentTextures: floatFragmentTextures,
+ floatVertexTextures: floatVertexTextures,
+ maxSamples: maxSamples
+ };
+ }
- function WebGLClipping(properties) {
- const scope = this;
- let globalState = null,
- numGlobalPlanes = 0,
- localClippingEnabled = false,
- renderingShadows = false;
- const plane = new Plane(),
+ function WebGLClipping(properties) {
+ const scope = this;
+ let globalState = null,
+ numGlobalPlanes = 0,
+ localClippingEnabled = false,
+ renderingShadows = false;
+ const plane = new Plane(),
viewNormalMatrix = new Matrix3(),
uniform = {
- value: null,
- needsUpdate: false
- };
- this.uniform = uniform;
- this.numPlanes = 0;
- this.numIntersection = 0;
-
- this.init = function (planes, enableLocalClipping, camera) {
- const enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to
- // run another frame in order to reset the state:
- numGlobalPlanes !== 0 || localClippingEnabled;
- localClippingEnabled = enableLocalClipping;
- globalState = projectPlanes(planes, camera, 0);
- numGlobalPlanes = planes.length;
- return enabled;
- };
-
- this.beginShadows = function () {
- renderingShadows = true;
- projectPlanes(null);
- };
-
- this.endShadows = function () {
- renderingShadows = false;
- resetGlobalState();
- };
-
- this.setState = function (material, camera, useCache) {
- const planes = material.clippingPlanes,
- clipIntersection = material.clipIntersection,
- clipShadows = material.clipShadows;
- const materialProperties = properties.get(material);
+ value: null,
+ needsUpdate: false
+ };
+ this.uniform = uniform;
+ this.numPlanes = 0;
+ this.numIntersection = 0;
+
+ this.init = function (planes, enableLocalClipping, camera) {
+ const enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to
+ // run another frame in order to reset the state:
+ numGlobalPlanes !== 0 || localClippingEnabled;
+ localClippingEnabled = enableLocalClipping;
+ globalState = projectPlanes(planes, camera, 0);
+ numGlobalPlanes = planes.length;
+ return enabled;
+ };
- if (!localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && !clipShadows) {
- // there's no local clipping
- if (renderingShadows) {
- // there's no global clipping
+ this.beginShadows = function () {
+ renderingShadows = true;
projectPlanes(null);
- } else {
+ };
+
+ this.endShadows = function () {
+ renderingShadows = false;
resetGlobalState();
- }
- } else {
- const nGlobal = renderingShadows ? 0 : numGlobalPlanes,
+ };
+
+ this.setState = function (material, camera, useCache) {
+ const planes = material.clippingPlanes,
+ clipIntersection = material.clipIntersection,
+ clipShadows = material.clipShadows;
+ const materialProperties = properties.get(material);
+
+ if (!localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && !clipShadows) {
+ // there's no local clipping
+ if (renderingShadows) {
+ // there's no global clipping
+ projectPlanes(null);
+ } else {
+ resetGlobalState();
+ }
+ } else {
+ const nGlobal = renderingShadows ? 0 : numGlobalPlanes,
lGlobal = nGlobal * 4;
- let dstArray = materialProperties.clippingState || null;
- uniform.value = dstArray; // ensure unique state
+ let dstArray = materialProperties.clippingState || null;
+ uniform.value = dstArray; // ensure unique state
- dstArray = projectPlanes(planes, camera, lGlobal, useCache);
+ dstArray = projectPlanes(planes, camera, lGlobal, useCache);
- for (let i = 0; i !== lGlobal; ++i) {
- dstArray[i] = globalState[i];
- }
+ for (let i = 0; i !== lGlobal; ++i) {
+ dstArray[i] = globalState[i];
+ }
- materialProperties.clippingState = dstArray;
- this.numIntersection = clipIntersection ? this.numPlanes : 0;
- this.numPlanes += nGlobal;
- }
- };
+ materialProperties.clippingState = dstArray;
+ this.numIntersection = clipIntersection ? this.numPlanes : 0;
+ this.numPlanes += nGlobal;
+ }
+ };
- function resetGlobalState() {
- if (uniform.value !== globalState) {
- uniform.value = globalState;
- uniform.needsUpdate = numGlobalPlanes > 0;
- }
+ function resetGlobalState() {
+ if (uniform.value !== globalState) {
+ uniform.value = globalState;
+ uniform.needsUpdate = numGlobalPlanes > 0;
+ }
- scope.numPlanes = numGlobalPlanes;
- scope.numIntersection = 0;
- }
+ scope.numPlanes = numGlobalPlanes;
+ scope.numIntersection = 0;
+ }
- function projectPlanes(planes, camera, dstOffset, skipTransform) {
- const nPlanes = planes !== null ? planes.length : 0;
- let dstArray = null;
+ function projectPlanes(planes, camera, dstOffset, skipTransform) {
+ const nPlanes = planes !== null ? planes.length : 0;
+ let dstArray = null;
- if (nPlanes !== 0) {
- dstArray = uniform.value;
+ if (nPlanes !== 0) {
+ dstArray = uniform.value;
- if (skipTransform !== true || dstArray === null) {
- const flatSize = dstOffset + nPlanes * 4,
+ if (skipTransform !== true || dstArray === null) {
+ const flatSize = dstOffset + nPlanes * 4,
viewMatrix = camera.matrixWorldInverse;
- viewNormalMatrix.getNormalMatrix(viewMatrix);
+ viewNormalMatrix.getNormalMatrix(viewMatrix);
- if (dstArray === null || dstArray.length < flatSize) {
- dstArray = new Float32Array(flatSize);
- }
+ if (dstArray === null || dstArray.length < flatSize) {
+ dstArray = new Float32Array(flatSize);
+ }
- for (let i = 0, i4 = dstOffset; i !== nPlanes; ++i, i4 += 4) {
- plane.copy(planes[i]).applyMatrix4(viewMatrix, viewNormalMatrix);
- plane.normal.toArray(dstArray, i4);
- dstArray[i4 + 3] = plane.constant;
+ for (let i = 0, i4 = dstOffset; i !== nPlanes; ++i, i4 += 4) {
+ plane.copy(planes[i]).applyMatrix4(viewMatrix, viewNormalMatrix);
+ plane.normal.toArray(dstArray, i4);
+ dstArray[i4 + 3] = plane.constant;
+ }
+ }
+
+ uniform.value = dstArray;
+ uniform.needsUpdate = true;
}
- }
- uniform.value = dstArray;
- uniform.needsUpdate = true;
+ scope.numPlanes = nPlanes;
+ scope.numIntersection = 0;
+ return dstArray;
+ }
}
- scope.numPlanes = nPlanes;
- scope.numIntersection = 0;
- return dstArray;
- }
- }
+ function WebGLCubeMaps(renderer) {
+ let cubemaps = new WeakMap();
+
+ function mapTextureMapping(texture, mapping) {
+ if (mapping === EquirectangularReflectionMapping) {
+ texture.mapping = CubeReflectionMapping;
+ } else if (mapping === EquirectangularRefractionMapping) {
+ texture.mapping = CubeRefractionMapping;
+ }
- function WebGLCubeMaps(renderer) {
- let cubemaps = new WeakMap();
+ return texture;
+ }
- function mapTextureMapping(texture, mapping) {
- if (mapping === EquirectangularReflectionMapping) {
- texture.mapping = CubeReflectionMapping;
- } else if (mapping === EquirectangularRefractionMapping) {
- texture.mapping = CubeRefractionMapping;
- }
+ function get(texture) {
+ if (texture && texture.isTexture && texture.isRenderTargetTexture === false) {
+ const mapping = texture.mapping;
- return texture;
- }
+ if (mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping) {
+ if (cubemaps.has(texture)) {
+ const cubemap = cubemaps.get(texture).texture;
+ return mapTextureMapping(cubemap, texture.mapping);
+ } else {
+ const image = texture.image;
+
+ if (image && image.height > 0) {
+ const currentRenderTarget = renderer.getRenderTarget();
+ const renderTarget = new WebGLCubeRenderTarget(image.height / 2);
+ renderTarget.fromEquirectangularTexture(renderer, texture);
+ cubemaps.set(texture, renderTarget);
+ renderer.setRenderTarget(currentRenderTarget);
+ texture.addEventListener('dispose', onTextureDispose);
+ return mapTextureMapping(renderTarget.texture, texture.mapping);
+ } else {
+ // image not yet ready. try the conversion next frame
+ return null;
+ }
+ }
+ }
+ }
- function get(texture) {
- if (texture && texture.isTexture && texture.isRenderTargetTexture === false) {
- const mapping = texture.mapping;
+ return texture;
+ }
- if (mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping) {
- if (cubemaps.has(texture)) {
- const cubemap = cubemaps.get(texture).texture;
- return mapTextureMapping(cubemap, texture.mapping);
- } else {
- const image = texture.image;
+ function onTextureDispose(event) {
+ const texture = event.target;
+ texture.removeEventListener('dispose', onTextureDispose);
+ const cubemap = cubemaps.get(texture);
- if (image && image.height > 0) {
- const currentRenderTarget = renderer.getRenderTarget();
- const renderTarget = new WebGLCubeRenderTarget(image.height / 2);
- renderTarget.fromEquirectangularTexture(renderer, texture);
- cubemaps.set(texture, renderTarget);
- renderer.setRenderTarget(currentRenderTarget);
- texture.addEventListener('dispose', onTextureDispose);
- return mapTextureMapping(renderTarget.texture, texture.mapping);
- } else {
- // image not yet ready. try the conversion next frame
- return null;
- }
+ if (cubemap !== undefined) {
+ cubemaps.delete(texture);
+ cubemap.dispose();
}
}
+
+ function dispose() {
+ cubemaps = new WeakMap();
+ }
+
+ return {
+ get: get,
+ dispose: dispose
+ };
}
- return texture;
- }
+ class OrthographicCamera extends Camera {
+ constructor(left = -1, right = 1, top = 1, bottom = -1, near = 0.1, far = 2000) {
+ super();
+ this.type = 'OrthographicCamera';
+ this.zoom = 1;
+ this.view = null;
+ this.left = left;
+ this.right = right;
+ this.top = top;
+ this.bottom = bottom;
+ this.near = near;
+ this.far = far;
+ this.updateProjectionMatrix();
+ }
+
+ copy(source, recursive) {
+ super.copy(source, recursive);
+ this.left = source.left;
+ this.right = source.right;
+ this.top = source.top;
+ this.bottom = source.bottom;
+ this.near = source.near;
+ this.far = source.far;
+ this.zoom = source.zoom;
+ this.view = source.view === null ? null : Object.assign({}, source.view);
+ return this;
+ }
- function onTextureDispose(event) {
- const texture = event.target;
- texture.removeEventListener('dispose', onTextureDispose);
- const cubemap = cubemaps.get(texture);
+ setViewOffset(fullWidth, fullHeight, x, y, width, height) {
+ if (this.view === null) {
+ this.view = {
+ enabled: true,
+ fullWidth: 1,
+ fullHeight: 1,
+ offsetX: 0,
+ offsetY: 0,
+ width: 1,
+ height: 1
+ };
+ }
- if (cubemap !== undefined) {
- cubemaps.delete(texture);
- cubemap.dispose();
- }
- }
+ this.view.enabled = true;
+ this.view.fullWidth = fullWidth;
+ this.view.fullHeight = fullHeight;
+ this.view.offsetX = x;
+ this.view.offsetY = y;
+ this.view.width = width;
+ this.view.height = height;
+ this.updateProjectionMatrix();
+ }
- function dispose() {
- cubemaps = new WeakMap();
- }
+ clearViewOffset() {
+ if (this.view !== null) {
+ this.view.enabled = false;
+ }
- return {
- get: get,
- dispose: dispose
- };
- }
+ this.updateProjectionMatrix();
+ }
+
+ updateProjectionMatrix() {
+ const dx = (this.right - this.left) / (2 * this.zoom);
+ const dy = (this.top - this.bottom) / (2 * this.zoom);
+ const cx = (this.right + this.left) / 2;
+ const cy = (this.top + this.bottom) / 2;
+ let left = cx - dx;
+ let right = cx + dx;
+ let top = cy + dy;
+ let bottom = cy - dy;
+
+ if (this.view !== null && this.view.enabled) {
+ const scaleW = (this.right - this.left) / this.view.fullWidth / this.zoom;
+ const scaleH = (this.top - this.bottom) / this.view.fullHeight / this.zoom;
+ left += scaleW * this.view.offsetX;
+ right = left + scaleW * this.view.width;
+ top -= scaleH * this.view.offsetY;
+ bottom = top - scaleH * this.view.height;
+ }
- class OrthographicCamera extends Camera {
- constructor(left = -1, right = 1, top = 1, bottom = -1, near = 0.1, far = 2000) {
- super();
- this.type = 'OrthographicCamera';
- this.zoom = 1;
- this.view = null;
- this.left = left;
- this.right = right;
- this.top = top;
- this.bottom = bottom;
- this.near = near;
- this.far = far;
- this.updateProjectionMatrix();
- }
+ this.projectionMatrix.makeOrthographic(left, right, top, bottom, this.near, this.far);
+ this.projectionMatrixInverse.copy(this.projectionMatrix).invert();
+ }
- copy(source, recursive) {
- super.copy(source, recursive);
- this.left = source.left;
- this.right = source.right;
- this.top = source.top;
- this.bottom = source.bottom;
- this.near = source.near;
- this.far = source.far;
- this.zoom = source.zoom;
- this.view = source.view === null ? null : Object.assign({}, source.view);
- return this;
- }
+ toJSON(meta) {
+ const data = super.toJSON(meta);
+ data.object.zoom = this.zoom;
+ data.object.left = this.left;
+ data.object.right = this.right;
+ data.object.top = this.top;
+ data.object.bottom = this.bottom;
+ data.object.near = this.near;
+ data.object.far = this.far;
+ if (this.view !== null) data.object.view = Object.assign({}, this.view);
+ return data;
+ }
- setViewOffset(fullWidth, fullHeight, x, y, width, height) {
- if (this.view === null) {
- this.view = {
- enabled: true,
- fullWidth: 1,
- fullHeight: 1,
- offsetX: 0,
- offsetY: 0,
- width: 1,
- height: 1
- };
}
- this.view.enabled = true;
- this.view.fullWidth = fullWidth;
- this.view.fullHeight = fullHeight;
- this.view.offsetX = x;
- this.view.offsetY = y;
- this.view.width = width;
- this.view.height = height;
- this.updateProjectionMatrix();
- }
+ OrthographicCamera.prototype.isOrthographicCamera = true;
+
+ class RawShaderMaterial extends ShaderMaterial {
+ constructor(parameters) {
+ super(parameters);
+ this.type = 'RawShaderMaterial';
+ }
- clearViewOffset() {
- if (this.view !== null) {
- this.view.enabled = false;
}
- this.updateProjectionMatrix();
- }
+ RawShaderMaterial.prototype.isRawShaderMaterial = true;
- updateProjectionMatrix() {
- const dx = (this.right - this.left) / (2 * this.zoom);
- const dy = (this.top - this.bottom) / (2 * this.zoom);
- const cx = (this.right + this.left) / 2;
- const cy = (this.top + this.bottom) / 2;
- let left = cx - dx;
- let right = cx + dx;
- let top = cy + dy;
- let bottom = cy - dy;
-
- if (this.view !== null && this.view.enabled) {
- const scaleW = (this.right - this.left) / this.view.fullWidth / this.zoom;
- const scaleH = (this.top - this.bottom) / this.view.fullHeight / this.zoom;
- left += scaleW * this.view.offsetX;
- right = left + scaleW * this.view.width;
- top -= scaleH * this.view.offsetY;
- bottom = top - scaleH * this.view.height;
- }
-
- this.projectionMatrix.makeOrthographic(left, right, top, bottom, this.near, this.far);
- this.projectionMatrixInverse.copy(this.projectionMatrix).invert();
- }
+ const LOD_MIN = 4;
+ const LOD_MAX = 8;
+ const SIZE_MAX = Math.pow(2, LOD_MAX); // The standard deviations (radians) associated with the extra mips. These are
+ // chosen to approximate a Trowbridge-Reitz distribution function times the
+ // geometric shadowing function. These sigma values squared must match the
+ // variance #defines in cube_uv_reflection_fragment.glsl.js.
- toJSON(meta) {
- const data = super.toJSON(meta);
- data.object.zoom = this.zoom;
- data.object.left = this.left;
- data.object.right = this.right;
- data.object.top = this.top;
- data.object.bottom = this.bottom;
- data.object.near = this.near;
- data.object.far = this.far;
- if (this.view !== null) data.object.view = Object.assign({}, this.view);
- return data;
- }
+ const EXTRA_LOD_SIGMA = [0.125, 0.215, 0.35, 0.446, 0.526, 0.582];
+ const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; // The maximum length of the blur for loop. Smaller sigmas will use fewer
+ // samples and exit early, but not recompile the shader.
- }
+ const MAX_SAMPLES = 20;
+ const ENCODINGS = {
+ [LinearEncoding]: 0,
+ [sRGBEncoding]: 1,
+ [RGBEEncoding]: 2,
+ [RGBM7Encoding]: 3,
+ [RGBM16Encoding]: 4,
+ [RGBDEncoding]: 5,
+ [GammaEncoding]: 6
+ };
- OrthographicCamera.prototype.isOrthographicCamera = true;
+ const _flatCamera = /*@__PURE__*/new OrthographicCamera();
- class RawShaderMaterial extends ShaderMaterial {
- constructor(parameters) {
- super(parameters);
- this.type = 'RawShaderMaterial';
- }
+ const {
+ _lodPlanes,
+ _sizeLods,
+ _sigmas
+ } = /*@__PURE__*/_createPlanes();
- }
+ const _clearColor = /*@__PURE__*/new Color();
- RawShaderMaterial.prototype.isRawShaderMaterial = true;
-
- const LOD_MIN = 4;
- const LOD_MAX = 8;
- const SIZE_MAX = Math.pow(2, LOD_MAX); // The standard deviations (radians) associated with the extra mips. These are
- // chosen to approximate a Trowbridge-Reitz distribution function times the
- // geometric shadowing function. These sigma values squared must match the
- // variance #defines in cube_uv_reflection_fragment.glsl.js.
-
- const EXTRA_LOD_SIGMA = [0.125, 0.215, 0.35, 0.446, 0.526, 0.582];
- const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; // The maximum length of the blur for loop. Smaller sigmas will use fewer
- // samples and exit early, but not recompile the shader.
-
- const MAX_SAMPLES = 20;
- const ENCODINGS = {
- [LinearEncoding]: 0,
- [sRGBEncoding]: 1,
- [RGBEEncoding]: 2,
- [RGBM7Encoding]: 3,
- [RGBM16Encoding]: 4,
- [RGBDEncoding]: 5,
- [GammaEncoding]: 6
- };
-
- const _flatCamera = /*@__PURE__*/new OrthographicCamera();
-
- const {
- _lodPlanes,
- _sizeLods,
- _sigmas
- } = /*@__PURE__*/_createPlanes();
-
- const _clearColor = /*@__PURE__*/new Color();
-
- let _oldTarget = null; // Golden Ratio
-
- const PHI = (1 + Math.sqrt(5)) / 2;
- const INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the
- // same axis), used as axis directions evenly spread on a sphere.
-
- const _axisDirections = [/*@__PURE__*/new Vector3(1, 1, 1), /*@__PURE__*/new Vector3(-1, 1, 1), /*@__PURE__*/new Vector3(1, 1, -1), /*@__PURE__*/new Vector3(-1, 1, -1), /*@__PURE__*/new Vector3(0, PHI, INV_PHI), /*@__PURE__*/new Vector3(0, PHI, -INV_PHI), /*@__PURE__*/new Vector3(INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(-INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(PHI, INV_PHI, 0), /*@__PURE__*/new Vector3(-PHI, INV_PHI, 0)];
- /**
- * This class generates a Prefiltered, Mipmapped Radiance Environment Map
- * (PMREM) from a cubeMap environment texture. This allows different levels of
- * blur to be quickly accessed based on material roughness. It is packed into a
- * special CubeUV format that allows us to perform custom interpolation so that
- * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
- * chain, it only goes down to the LOD_MIN level (above), and then creates extra
- * even more filtered 'mips' at the same LOD_MIN resolution, associated with
- * higher roughness levels. In this way we maintain resolution to smoothly
- * interpolate diffuse lighting while limiting sampling computation.
- *
- * Paper: Fast, Accurate Image-Based Lighting
- * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view
- */
+ let _oldTarget = null; // Golden Ratio
- class PMREMGenerator {
- constructor(renderer) {
- this._renderer = renderer;
- this._pingPongRenderTarget = null;
- this._blurMaterial = _getBlurShader(MAX_SAMPLES);
- this._equirectShader = null;
- this._cubemapShader = null;
+ const PHI = (1 + Math.sqrt(5)) / 2;
+ const INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the
+ // same axis), used as axis directions evenly spread on a sphere.
- this._compileMaterial(this._blurMaterial);
- }
- /**
- * Generates a PMREM from a supplied Scene, which can be faster than using an
- * image if networking bandwidth is low. Optional sigma specifies a blur radius
- * in radians to be applied to the scene before PMREM generation. Optional near
- * and far planes ensure the scene is rendered in its entirety (the cubeCamera
- * is placed at the origin).
- */
+ const _axisDirections = [/*@__PURE__*/new Vector3(1, 1, 1), /*@__PURE__*/new Vector3(-1, 1, 1), /*@__PURE__*/new Vector3(1, 1, -1), /*@__PURE__*/new Vector3(-1, 1, -1), /*@__PURE__*/new Vector3(0, PHI, INV_PHI), /*@__PURE__*/new Vector3(0, PHI, -INV_PHI), /*@__PURE__*/new Vector3(INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(-INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(PHI, INV_PHI, 0), /*@__PURE__*/new Vector3(-PHI, INV_PHI, 0)];
+ /**
+ * This class generates a Prefiltered, Mipmapped Radiance Environment Map
+ * (PMREM) from a cubeMap environment texture. This allows different levels of
+ * blur to be quickly accessed based on material roughness. It is packed into a
+ * special CubeUV format that allows us to perform custom interpolation so that
+ * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
+ * chain, it only goes down to the LOD_MIN level (above), and then creates extra
+ * even more filtered 'mips' at the same LOD_MIN resolution, associated with
+ * higher roughness levels. In this way we maintain resolution to smoothly
+ * interpolate diffuse lighting while limiting sampling computation.
+ *
+ * Paper: Fast, Accurate Image-Based Lighting
+ * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view
+ */
- fromScene(scene, sigma = 0, near = 0.1, far = 100) {
- _oldTarget = this._renderer.getRenderTarget();
+ class PMREMGenerator {
+ constructor(renderer) {
+ this._renderer = renderer;
+ this._pingPongRenderTarget = null;
+ this._blurMaterial = _getBlurShader(MAX_SAMPLES);
+ this._equirectShader = null;
+ this._cubemapShader = null;
- const cubeUVRenderTarget = this._allocateTargets();
+ this._compileMaterial(this._blurMaterial);
+ }
- this._sceneToCubeUV(scene, near, far, cubeUVRenderTarget);
+ /**
+ * Generates a PMREM from a supplied Scene, which can be faster than using an
+ * image if networking bandwidth is low. Optional sigma specifies a blur radius
+ * in radians to be applied to the scene before PMREM generation. Optional near
+ * and far planes ensure the scene is rendered in its entirety (the cubeCamera
+ * is placed at the origin).
+ */
- if (sigma > 0) {
- this._blur(cubeUVRenderTarget, 0, 0, sigma);
- }
- this._applyPMREM(cubeUVRenderTarget);
+ fromScene(scene, sigma = 0, near = 0.1, far = 100) {
+ _oldTarget = this._renderer.getRenderTarget();
- this._cleanup(cubeUVRenderTarget);
+ const cubeUVRenderTarget = this._allocateTargets();
- return cubeUVRenderTarget;
- }
- /**
- * Generates a PMREM from an equirectangular texture, which can be either LDR
- * (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
- * as this matches best with the 256 x 256 cubemap output.
- */
+ this._sceneToCubeUV(scene, near, far, cubeUVRenderTarget);
+ if (sigma > 0) {
+ this._blur(cubeUVRenderTarget, 0, 0, sigma);
+ }
- fromEquirectangular(equirectangular) {
- return this._fromTexture(equirectangular);
- }
- /**
- * Generates a PMREM from an cubemap texture, which can be either LDR
- * (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
- * as this matches best with the 256 x 256 cubemap output.
- */
+ this._applyPMREM(cubeUVRenderTarget);
+ this._cleanup(cubeUVRenderTarget);
- fromCubemap(cubemap) {
- return this._fromTexture(cubemap);
- }
- /**
- * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
- * your texture's network fetch for increased concurrency.
- */
+ return cubeUVRenderTarget;
+ }
+ /**
+ * Generates a PMREM from an equirectangular texture, which can be either LDR
+ * (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
+ * as this matches best with the 256 x 256 cubemap output.
+ */
- compileCubemapShader() {
- if (this._cubemapShader === null) {
- this._cubemapShader = _getCubemapShader();
- this._compileMaterial(this._cubemapShader);
- }
- }
- /**
- * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
- * your texture's network fetch for increased concurrency.
- */
+ fromEquirectangular(equirectangular) {
+ return this._fromTexture(equirectangular);
+ }
+ /**
+ * Generates a PMREM from an cubemap texture, which can be either LDR
+ * (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
+ * as this matches best with the 256 x 256 cubemap output.
+ */
- compileEquirectangularShader() {
- if (this._equirectShader === null) {
- this._equirectShader = _getEquirectShader();
- this._compileMaterial(this._equirectShader);
- }
- }
- /**
- * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
- * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
- * one of them will cause any others to also become unusable.
- */
+ fromCubemap(cubemap) {
+ return this._fromTexture(cubemap);
+ }
+ /**
+ * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
+ * your texture's network fetch for increased concurrency.
+ */
- dispose() {
- this._blurMaterial.dispose();
- if (this._cubemapShader !== null) this._cubemapShader.dispose();
- if (this._equirectShader !== null) this._equirectShader.dispose();
+ compileCubemapShader() {
+ if (this._cubemapShader === null) {
+ this._cubemapShader = _getCubemapShader();
- for (let i = 0; i < _lodPlanes.length; i++) {
- _lodPlanes[i].dispose();
- }
- } // private interface
+ this._compileMaterial(this._cubemapShader);
+ }
+ }
+ /**
+ * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
+ * your texture's network fetch for increased concurrency.
+ */
- _cleanup(outputTarget) {
- this._pingPongRenderTarget.dispose();
- this._renderer.setRenderTarget(_oldTarget);
+ compileEquirectangularShader() {
+ if (this._equirectShader === null) {
+ this._equirectShader = _getEquirectShader();
- outputTarget.scissorTest = false;
+ this._compileMaterial(this._equirectShader);
+ }
+ }
- _setViewport(outputTarget, 0, 0, outputTarget.width, outputTarget.height);
- }
+ /**
+ * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
+ * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
+ * one of them will cause any others to also become unusable.
+ */
- _fromTexture(texture) {
- _oldTarget = this._renderer.getRenderTarget();
- const cubeUVRenderTarget = this._allocateTargets(texture);
+ dispose() {
+ this._blurMaterial.dispose();
- this._textureToCubeUV(texture, cubeUVRenderTarget);
+ if (this._cubemapShader !== null) this._cubemapShader.dispose();
+ if (this._equirectShader !== null) this._equirectShader.dispose();
- this._applyPMREM(cubeUVRenderTarget);
+ for (let i = 0; i < _lodPlanes.length; i++) {
+ _lodPlanes[i].dispose();
+ }
+ } // private interface
- this._cleanup(cubeUVRenderTarget);
- return cubeUVRenderTarget;
- }
+ _cleanup(outputTarget) {
+ this._pingPongRenderTarget.dispose();
- _allocateTargets(texture) {
- // warning: null texture is valid
- const params = {
- magFilter: NearestFilter,
- minFilter: NearestFilter,
- generateMipmaps: false,
- type: UnsignedByteType,
- format: RGBEFormat,
- encoding: _isLDR(texture) ? texture.encoding : RGBEEncoding,
- depthBuffer: false
- };
+ this._renderer.setRenderTarget(_oldTarget);
- const cubeUVRenderTarget = _createRenderTarget(params);
+ outputTarget.scissorTest = false;
- cubeUVRenderTarget.depthBuffer = texture ? false : true;
- this._pingPongRenderTarget = _createRenderTarget(params);
- return cubeUVRenderTarget;
- }
+ _setViewport(outputTarget, 0, 0, outputTarget.width, outputTarget.height);
+ }
- _compileMaterial(material) {
- const tmpMesh = new Mesh(_lodPlanes[0], material);
+ _fromTexture(texture) {
+ _oldTarget = this._renderer.getRenderTarget();
- this._renderer.compile(tmpMesh, _flatCamera);
- }
+ const cubeUVRenderTarget = this._allocateTargets(texture);
- _sceneToCubeUV(scene, near, far, cubeUVRenderTarget) {
- const fov = 90;
- const aspect = 1;
- const cubeCamera = new PerspectiveCamera(fov, aspect, near, far);
- const upSign = [1, -1, 1, 1, 1, 1];
- const forwardSign = [1, 1, 1, -1, -1, -1];
- const renderer = this._renderer;
- const originalAutoClear = renderer.autoClear;
- const outputEncoding = renderer.outputEncoding;
- const toneMapping = renderer.toneMapping;
- renderer.getClearColor(_clearColor);
- renderer.toneMapping = NoToneMapping;
- renderer.outputEncoding = LinearEncoding;
- renderer.autoClear = false;
- const backgroundMaterial = new MeshBasicMaterial({
- name: 'PMREM.Background',
- side: BackSide,
- depthWrite: false,
- depthTest: false
- });
- const backgroundBox = new Mesh(new BoxGeometry(), backgroundMaterial);
- let useSolidColor = false;
- const background = scene.background;
+ this._textureToCubeUV(texture, cubeUVRenderTarget);
- if (background) {
- if (background.isColor) {
- backgroundMaterial.color.copy(background);
- scene.background = null;
- useSolidColor = true;
- }
- } else {
- backgroundMaterial.color.copy(_clearColor);
- useSolidColor = true;
- }
+ this._applyPMREM(cubeUVRenderTarget);
- for (let i = 0; i < 6; i++) {
- const col = i % 3;
+ this._cleanup(cubeUVRenderTarget);
- if (col == 0) {
- cubeCamera.up.set(0, upSign[i], 0);
- cubeCamera.lookAt(forwardSign[i], 0, 0);
- } else if (col == 1) {
- cubeCamera.up.set(0, 0, upSign[i]);
- cubeCamera.lookAt(0, forwardSign[i], 0);
- } else {
- cubeCamera.up.set(0, upSign[i], 0);
- cubeCamera.lookAt(0, 0, forwardSign[i]);
+ return cubeUVRenderTarget;
}
- _setViewport(cubeUVRenderTarget, col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX);
+ _allocateTargets(texture) {
+ // warning: null texture is valid
+ const params = {
+ magFilter: NearestFilter,
+ minFilter: NearestFilter,
+ generateMipmaps: false,
+ type: UnsignedByteType,
+ format: RGBEFormat,
+ encoding: _isLDR(texture) ? texture.encoding : RGBEEncoding,
+ depthBuffer: false
+ };
- renderer.setRenderTarget(cubeUVRenderTarget);
+ const cubeUVRenderTarget = _createRenderTarget(params);
- if (useSolidColor) {
- renderer.render(backgroundBox, cubeCamera);
+ cubeUVRenderTarget.depthBuffer = texture ? false : true;
+ this._pingPongRenderTarget = _createRenderTarget(params);
+ return cubeUVRenderTarget;
}
- renderer.render(scene, cubeCamera);
- }
-
- backgroundBox.geometry.dispose();
- backgroundBox.material.dispose();
- renderer.toneMapping = toneMapping;
- renderer.outputEncoding = outputEncoding;
- renderer.autoClear = originalAutoClear;
- scene.background = background;
- }
-
- _textureToCubeUV(texture, cubeUVRenderTarget) {
- const renderer = this._renderer;
+ _compileMaterial(material) {
+ const tmpMesh = new Mesh(_lodPlanes[0], material);
- if (texture.isCubeTexture) {
- if (this._cubemapShader == null) {
- this._cubemapShader = _getCubemapShader();
- }
- } else {
- if (this._equirectShader == null) {
- this._equirectShader = _getEquirectShader();
+ this._renderer.compile(tmpMesh, _flatCamera);
}
- }
- const material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader;
- const mesh = new Mesh(_lodPlanes[0], material);
- const uniforms = material.uniforms;
- uniforms['envMap'].value = texture;
+ _sceneToCubeUV(scene, near, far, cubeUVRenderTarget) {
+ const fov = 90;
+ const aspect = 1;
+ const cubeCamera = new PerspectiveCamera(fov, aspect, near, far);
+ const upSign = [1, -1, 1, 1, 1, 1];
+ const forwardSign = [1, 1, 1, -1, -1, -1];
+ const renderer = this._renderer;
+ const originalAutoClear = renderer.autoClear;
+ const outputEncoding = renderer.outputEncoding;
+ const toneMapping = renderer.toneMapping;
+ renderer.getClearColor(_clearColor);
+ renderer.toneMapping = NoToneMapping;
+ renderer.outputEncoding = LinearEncoding;
+ renderer.autoClear = false;
+ const backgroundMaterial = new MeshBasicMaterial({
+ name: 'PMREM.Background',
+ side: BackSide,
+ depthWrite: false,
+ depthTest: false
+ });
+ const backgroundBox = new Mesh(new BoxGeometry(), backgroundMaterial);
+ let useSolidColor = false;
+ const background = scene.background;
+
+ if (background) {
+ if (background.isColor) {
+ backgroundMaterial.color.copy(background);
+ scene.background = null;
+ useSolidColor = true;
+ }
+ } else {
+ backgroundMaterial.color.copy(_clearColor);
+ useSolidColor = true;
+ }
- if (!texture.isCubeTexture) {
- uniforms['texelSize'].value.set(1.0 / texture.image.width, 1.0 / texture.image.height);
- }
+ for (let i = 0; i < 6; i++) {
+ const col = i % 3;
+
+ if (col == 0) {
+ cubeCamera.up.set(0, upSign[i], 0);
+ cubeCamera.lookAt(forwardSign[i], 0, 0);
+ } else if (col == 1) {
+ cubeCamera.up.set(0, 0, upSign[i]);
+ cubeCamera.lookAt(0, forwardSign[i], 0);
+ } else {
+ cubeCamera.up.set(0, upSign[i], 0);
+ cubeCamera.lookAt(0, 0, forwardSign[i]);
+ }
- uniforms['inputEncoding'].value = ENCODINGS[texture.encoding];
- uniforms['outputEncoding'].value = ENCODINGS[cubeUVRenderTarget.texture.encoding];
+ _setViewport(cubeUVRenderTarget, col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX);
- _setViewport(cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX);
+ renderer.setRenderTarget(cubeUVRenderTarget);
- renderer.setRenderTarget(cubeUVRenderTarget);
- renderer.render(mesh, _flatCamera);
- }
+ if (useSolidColor) {
+ renderer.render(backgroundBox, cubeCamera);
+ }
- _applyPMREM(cubeUVRenderTarget) {
- const renderer = this._renderer;
- const autoClear = renderer.autoClear;
- renderer.autoClear = false;
+ renderer.render(scene, cubeCamera);
+ }
- for (let i = 1; i < TOTAL_LODS; i++) {
- const sigma = Math.sqrt(_sigmas[i] * _sigmas[i] - _sigmas[i - 1] * _sigmas[i - 1]);
- const poleAxis = _axisDirections[(i - 1) % _axisDirections.length];
+ backgroundBox.geometry.dispose();
+ backgroundBox.material.dispose();
+ renderer.toneMapping = toneMapping;
+ renderer.outputEncoding = outputEncoding;
+ renderer.autoClear = originalAutoClear;
+ scene.background = background;
+ }
- this._blur(cubeUVRenderTarget, i - 1, i, sigma, poleAxis);
- }
+ _textureToCubeUV(texture, cubeUVRenderTarget) {
+ const renderer = this._renderer;
- renderer.autoClear = autoClear;
- }
- /**
- * This is a two-pass Gaussian blur for a cubemap. Normally this is done
- * vertically and horizontally, but this breaks down on a cube. Here we apply
- * the blur latitudinally (around the poles), and then longitudinally (towards
- * the poles) to approximate the orthogonally-separable blur. It is least
- * accurate at the poles, but still does a decent job.
- */
+ if (texture.isCubeTexture) {
+ if (this._cubemapShader == null) {
+ this._cubemapShader = _getCubemapShader();
+ }
+ } else {
+ if (this._equirectShader == null) {
+ this._equirectShader = _getEquirectShader();
+ }
+ }
+ const material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader;
+ const mesh = new Mesh(_lodPlanes[0], material);
+ const uniforms = material.uniforms;
+ uniforms['envMap'].value = texture;
- _blur(cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis) {
- const pingPongRenderTarget = this._pingPongRenderTarget;
+ if (!texture.isCubeTexture) {
+ uniforms['texelSize'].value.set(1.0 / texture.image.width, 1.0 / texture.image.height);
+ }
- this._halfBlur(cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis);
+ uniforms['inputEncoding'].value = ENCODINGS[texture.encoding];
+ uniforms['outputEncoding'].value = ENCODINGS[cubeUVRenderTarget.texture.encoding];
- this._halfBlur(pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis);
- }
+ _setViewport(cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX);
- _halfBlur(targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis) {
- const renderer = this._renderer;
- const blurMaterial = this._blurMaterial;
+ renderer.setRenderTarget(cubeUVRenderTarget);
+ renderer.render(mesh, _flatCamera);
+ }
- if (direction !== 'latitudinal' && direction !== 'longitudinal') {
- console.error('blur direction must be either latitudinal or longitudinal!');
- } // Number of standard deviations at which to cut off the discrete approximation.
+ _applyPMREM(cubeUVRenderTarget) {
+ const renderer = this._renderer;
+ const autoClear = renderer.autoClear;
+ renderer.autoClear = false;
+ for (let i = 1; i < TOTAL_LODS; i++) {
+ const sigma = Math.sqrt(_sigmas[i] * _sigmas[i] - _sigmas[i - 1] * _sigmas[i - 1]);
+ const poleAxis = _axisDirections[(i - 1) % _axisDirections.length];
- const STANDARD_DEVIATIONS = 3;
- const blurMesh = new Mesh(_lodPlanes[lodOut], blurMaterial);
- const blurUniforms = blurMaterial.uniforms;
- const pixels = _sizeLods[lodIn] - 1;
- const radiansPerPixel = isFinite(sigmaRadians) ? Math.PI / (2 * pixels) : 2 * Math.PI / (2 * MAX_SAMPLES - 1);
- const sigmaPixels = sigmaRadians / radiansPerPixel;
- const samples = isFinite(sigmaRadians) ? 1 + Math.floor(STANDARD_DEVIATIONS * sigmaPixels) : MAX_SAMPLES;
+ this._blur(cubeUVRenderTarget, i - 1, i, sigma, poleAxis);
+ }
- if (samples > MAX_SAMPLES) {
- console.warn(`sigmaRadians, ${sigmaRadians}, is too large and will clip, as it requested ${samples} samples when the maximum is set to ${MAX_SAMPLES}`);
- }
+ renderer.autoClear = autoClear;
+ }
- const weights = [];
- let sum = 0;
+ /**
+ * This is a two-pass Gaussian blur for a cubemap. Normally this is done
+ * vertically and horizontally, but this breaks down on a cube. Here we apply
+ * the blur latitudinally (around the poles), and then longitudinally (towards
+ * the poles) to approximate the orthogonally-separable blur. It is least
+ * accurate at the poles, but still does a decent job.
+ */
- for (let i = 0; i < MAX_SAMPLES; ++i) {
- const x = i / sigmaPixels;
- const weight = Math.exp(-x * x / 2);
- weights.push(weight);
- if (i == 0) {
- sum += weight;
- } else if (i < samples) {
- sum += 2 * weight;
+ _blur(cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis) {
+ const pingPongRenderTarget = this._pingPongRenderTarget;
+
+ this._halfBlur(cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis);
+
+ this._halfBlur(pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis);
}
- }
- for (let i = 0; i < weights.length; i++) {
- weights[i] = weights[i] / sum;
- }
+ _halfBlur(targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis) {
+ const renderer = this._renderer;
+ const blurMaterial = this._blurMaterial;
- blurUniforms['envMap'].value = targetIn.texture;
- blurUniforms['samples'].value = samples;
- blurUniforms['weights'].value = weights;
- blurUniforms['latitudinal'].value = direction === 'latitudinal';
+ if (direction !== 'latitudinal' && direction !== 'longitudinal') {
+ console.error('blur direction must be either latitudinal or longitudinal!');
+ } // Number of standard deviations at which to cut off the discrete approximation.
- if (poleAxis) {
- blurUniforms['poleAxis'].value = poleAxis;
- }
- blurUniforms['dTheta'].value = radiansPerPixel;
- blurUniforms['mipInt'].value = LOD_MAX - lodIn;
- blurUniforms['inputEncoding'].value = ENCODINGS[targetIn.texture.encoding];
- blurUniforms['outputEncoding'].value = ENCODINGS[targetIn.texture.encoding];
- const outputSize = _sizeLods[lodOut];
- const x = 3 * Math.max(0, SIZE_MAX - 2 * outputSize);
- const y = (lodOut === 0 ? 0 : 2 * SIZE_MAX) + 2 * outputSize * (lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0);
+ const STANDARD_DEVIATIONS = 3;
+ const blurMesh = new Mesh(_lodPlanes[lodOut], blurMaterial);
+ const blurUniforms = blurMaterial.uniforms;
+ const pixels = _sizeLods[lodIn] - 1;
+ const radiansPerPixel = isFinite(sigmaRadians) ? Math.PI / (2 * pixels) : 2 * Math.PI / (2 * MAX_SAMPLES - 1);
+ const sigmaPixels = sigmaRadians / radiansPerPixel;
+ const samples = isFinite(sigmaRadians) ? 1 + Math.floor(STANDARD_DEVIATIONS * sigmaPixels) : MAX_SAMPLES;
- _setViewport(targetOut, x, y, 3 * outputSize, 2 * outputSize);
+ if (samples > MAX_SAMPLES) {
+ console.warn(`sigmaRadians, ${sigmaRadians}, is too large and will clip, as it requested ${samples} samples when the maximum is set to ${MAX_SAMPLES}`);
+ }
- renderer.setRenderTarget(targetOut);
- renderer.render(blurMesh, _flatCamera);
- }
+ const weights = [];
+ let sum = 0;
- }
+ for (let i = 0; i < MAX_SAMPLES; ++i) {
+ const x = i / sigmaPixels;
+ const weight = Math.exp(-x * x / 2);
+ weights.push(weight);
- function _isLDR(texture) {
- if (texture === undefined || texture.type !== UnsignedByteType) return false;
- return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding;
- }
+ if (i == 0) {
+ sum += weight;
+ } else if (i < samples) {
+ sum += 2 * weight;
+ }
+ }
- function _createPlanes() {
- const _lodPlanes = [];
- const _sizeLods = [];
- const _sigmas = [];
- let lod = LOD_MAX;
+ for (let i = 0; i < weights.length; i++) {
+ weights[i] = weights[i] / sum;
+ }
- for (let i = 0; i < TOTAL_LODS; i++) {
- const sizeLod = Math.pow(2, lod);
+ blurUniforms['envMap'].value = targetIn.texture;
+ blurUniforms['samples'].value = samples;
+ blurUniforms['weights'].value = weights;
+ blurUniforms['latitudinal'].value = direction === 'latitudinal';
- _sizeLods.push(sizeLod);
+ if (poleAxis) {
+ blurUniforms['poleAxis'].value = poleAxis;
+ }
- let sigma = 1.0 / sizeLod;
+ blurUniforms['dTheta'].value = radiansPerPixel;
+ blurUniforms['mipInt'].value = LOD_MAX - lodIn;
+ blurUniforms['inputEncoding'].value = ENCODINGS[targetIn.texture.encoding];
+ blurUniforms['outputEncoding'].value = ENCODINGS[targetIn.texture.encoding];
+ const outputSize = _sizeLods[lodOut];
+ const x = 3 * Math.max(0, SIZE_MAX - 2 * outputSize);
+ const y = (lodOut === 0 ? 0 : 2 * SIZE_MAX) + 2 * outputSize * (lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0);
- if (i > LOD_MAX - LOD_MIN) {
- sigma = EXTRA_LOD_SIGMA[i - LOD_MAX + LOD_MIN - 1];
- } else if (i == 0) {
- sigma = 0;
- }
+ _setViewport(targetOut, x, y, 3 * outputSize, 2 * outputSize);
- _sigmas.push(sigma);
+ renderer.setRenderTarget(targetOut);
+ renderer.render(blurMesh, _flatCamera);
+ }
- const texelSize = 1.0 / (sizeLod - 1);
- const min = -texelSize / 2;
- const max = 1 + texelSize / 2;
- const uv1 = [min, min, max, min, max, max, min, min, max, max, min, max];
- const cubeFaces = 6;
- const vertices = 6;
- const positionSize = 3;
- const uvSize = 2;
- const faceIndexSize = 1;
- const position = new Float32Array(positionSize * vertices * cubeFaces);
- const uv = new Float32Array(uvSize * vertices * cubeFaces);
- const faceIndex = new Float32Array(faceIndexSize * vertices * cubeFaces);
+ }
- for (let face = 0; face < cubeFaces; face++) {
- const x = face % 3 * 2 / 3 - 1;
- const y = face > 2 ? 0 : -1;
- const coordinates = [x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0];
- position.set(coordinates, positionSize * vertices * face);
- uv.set(uv1, uvSize * vertices * face);
- const fill = [face, face, face, face, face, face];
- faceIndex.set(fill, faceIndexSize * vertices * face);
+ function _isLDR(texture) {
+ if (texture === undefined || texture.type !== UnsignedByteType) return false;
+ return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding;
}
- const planes = new BufferGeometry();
- planes.setAttribute('position', new BufferAttribute(position, positionSize));
- planes.setAttribute('uv', new BufferAttribute(uv, uvSize));
- planes.setAttribute('faceIndex', new BufferAttribute(faceIndex, faceIndexSize));
+ function _createPlanes() {
+ const _lodPlanes = [];
+ const _sizeLods = [];
+ const _sigmas = [];
+ let lod = LOD_MAX;
- _lodPlanes.push(planes);
+ for (let i = 0; i < TOTAL_LODS; i++) {
+ const sizeLod = Math.pow(2, lod);
- if (lod > LOD_MIN) {
- lod--;
- }
- }
+ _sizeLods.push(sizeLod);
- return {
- _lodPlanes,
- _sizeLods,
- _sigmas
- };
- }
+ let sigma = 1.0 / sizeLod;
- function _createRenderTarget(params) {
- const cubeUVRenderTarget = new WebGLRenderTarget(3 * SIZE_MAX, 3 * SIZE_MAX, params);
- cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
- cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
- cubeUVRenderTarget.scissorTest = true;
- return cubeUVRenderTarget;
- }
+ if (i > LOD_MAX - LOD_MIN) {
+ sigma = EXTRA_LOD_SIGMA[i - LOD_MAX + LOD_MIN - 1];
+ } else if (i == 0) {
+ sigma = 0;
+ }
- function _setViewport(target, x, y, width, height) {
- target.viewport.set(x, y, width, height);
- target.scissor.set(x, y, width, height);
- }
+ _sigmas.push(sigma);
+
+ const texelSize = 1.0 / (sizeLod - 1);
+ const min = -texelSize / 2;
+ const max = 1 + texelSize / 2;
+ const uv1 = [min, min, max, min, max, max, min, min, max, max, min, max];
+ const cubeFaces = 6;
+ const vertices = 6;
+ const positionSize = 3;
+ const uvSize = 2;
+ const faceIndexSize = 1;
+ const position = new Float32Array(positionSize * vertices * cubeFaces);
+ const uv = new Float32Array(uvSize * vertices * cubeFaces);
+ const faceIndex = new Float32Array(faceIndexSize * vertices * cubeFaces);
+
+ for (let face = 0; face < cubeFaces; face++) {
+ const x = face % 3 * 2 / 3 - 1;
+ const y = face > 2 ? 0 : -1;
+ const coordinates = [x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0];
+ position.set(coordinates, positionSize * vertices * face);
+ uv.set(uv1, uvSize * vertices * face);
+ const fill = [face, face, face, face, face, face];
+ faceIndex.set(fill, faceIndexSize * vertices * face);
+ }
- function _getBlurShader(maxSamples) {
- const weights = new Float32Array(maxSamples);
- const poleAxis = new Vector3(0, 1, 0);
- const shaderMaterial = new RawShaderMaterial({
- name: 'SphericalGaussianBlur',
- defines: {
- 'n': maxSamples
- },
- uniforms: {
- 'envMap': {
- value: null
- },
- 'samples': {
- value: 1
- },
- 'weights': {
- value: weights
- },
- 'latitudinal': {
- value: false
- },
- 'dTheta': {
- value: 0
- },
- 'mipInt': {
- value: 0
- },
- 'poleAxis': {
- value: poleAxis
- },
- 'inputEncoding': {
- value: ENCODINGS[LinearEncoding]
- },
- 'outputEncoding': {
- value: ENCODINGS[LinearEncoding]
+ const planes = new BufferGeometry();
+ planes.setAttribute('position', new BufferAttribute(position, positionSize));
+ planes.setAttribute('uv', new BufferAttribute(uv, uvSize));
+ planes.setAttribute('faceIndex', new BufferAttribute(faceIndex, faceIndexSize));
+
+ _lodPlanes.push(planes);
+
+ if (lod > LOD_MIN) {
+ lod--;
+ }
}
- },
- vertexShader: _getCommonVertexShader(),
- fragmentShader:
- /* glsl */
- `
+
+ return {
+ _lodPlanes,
+ _sizeLods,
+ _sigmas
+ };
+ }
+
+ function _createRenderTarget(params) {
+ const cubeUVRenderTarget = new WebGLRenderTarget(3 * SIZE_MAX, 3 * SIZE_MAX, params);
+ cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
+ cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
+ cubeUVRenderTarget.scissorTest = true;
+ return cubeUVRenderTarget;
+ }
+
+ function _setViewport(target, x, y, width, height) {
+ target.viewport.set(x, y, width, height);
+ target.scissor.set(x, y, width, height);
+ }
+
+ function _getBlurShader(maxSamples) {
+ const weights = new Float32Array(maxSamples);
+ const poleAxis = new Vector3(0, 1, 0);
+ const shaderMaterial = new RawShaderMaterial({
+ name: 'SphericalGaussianBlur',
+ defines: {
+ 'n': maxSamples
+ },
+ uniforms: {
+ 'envMap': {
+ value: null
+ },
+ 'samples': {
+ value: 1
+ },
+ 'weights': {
+ value: weights
+ },
+ 'latitudinal': {
+ value: false
+ },
+ 'dTheta': {
+ value: 0
+ },
+ 'mipInt': {
+ value: 0
+ },
+ 'poleAxis': {
+ value: poleAxis
+ },
+ 'inputEncoding': {
+ value: ENCODINGS[LinearEncoding]
+ },
+ 'outputEncoding': {
+ value: ENCODINGS[LinearEncoding]
+ }
+ },
+ vertexShader: _getCommonVertexShader(),
+ fragmentShader:
+ /* glsl */
+ `
precision mediump float;
precision mediump int;
}
`,
- blending: NoBlending,
- depthTest: false,
- depthWrite: false
- });
- return shaderMaterial;
- }
-
- function _getEquirectShader() {
- const texelSize = new Vector2(1, 1);
- const shaderMaterial = new RawShaderMaterial({
- name: 'EquirectangularToCubeUV',
- uniforms: {
- 'envMap': {
- value: null
- },
- 'texelSize': {
- value: texelSize
- },
- 'inputEncoding': {
- value: ENCODINGS[LinearEncoding]
- },
- 'outputEncoding': {
- value: ENCODINGS[LinearEncoding]
- }
- },
- vertexShader: _getCommonVertexShader(),
- fragmentShader:
- /* glsl */
- `
+ blending: NoBlending,
+ depthTest: false,
+ depthWrite: false
+ });
+ return shaderMaterial;
+ }
+
+ function _getEquirectShader() {
+ const texelSize = new Vector2(1, 1);
+ const shaderMaterial = new RawShaderMaterial({
+ name: 'EquirectangularToCubeUV',
+ uniforms: {
+ 'envMap': {
+ value: null
+ },
+ 'texelSize': {
+ value: texelSize
+ },
+ 'inputEncoding': {
+ value: ENCODINGS[LinearEncoding]
+ },
+ 'outputEncoding': {
+ value: ENCODINGS[LinearEncoding]
+ }
+ },
+ vertexShader: _getCommonVertexShader(),
+ fragmentShader:
+ /* glsl */
+ `
precision mediump float;
precision mediump int;
}
`,
- blending: NoBlending,
- depthTest: false,
- depthWrite: false
- });
- return shaderMaterial;
- }
-
- function _getCubemapShader() {
- const shaderMaterial = new RawShaderMaterial({
- name: 'CubemapToCubeUV',
- uniforms: {
- 'envMap': {
- value: null
- },
- 'inputEncoding': {
- value: ENCODINGS[LinearEncoding]
- },
- 'outputEncoding': {
- value: ENCODINGS[LinearEncoding]
- }
- },
- vertexShader: _getCommonVertexShader(),
- fragmentShader:
- /* glsl */
- `
+ blending: NoBlending,
+ depthTest: false,
+ depthWrite: false
+ });
+ return shaderMaterial;
+ }
+
+ function _getCubemapShader() {
+ const shaderMaterial = new RawShaderMaterial({
+ name: 'CubemapToCubeUV',
+ uniforms: {
+ 'envMap': {
+ value: null
+ },
+ 'inputEncoding': {
+ value: ENCODINGS[LinearEncoding]
+ },
+ 'outputEncoding': {
+ value: ENCODINGS[LinearEncoding]
+ }
+ },
+ vertexShader: _getCommonVertexShader(),
+ fragmentShader:
+ /* glsl */
+ `
precision mediump float;
precision mediump int;
}
`,
- blending: NoBlending,
- depthTest: false,
- depthWrite: false
- });
- return shaderMaterial;
- }
+ blending: NoBlending,
+ depthTest: false,
+ depthWrite: false
+ });
+ return shaderMaterial;
+ }
- function _getCommonVertexShader() {
- return (
- /* glsl */
- `
+ function _getCommonVertexShader() {
+ return (
+ /* glsl */
+ `
precision mediump float;
precision mediump int;
}
`
- );
- }
+ );
+ }
- function _getEncodings() {
- return (
- /* glsl */
- `
+ function _getEncodings() {
+ return (
+ /* glsl */
+ `
uniform int inputEncoding;
uniform int outputEncoding;
}
`
- );
- }
-
- function WebGLCubeUVMaps(renderer) {
- let cubeUVmaps = new WeakMap();
- let pmremGenerator = null;
+ );
+ }
- function get(texture) {
- if (texture && texture.isTexture && texture.isRenderTargetTexture === false) {
- const mapping = texture.mapping;
- const isEquirectMap = mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping;
- const isCubeMap = mapping === CubeReflectionMapping || mapping === CubeRefractionMapping;
+ function WebGLCubeUVMaps(renderer) {
+ let cubeUVmaps = new WeakMap();
+ let pmremGenerator = null;
- if (isEquirectMap || isCubeMap) {
- // equirect/cube map to cubeUV conversion
- if (cubeUVmaps.has(texture)) {
- return cubeUVmaps.get(texture).texture;
- } else {
- const image = texture.image;
+ function get(texture) {
+ if (texture && texture.isTexture && texture.isRenderTargetTexture === false) {
+ const mapping = texture.mapping;
+ const isEquirectMap = mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping;
+ const isCubeMap = mapping === CubeReflectionMapping || mapping === CubeRefractionMapping;
- if (isEquirectMap && image && image.height > 0 || isCubeMap && image && isCubeTextureComplete(image)) {
- const currentRenderTarget = renderer.getRenderTarget();
- if (pmremGenerator === null) pmremGenerator = new PMREMGenerator(renderer);
- const renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular(texture) : pmremGenerator.fromCubemap(texture);
- cubeUVmaps.set(texture, renderTarget);
- renderer.setRenderTarget(currentRenderTarget);
- texture.addEventListener('dispose', onTextureDispose);
- return renderTarget.texture;
- } else {
- // image not yet ready. try the conversion next frame
- return null;
+ if (isEquirectMap || isCubeMap) {
+ // equirect/cube map to cubeUV conversion
+ if (cubeUVmaps.has(texture)) {
+ return cubeUVmaps.get(texture).texture;
+ } else {
+ const image = texture.image;
+
+ if (isEquirectMap && image && image.height > 0 || isCubeMap && image && isCubeTextureComplete(image)) {
+ const currentRenderTarget = renderer.getRenderTarget();
+ if (pmremGenerator === null) pmremGenerator = new PMREMGenerator(renderer);
+ const renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular(texture) : pmremGenerator.fromCubemap(texture);
+ cubeUVmaps.set(texture, renderTarget);
+ renderer.setRenderTarget(currentRenderTarget);
+ texture.addEventListener('dispose', onTextureDispose);
+ return renderTarget.texture;
+ } else {
+ // image not yet ready. try the conversion next frame
+ return null;
+ }
+ }
}
}
+
+ return texture;
}
- }
- return texture;
- }
+ function isCubeTextureComplete(image) {
+ let count = 0;
+ const length = 6;
- function isCubeTextureComplete(image) {
- let count = 0;
- const length = 6;
+ for (let i = 0; i < length; i++) {
+ if (image[i] !== undefined) count++;
+ }
- for (let i = 0; i < length; i++) {
- if (image[i] !== undefined) count++;
- }
+ return count === length;
+ }
- return count === length;
- }
+ function onTextureDispose(event) {
+ const texture = event.target;
+ texture.removeEventListener('dispose', onTextureDispose);
+ const cubemapUV = cubeUVmaps.get(texture);
- function onTextureDispose(event) {
- const texture = event.target;
- texture.removeEventListener('dispose', onTextureDispose);
- const cubemapUV = cubeUVmaps.get(texture);
+ if (cubemapUV !== undefined) {
+ cubeUVmaps.delete(texture);
+ cubemapUV.dispose();
+ }
+ }
- if (cubemapUV !== undefined) {
- cubeUVmaps.delete(texture);
- cubemapUV.dispose();
- }
- }
+ function dispose() {
+ cubeUVmaps = new WeakMap();
- function dispose() {
- cubeUVmaps = new WeakMap();
+ if (pmremGenerator !== null) {
+ pmremGenerator.dispose();
+ pmremGenerator = null;
+ }
+ }
- if (pmremGenerator !== null) {
- pmremGenerator.dispose();
- pmremGenerator = null;
+ return {
+ get: get,
+ dispose: dispose
+ };
}
- }
- return {
- get: get,
- dispose: dispose
- };
- }
-
- function WebGLExtensions(gl) {
- const extensions = {};
-
- function getExtension(name) {
- if (extensions[name] !== undefined) {
- return extensions[name];
- }
+ function WebGLExtensions(gl) {
+ const extensions = {};
- let extension;
+ function getExtension(name) {
+ if (extensions[name] !== undefined) {
+ return extensions[name];
+ }
- switch (name) {
- case 'WEBGL_depth_texture':
- extension = gl.getExtension('WEBGL_depth_texture') || gl.getExtension('MOZ_WEBGL_depth_texture') || gl.getExtension('WEBKIT_WEBGL_depth_texture');
- break;
+ let extension;
- case 'EXT_texture_filter_anisotropic':
- extension = gl.getExtension('EXT_texture_filter_anisotropic') || gl.getExtension('MOZ_EXT_texture_filter_anisotropic') || gl.getExtension('WEBKIT_EXT_texture_filter_anisotropic');
- break;
+ switch (name) {
+ case 'WEBGL_depth_texture':
+ extension = gl.getExtension('WEBGL_depth_texture') || gl.getExtension('MOZ_WEBGL_depth_texture') || gl.getExtension('WEBKIT_WEBGL_depth_texture');
+ break;
- case 'WEBGL_compressed_texture_s3tc':
- extension = gl.getExtension('WEBGL_compressed_texture_s3tc') || gl.getExtension('MOZ_WEBGL_compressed_texture_s3tc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_s3tc');
- break;
+ case 'EXT_texture_filter_anisotropic':
+ extension = gl.getExtension('EXT_texture_filter_anisotropic') || gl.getExtension('MOZ_EXT_texture_filter_anisotropic') || gl.getExtension('WEBKIT_EXT_texture_filter_anisotropic');
+ break;
- case 'WEBGL_compressed_texture_pvrtc':
- extension = gl.getExtension('WEBGL_compressed_texture_pvrtc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_pvrtc');
- break;
+ case 'WEBGL_compressed_texture_s3tc':
+ extension = gl.getExtension('WEBGL_compressed_texture_s3tc') || gl.getExtension('MOZ_WEBGL_compressed_texture_s3tc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_s3tc');
+ break;
- default:
- extension = gl.getExtension(name);
- }
+ case 'WEBGL_compressed_texture_pvrtc':
+ extension = gl.getExtension('WEBGL_compressed_texture_pvrtc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_pvrtc');
+ break;
- extensions[name] = extension;
- return extension;
- }
+ default:
+ extension = gl.getExtension(name);
+ }
- return {
- has: function (name) {
- return getExtension(name) !== null;
- },
- init: function (capabilities) {
- if (capabilities.isWebGL2) {
- getExtension('EXT_color_buffer_float');
- } else {
- getExtension('WEBGL_depth_texture');
- getExtension('OES_texture_float');
- getExtension('OES_texture_half_float');
- getExtension('OES_texture_half_float_linear');
- getExtension('OES_standard_derivatives');
- getExtension('OES_element_index_uint');
- getExtension('OES_vertex_array_object');
- getExtension('ANGLE_instanced_arrays');
+ extensions[name] = extension;
+ return extension;
}
- getExtension('OES_texture_float_linear');
- getExtension('EXT_color_buffer_half_float');
- },
- get: function (name) {
- const extension = getExtension(name);
+ return {
+ has: function (name) {
+ return getExtension(name) !== null;
+ },
+ init: function (capabilities) {
+ if (capabilities.isWebGL2) {
+ getExtension('EXT_color_buffer_float');
+ } else {
+ getExtension('WEBGL_depth_texture');
+ getExtension('OES_texture_float');
+ getExtension('OES_texture_half_float');
+ getExtension('OES_texture_half_float_linear');
+ getExtension('OES_standard_derivatives');
+ getExtension('OES_element_index_uint');
+ getExtension('OES_vertex_array_object');
+ getExtension('ANGLE_instanced_arrays');
+ }
+
+ getExtension('OES_texture_float_linear');
+ getExtension('EXT_color_buffer_half_float');
+ },
+ get: function (name) {
+ const extension = getExtension(name);
- if (extension === null) {
- console.warn('THREE.WebGLRenderer: ' + name + ' extension not supported.');
- }
+ if (extension === null) {
+ console.warn('THREE.WebGLRenderer: ' + name + ' extension not supported.');
+ }
- return extension;
+ return extension;
+ }
+ };
}
- };
- }
- function WebGLGeometries(gl, attributes, info, bindingStates) {
- const geometries = {};
- const wireframeAttributes = new WeakMap();
+ function WebGLGeometries(gl, attributes, info, bindingStates) {
+ const geometries = {};
+ const wireframeAttributes = new WeakMap();
- function onGeometryDispose(event) {
- const geometry = event.target;
+ function onGeometryDispose(event) {
+ const geometry = event.target;
- if (geometry.index !== null) {
- attributes.remove(geometry.index);
- }
+ if (geometry.index !== null) {
+ attributes.remove(geometry.index);
+ }
- for (const name in geometry.attributes) {
- attributes.remove(geometry.attributes[name]);
- }
+ for (const name in geometry.attributes) {
+ attributes.remove(geometry.attributes[name]);
+ }
- geometry.removeEventListener('dispose', onGeometryDispose);
- delete geometries[geometry.id];
- const attribute = wireframeAttributes.get(geometry);
+ geometry.removeEventListener('dispose', onGeometryDispose);
+ delete geometries[geometry.id];
+ const attribute = wireframeAttributes.get(geometry);
- if (attribute) {
- attributes.remove(attribute);
- wireframeAttributes.delete(geometry);
- }
+ if (attribute) {
+ attributes.remove(attribute);
+ wireframeAttributes.delete(geometry);
+ }
- bindingStates.releaseStatesOfGeometry(geometry);
+ bindingStates.releaseStatesOfGeometry(geometry);
- if (geometry.isInstancedBufferGeometry === true) {
- delete geometry._maxInstanceCount;
- } //
+ if (geometry.isInstancedBufferGeometry === true) {
+ delete geometry._maxInstanceCount;
+ } //
- info.memory.geometries--;
- }
+ info.memory.geometries--;
+ }
- function get(object, geometry) {
- if (geometries[geometry.id] === true) return geometry;
- geometry.addEventListener('dispose', onGeometryDispose);
- geometries[geometry.id] = true;
- info.memory.geometries++;
- return geometry;
- }
+ function get(object, geometry) {
+ if (geometries[geometry.id] === true) return geometry;
+ geometry.addEventListener('dispose', onGeometryDispose);
+ geometries[geometry.id] = true;
+ info.memory.geometries++;
+ return geometry;
+ }
- function update(geometry) {
- const geometryAttributes = geometry.attributes; // Updating index buffer in VAO now. See WebGLBindingStates.
+ function update(geometry) {
+ const geometryAttributes = geometry.attributes; // Updating index buffer in VAO now. See WebGLBindingStates.
- for (const name in geometryAttributes) {
- attributes.update(geometryAttributes[name], gl.ARRAY_BUFFER);
- } // morph targets
+ for (const name in geometryAttributes) {
+ attributes.update(geometryAttributes[name], gl.ARRAY_BUFFER);
+ } // morph targets
- const morphAttributes = geometry.morphAttributes;
+ const morphAttributes = geometry.morphAttributes;
- for (const name in morphAttributes) {
- const array = morphAttributes[name];
+ for (const name in morphAttributes) {
+ const array = morphAttributes[name];
- for (let i = 0, l = array.length; i < l; i++) {
- attributes.update(array[i], gl.ARRAY_BUFFER);
+ for (let i = 0, l = array.length; i < l; i++) {
+ attributes.update(array[i], gl.ARRAY_BUFFER);
+ }
+ }
}
- }
- }
- function updateWireframeAttribute(geometry) {
- const indices = [];
- const geometryIndex = geometry.index;
- const geometryPosition = geometry.attributes.position;
- let version = 0;
+ function updateWireframeAttribute(geometry) {
+ const indices = [];
+ const geometryIndex = geometry.index;
+ const geometryPosition = geometry.attributes.position;
+ let version = 0;
- if (geometryIndex !== null) {
- const array = geometryIndex.array;
- version = geometryIndex.version;
+ if (geometryIndex !== null) {
+ const array = geometryIndex.array;
+ version = geometryIndex.version;
- for (let i = 0, l = array.length; i < l; i += 3) {
- const a = array[i + 0];
- const b = array[i + 1];
- const c = array[i + 2];
- indices.push(a, b, b, c, c, a);
- }
- } else {
- const array = geometryPosition.array;
- version = geometryPosition.version;
+ for (let i = 0, l = array.length; i < l; i += 3) {
+ const a = array[i + 0];
+ const b = array[i + 1];
+ const c = array[i + 2];
+ indices.push(a, b, b, c, c, a);
+ }
+ } else {
+ const array = geometryPosition.array;
+ version = geometryPosition.version;
- for (let i = 0, l = array.length / 3 - 1; i < l; i += 3) {
- const a = i + 0;
- const b = i + 1;
- const c = i + 2;
- indices.push(a, b, b, c, c, a);
- }
- }
+ for (let i = 0, l = array.length / 3 - 1; i < l; i += 3) {
+ const a = i + 0;
+ const b = i + 1;
+ const c = i + 2;
+ indices.push(a, b, b, c, c, a);
+ }
+ }
- const attribute = new (arrayMax(indices) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(indices, 1);
- attribute.version = version; // Updating index buffer in VAO now. See WebGLBindingStates
- //
+ const attribute = new (arrayMax(indices) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(indices, 1);
+ attribute.version = version; // Updating index buffer in VAO now. See WebGLBindingStates
+ //
- const previousAttribute = wireframeAttributes.get(geometry);
- if (previousAttribute) attributes.remove(previousAttribute); //
+ const previousAttribute = wireframeAttributes.get(geometry);
+ if (previousAttribute) attributes.remove(previousAttribute); //
- wireframeAttributes.set(geometry, attribute);
- }
+ wireframeAttributes.set(geometry, attribute);
+ }
- function getWireframeAttribute(geometry) {
- const currentAttribute = wireframeAttributes.get(geometry);
+ function getWireframeAttribute(geometry) {
+ const currentAttribute = wireframeAttributes.get(geometry);
- if (currentAttribute) {
- const geometryIndex = geometry.index;
+ if (currentAttribute) {
+ const geometryIndex = geometry.index;
- if (geometryIndex !== null) {
- // if the attribute is obsolete, create a new one
- if (currentAttribute.version < geometryIndex.version) {
+ if (geometryIndex !== null) {
+ // if the attribute is obsolete, create a new one
+ if (currentAttribute.version < geometryIndex.version) {
+ updateWireframeAttribute(geometry);
+ }
+ }
+ } else {
updateWireframeAttribute(geometry);
}
+
+ return wireframeAttributes.get(geometry);
}
- } else {
- updateWireframeAttribute(geometry);
+
+ return {
+ get: get,
+ update: update,
+ getWireframeAttribute: getWireframeAttribute
+ };
}
- return wireframeAttributes.get(geometry);
- }
+ function WebGLIndexedBufferRenderer(gl, extensions, info, capabilities) {
+ const isWebGL2 = capabilities.isWebGL2;
+ let mode;
- return {
- get: get,
- update: update,
- getWireframeAttribute: getWireframeAttribute
- };
- }
+ function setMode(value) {
+ mode = value;
+ }
- function WebGLIndexedBufferRenderer(gl, extensions, info, capabilities) {
- const isWebGL2 = capabilities.isWebGL2;
- let mode;
+ let type, bytesPerElement;
- function setMode(value) {
- mode = value;
- }
+ function setIndex(value) {
+ type = value.type;
+ bytesPerElement = value.bytesPerElement;
+ }
- let type, bytesPerElement;
+ function render(start, count) {
+ gl.drawElements(mode, count, type, start * bytesPerElement);
+ info.update(count, mode, 1);
+ }
- function setIndex(value) {
- type = value.type;
- bytesPerElement = value.bytesPerElement;
- }
+ function renderInstances(start, count, primcount) {
+ if (primcount === 0) return;
+ let extension, methodName;
- function render(start, count) {
- gl.drawElements(mode, count, type, start * bytesPerElement);
- info.update(count, mode, 1);
- }
+ if (isWebGL2) {
+ extension = gl;
+ methodName = 'drawElementsInstanced';
+ } else {
+ extension = extensions.get('ANGLE_instanced_arrays');
+ methodName = 'drawElementsInstancedANGLE';
- function renderInstances(start, count, primcount) {
- if (primcount === 0) return;
- let extension, methodName;
+ if (extension === null) {
+ console.error('THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.');
+ return;
+ }
+ }
- if (isWebGL2) {
- extension = gl;
- methodName = 'drawElementsInstanced';
- } else {
- extension = extensions.get('ANGLE_instanced_arrays');
- methodName = 'drawElementsInstancedANGLE';
+ extension[methodName](mode, count, type, start * bytesPerElement, primcount);
+ info.update(count, mode, primcount);
+ } //
- if (extension === null) {
- console.error('THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.');
- return;
- }
+
+ this.setMode = setMode;
+ this.setIndex = setIndex;
+ this.render = render;
+ this.renderInstances = renderInstances;
}
- extension[methodName](mode, count, type, start * bytesPerElement, primcount);
- info.update(count, mode, primcount);
- } //
+ function WebGLInfo(gl) {
+ const memory = {
+ geometries: 0,
+ textures: 0
+ };
+ const render = {
+ frame: 0,
+ calls: 0,
+ triangles: 0,
+ points: 0,
+ lines: 0
+ };
+ function update(count, mode, instanceCount) {
+ render.calls++;
- this.setMode = setMode;
- this.setIndex = setIndex;
- this.render = render;
- this.renderInstances = renderInstances;
- }
+ switch (mode) {
+ case gl.TRIANGLES:
+ render.triangles += instanceCount * (count / 3);
+ break;
- function WebGLInfo(gl) {
- const memory = {
- geometries: 0,
- textures: 0
- };
- const render = {
- frame: 0,
- calls: 0,
- triangles: 0,
- points: 0,
- lines: 0
- };
-
- function update(count, mode, instanceCount) {
- render.calls++;
-
- switch (mode) {
- case gl.TRIANGLES:
- render.triangles += instanceCount * (count / 3);
- break;
-
- case gl.LINES:
- render.lines += instanceCount * (count / 2);
- break;
-
- case gl.LINE_STRIP:
- render.lines += instanceCount * (count - 1);
- break;
-
- case gl.LINE_LOOP:
- render.lines += instanceCount * count;
- break;
-
- case gl.POINTS:
- render.points += instanceCount * count;
- break;
-
- default:
- console.error('THREE.WebGLInfo: Unknown draw mode:', mode);
- break;
- }
- }
+ case gl.LINES:
+ render.lines += instanceCount * (count / 2);
+ break;
- function reset() {
- render.frame++;
- render.calls = 0;
- render.triangles = 0;
- render.points = 0;
- render.lines = 0;
- }
+ case gl.LINE_STRIP:
+ render.lines += instanceCount * (count - 1);
+ break;
- return {
- memory: memory,
- render: render,
- programs: null,
- autoReset: true,
- reset: reset,
- update: update
- };
- }
+ case gl.LINE_LOOP:
+ render.lines += instanceCount * count;
+ break;
- function numericalSort(a, b) {
- return a[0] - b[0];
- }
+ case gl.POINTS:
+ render.points += instanceCount * count;
+ break;
- function absNumericalSort(a, b) {
- return Math.abs(b[1]) - Math.abs(a[1]);
- }
+ default:
+ console.error('THREE.WebGLInfo: Unknown draw mode:', mode);
+ break;
+ }
+ }
- function WebGLMorphtargets(gl) {
- const influencesList = {};
- const morphInfluences = new Float32Array(8);
- const workInfluences = [];
+ function reset() {
+ render.frame++;
+ render.calls = 0;
+ render.triangles = 0;
+ render.points = 0;
+ render.lines = 0;
+ }
- for (let i = 0; i < 8; i++) {
- workInfluences[i] = [i, 0];
- }
+ return {
+ memory: memory,
+ render: render,
+ programs: null,
+ autoReset: true,
+ reset: reset,
+ update: update
+ };
+ }
- function update(object, geometry, material, program) {
- const objectInfluences = object.morphTargetInfluences; // When object doesn't have morph target influences defined, we treat it as a 0-length array
- // This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences
+ function numericalSort(a, b) {
+ return a[0] - b[0];
+ }
- const length = objectInfluences === undefined ? 0 : objectInfluences.length;
- let influences = influencesList[geometry.id];
+ function absNumericalSort(a, b) {
+ return Math.abs(b[1]) - Math.abs(a[1]);
+ }
- if (influences === undefined || influences.length !== length) {
- // initialise list
- influences = [];
+ function WebGLMorphtargets(gl) {
+ const influencesList = {};
+ const morphInfluences = new Float32Array(8);
+ const workInfluences = [];
- for (let i = 0; i < length; i++) {
- influences[i] = [i, 0];
+ for (let i = 0; i < 8; i++) {
+ workInfluences[i] = [i, 0];
}
- influencesList[geometry.id] = influences;
- } // Collect influences
-
+ function update(object, geometry, material, program) {
+ const objectInfluences = object.morphTargetInfluences; // When object doesn't have morph target influences defined, we treat it as a 0-length array
+ // This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences
- for (let i = 0; i < length; i++) {
- const influence = influences[i];
- influence[0] = i;
- influence[1] = objectInfluences[i];
- }
+ const length = objectInfluences === undefined ? 0 : objectInfluences.length;
+ let influences = influencesList[geometry.id];
- influences.sort(absNumericalSort);
+ if (influences === undefined || influences.length !== length) {
+ // initialise list
+ influences = [];
- for (let i = 0; i < 8; i++) {
- if (i < length && influences[i][1]) {
- workInfluences[i][0] = influences[i][0];
- workInfluences[i][1] = influences[i][1];
- } else {
- workInfluences[i][0] = Number.MAX_SAFE_INTEGER;
- workInfluences[i][1] = 0;
- }
- }
+ for (let i = 0; i < length; i++) {
+ influences[i] = [i, 0];
+ }
- workInfluences.sort(numericalSort);
- const morphTargets = geometry.morphAttributes.position;
- const morphNormals = geometry.morphAttributes.normal;
- let morphInfluencesSum = 0;
+ influencesList[geometry.id] = influences;
+ } // Collect influences
- for (let i = 0; i < 8; i++) {
- const influence = workInfluences[i];
- const index = influence[0];
- const value = influence[1];
- if (index !== Number.MAX_SAFE_INTEGER && value) {
- if (morphTargets && geometry.getAttribute('morphTarget' + i) !== morphTargets[index]) {
- geometry.setAttribute('morphTarget' + i, morphTargets[index]);
+ for (let i = 0; i < length; i++) {
+ const influence = influences[i];
+ influence[0] = i;
+ influence[1] = objectInfluences[i];
}
- if (morphNormals && geometry.getAttribute('morphNormal' + i) !== morphNormals[index]) {
- geometry.setAttribute('morphNormal' + i, morphNormals[index]);
- }
+ influences.sort(absNumericalSort);
- morphInfluences[i] = value;
- morphInfluencesSum += value;
- } else {
- if (morphTargets && geometry.hasAttribute('morphTarget' + i) === true) {
- geometry.deleteAttribute('morphTarget' + i);
+ for (let i = 0; i < 8; i++) {
+ if (i < length && influences[i][1]) {
+ workInfluences[i][0] = influences[i][0];
+ workInfluences[i][1] = influences[i][1];
+ } else {
+ workInfluences[i][0] = Number.MAX_SAFE_INTEGER;
+ workInfluences[i][1] = 0;
+ }
}
- if (morphNormals && geometry.hasAttribute('morphNormal' + i) === true) {
- geometry.deleteAttribute('morphNormal' + i);
- }
+ workInfluences.sort(numericalSort);
+ const morphTargets = geometry.morphAttributes.position;
+ const morphNormals = geometry.morphAttributes.normal;
+ let morphInfluencesSum = 0;
- morphInfluences[i] = 0;
- }
- } // GLSL shader uses formula baseinfluence * base + sum(target * influence)
- // This allows us to switch between absolute morphs and relative morphs without changing shader code
- // When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence)
+ for (let i = 0; i < 8; i++) {
+ const influence = workInfluences[i];
+ const index = influence[0];
+ const value = influence[1];
+ if (index !== Number.MAX_SAFE_INTEGER && value) {
+ if (morphTargets && geometry.getAttribute('morphTarget' + i) !== morphTargets[index]) {
+ geometry.setAttribute('morphTarget' + i, morphTargets[index]);
+ }
- const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum;
- program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence);
- program.getUniforms().setValue(gl, 'morphTargetInfluences', morphInfluences);
- }
+ if (morphNormals && geometry.getAttribute('morphNormal' + i) !== morphNormals[index]) {
+ geometry.setAttribute('morphNormal' + i, morphNormals[index]);
+ }
- return {
- update: update
- };
- }
+ morphInfluences[i] = value;
+ morphInfluencesSum += value;
+ } else {
+ if (morphTargets && geometry.hasAttribute('morphTarget' + i) === true) {
+ geometry.deleteAttribute('morphTarget' + i);
+ }
- function WebGLObjects(gl, geometries, attributes, info) {
- let updateMap = new WeakMap();
+ if (morphNormals && geometry.hasAttribute('morphNormal' + i) === true) {
+ geometry.deleteAttribute('morphNormal' + i);
+ }
- function update(object) {
- const frame = info.render.frame;
- const geometry = object.geometry;
- const buffergeometry = geometries.get(object, geometry); // Update once per frame
+ morphInfluences[i] = 0;
+ }
+ } // GLSL shader uses formula baseinfluence * base + sum(target * influence)
+ // This allows us to switch between absolute morphs and relative morphs without changing shader code
+ // When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence)
- if (updateMap.get(buffergeometry) !== frame) {
- geometries.update(buffergeometry);
- updateMap.set(buffergeometry, frame);
- }
- if (object.isInstancedMesh) {
- if (object.hasEventListener('dispose', onInstancedMeshDispose) === false) {
- object.addEventListener('dispose', onInstancedMeshDispose);
+ const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum;
+ program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence);
+ program.getUniforms().setValue(gl, 'morphTargetInfluences', morphInfluences);
}
- attributes.update(object.instanceMatrix, gl.ARRAY_BUFFER);
-
- if (object.instanceColor !== null) {
- attributes.update(object.instanceColor, gl.ARRAY_BUFFER);
- }
+ return {
+ update: update
+ };
}
- return buffergeometry;
- }
-
- function dispose() {
- updateMap = new WeakMap();
- }
-
- function onInstancedMeshDispose(event) {
- const instancedMesh = event.target;
- instancedMesh.removeEventListener('dispose', onInstancedMeshDispose);
- attributes.remove(instancedMesh.instanceMatrix);
- if (instancedMesh.instanceColor !== null) attributes.remove(instancedMesh.instanceColor);
- }
+ function WebGLObjects(gl, geometries, attributes, info) {
+ let updateMap = new WeakMap();
- return {
- update: update,
- dispose: dispose
- };
- }
+ function update(object) {
+ const frame = info.render.frame;
+ const geometry = object.geometry;
+ const buffergeometry = geometries.get(object, geometry); // Update once per frame
- class DataTexture2DArray extends Texture {
- constructor(data = null, width = 1, height = 1, depth = 1) {
- super(null);
- this.image = {
- data,
- width,
- height,
- depth
- };
- this.magFilter = NearestFilter;
- this.minFilter = NearestFilter;
- this.wrapR = ClampToEdgeWrapping;
- this.generateMipmaps = false;
- this.flipY = false;
- this.unpackAlignment = 1;
- this.needsUpdate = true;
- }
+ if (updateMap.get(buffergeometry) !== frame) {
+ geometries.update(buffergeometry);
+ updateMap.set(buffergeometry, frame);
+ }
- }
+ if (object.isInstancedMesh) {
+ if (object.hasEventListener('dispose', onInstancedMeshDispose) === false) {
+ object.addEventListener('dispose', onInstancedMeshDispose);
+ }
- DataTexture2DArray.prototype.isDataTexture2DArray = true;
+ attributes.update(object.instanceMatrix, gl.ARRAY_BUFFER);
- class DataTexture3D extends Texture {
- constructor(data = null, width = 1, height = 1, depth = 1) {
- // We're going to add .setXXX() methods for setting properties later.
- // Users can still set in DataTexture3D directly.
- //
- // const texture = new THREE.DataTexture3D( data, width, height, depth );
- // texture.anisotropy = 16;
- //
- // See #14839
- super(null);
- this.image = {
- data,
- width,
- height,
- depth
- };
- this.magFilter = NearestFilter;
- this.minFilter = NearestFilter;
- this.wrapR = ClampToEdgeWrapping;
- this.generateMipmaps = false;
- this.flipY = false;
- this.unpackAlignment = 1;
- this.needsUpdate = true;
- }
+ if (object.instanceColor !== null) {
+ attributes.update(object.instanceColor, gl.ARRAY_BUFFER);
+ }
+ }
- }
+ return buffergeometry;
+ }
- DataTexture3D.prototype.isDataTexture3D = true;
-
- /**
- * Uniforms of a program.
- * Those form a tree structure with a special top-level container for the root,
- * which you get by calling 'new WebGLUniforms( gl, program )'.
- *
- *
- * Properties of inner nodes including the top-level container:
- *
- * .seq - array of nested uniforms
- * .map - nested uniforms by name
- *
- *
- * Methods of all nodes except the top-level container:
- *
- * .setValue( gl, value, [textures] )
- *
- * uploads a uniform value(s)
- * the 'textures' parameter is needed for sampler uniforms
- *
- *
- * Static methods of the top-level container (textures factorizations):
- *
- * .upload( gl, seq, values, textures )
- *
- * sets uniforms in 'seq' to 'values[id].value'
- *
- * .seqWithValue( seq, values ) : filteredSeq
- *
- * filters 'seq' entries with corresponding entry in values
- *
- *
- * Methods of the top-level container (textures factorizations):
- *
- * .setValue( gl, name, value, textures )
- *
- * sets uniform with name 'name' to 'value'
- *
- * .setOptional( gl, obj, prop )
- *
- * like .set for an optional property of the object
- *
- */
- const emptyTexture = new Texture();
- const emptyTexture2dArray = new DataTexture2DArray();
- const emptyTexture3d = new DataTexture3D();
- const emptyCubeTexture = new CubeTexture(); // --- Utilities ---
- // Array Caches (provide typed arrays for temporary by size)
-
- const arrayCacheF32 = [];
- const arrayCacheI32 = []; // Float32Array caches used for uploading Matrix uniforms
-
- const mat4array = new Float32Array(16);
- const mat3array = new Float32Array(9);
- const mat2array = new Float32Array(4); // Flattening for arrays of vectors and matrices
-
- function flatten(array, nBlocks, blockSize) {
- const firstElem = array[0];
- if (firstElem <= 0 || firstElem > 0) return array; // unoptimized: ! isNaN( firstElem )
- // see http://jacksondunstan.com/articles/983
-
- const n = nBlocks * blockSize;
- let r = arrayCacheF32[n];
-
- if (r === undefined) {
- r = new Float32Array(n);
- arrayCacheF32[n] = r;
- }
+ function dispose() {
+ updateMap = new WeakMap();
+ }
- if (nBlocks !== 0) {
- firstElem.toArray(r, 0);
+ function onInstancedMeshDispose(event) {
+ const instancedMesh = event.target;
+ instancedMesh.removeEventListener('dispose', onInstancedMeshDispose);
+ attributes.remove(instancedMesh.instanceMatrix);
+ if (instancedMesh.instanceColor !== null) attributes.remove(instancedMesh.instanceColor);
+ }
- for (let i = 1, offset = 0; i !== nBlocks; ++i) {
- offset += blockSize;
- array[i].toArray(r, offset);
+ return {
+ update: update,
+ dispose: dispose
+ };
}
- }
- return r;
- }
+ class DataTexture2DArray extends Texture {
+ constructor(data = null, width = 1, height = 1, depth = 1) {
+ super(null);
+ this.image = {
+ data,
+ width,
+ height,
+ depth
+ };
+ this.magFilter = NearestFilter;
+ this.minFilter = NearestFilter;
+ this.wrapR = ClampToEdgeWrapping;
+ this.generateMipmaps = false;
+ this.flipY = false;
+ this.unpackAlignment = 1;
+ this.needsUpdate = true;
+ }
- function arraysEqual(a, b) {
- if (a.length !== b.length) return false;
+ }
- for (let i = 0, l = a.length; i < l; i++) {
- if (a[i] !== b[i]) return false;
- }
+ DataTexture2DArray.prototype.isDataTexture2DArray = true;
- return true;
- }
+ class DataTexture3D extends Texture {
+ constructor(data = null, width = 1, height = 1, depth = 1) {
+ // We're going to add .setXXX() methods for setting properties later.
+ // Users can still set in DataTexture3D directly.
+ //
+ // const texture = new THREE.DataTexture3D( data, width, height, depth );
+ // texture.anisotropy = 16;
+ //
+ // See #14839
+ super(null);
+ this.image = {
+ data,
+ width,
+ height,
+ depth
+ };
+ this.magFilter = NearestFilter;
+ this.minFilter = NearestFilter;
+ this.wrapR = ClampToEdgeWrapping;
+ this.generateMipmaps = false;
+ this.flipY = false;
+ this.unpackAlignment = 1;
+ this.needsUpdate = true;
+ }
- function copyArray(a, b) {
- for (let i = 0, l = b.length; i < l; i++) {
- a[i] = b[i];
- }
- } // Texture unit allocation
+ }
+ DataTexture3D.prototype.isDataTexture3D = true;
- function allocTexUnits(textures, n) {
- let r = arrayCacheI32[n];
+ /**
+ * Uniforms of a program.
+ * Those form a tree structure with a special top-level container for the root,
+ * which you get by calling 'new WebGLUniforms( gl, program )'.
+ *
+ *
+ * Properties of inner nodes including the top-level container:
+ *
+ * .seq - array of nested uniforms
+ * .map - nested uniforms by name
+ *
+ *
+ * Methods of all nodes except the top-level container:
+ *
+ * .setValue( gl, value, [textures] )
+ *
+ * uploads a uniform value(s)
+ * the 'textures' parameter is needed for sampler uniforms
+ *
+ *
+ * Static methods of the top-level container (textures factorizations):
+ *
+ * .upload( gl, seq, values, textures )
+ *
+ * sets uniforms in 'seq' to 'values[id].value'
+ *
+ * .seqWithValue( seq, values ) : filteredSeq
+ *
+ * filters 'seq' entries with corresponding entry in values
+ *
+ *
+ * Methods of the top-level container (textures factorizations):
+ *
+ * .setValue( gl, name, value, textures )
+ *
+ * sets uniform with name 'name' to 'value'
+ *
+ * .setOptional( gl, obj, prop )
+ *
+ * like .set for an optional property of the object
+ *
+ */
+ const emptyTexture = new Texture();
+ const emptyTexture2dArray = new DataTexture2DArray();
+ const emptyTexture3d = new DataTexture3D();
+ const emptyCubeTexture = new CubeTexture(); // --- Utilities ---
+ // Array Caches (provide typed arrays for temporary by size)
- if (r === undefined) {
- r = new Int32Array(n);
- arrayCacheI32[n] = r;
- }
+ const arrayCacheF32 = [];
+ const arrayCacheI32 = []; // Float32Array caches used for uploading Matrix uniforms
- for (let i = 0; i !== n; ++i) {
- r[i] = textures.allocateTextureUnit();
- }
+ const mat4array = new Float32Array(16);
+ const mat3array = new Float32Array(9);
+ const mat2array = new Float32Array(4); // Flattening for arrays of vectors and matrices
- return r;
- } // --- Setters ---
- // Note: Defining these methods externally, because they come in a bunch
- // and this way their names minify.
- // Single scalar
+ function flatten(array, nBlocks, blockSize) {
+ const firstElem = array[0];
+ if (firstElem <= 0 || firstElem > 0) return array; // unoptimized: ! isNaN( firstElem )
+ // see http://jacksondunstan.com/articles/983
+ const n = nBlocks * blockSize;
+ let r = arrayCacheF32[n];
- function setValueV1f(gl, v) {
- const cache = this.cache;
- if (cache[0] === v) return;
- gl.uniform1f(this.addr, v);
- cache[0] = v;
- } // Single float vector (from flat array or THREE.VectorN)
+ if (r === undefined) {
+ r = new Float32Array(n);
+ arrayCacheF32[n] = r;
+ }
+ if (nBlocks !== 0) {
+ firstElem.toArray(r, 0);
- function setValueV2f(gl, v) {
- const cache = this.cache;
+ for (let i = 1, offset = 0; i !== nBlocks; ++i) {
+ offset += blockSize;
+ array[i].toArray(r, offset);
+ }
+ }
- if (v.x !== undefined) {
- if (cache[0] !== v.x || cache[1] !== v.y) {
- gl.uniform2f(this.addr, v.x, v.y);
- cache[0] = v.x;
- cache[1] = v.y;
+ return r;
}
- } else {
- if (arraysEqual(cache, v)) return;
- gl.uniform2fv(this.addr, v);
- copyArray(cache, v);
- }
- }
- function setValueV3f(gl, v) {
- const cache = this.cache;
-
- if (v.x !== undefined) {
- if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z) {
- gl.uniform3f(this.addr, v.x, v.y, v.z);
- cache[0] = v.x;
- cache[1] = v.y;
- cache[2] = v.z;
- }
- } else if (v.r !== undefined) {
- if (cache[0] !== v.r || cache[1] !== v.g || cache[2] !== v.b) {
- gl.uniform3f(this.addr, v.r, v.g, v.b);
- cache[0] = v.r;
- cache[1] = v.g;
- cache[2] = v.b;
- }
- } else {
- if (arraysEqual(cache, v)) return;
- gl.uniform3fv(this.addr, v);
- copyArray(cache, v);
- }
- }
+ function arraysEqual(a, b) {
+ if (a.length !== b.length) return false;
- function setValueV4f(gl, v) {
- const cache = this.cache;
-
- if (v.x !== undefined) {
- if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z || cache[3] !== v.w) {
- gl.uniform4f(this.addr, v.x, v.y, v.z, v.w);
- cache[0] = v.x;
- cache[1] = v.y;
- cache[2] = v.z;
- cache[3] = v.w;
- }
- } else {
- if (arraysEqual(cache, v)) return;
- gl.uniform4fv(this.addr, v);
- copyArray(cache, v);
- }
- } // Single matrix (from flat array or THREE.MatrixN)
-
-
- function setValueM2(gl, v) {
- const cache = this.cache;
- const elements = v.elements;
-
- if (elements === undefined) {
- if (arraysEqual(cache, v)) return;
- gl.uniformMatrix2fv(this.addr, false, v);
- copyArray(cache, v);
- } else {
- if (arraysEqual(cache, elements)) return;
- mat2array.set(elements);
- gl.uniformMatrix2fv(this.addr, false, mat2array);
- copyArray(cache, elements);
- }
- }
+ for (let i = 0, l = a.length; i < l; i++) {
+ if (a[i] !== b[i]) return false;
+ }
- function setValueM3(gl, v) {
- const cache = this.cache;
- const elements = v.elements;
-
- if (elements === undefined) {
- if (arraysEqual(cache, v)) return;
- gl.uniformMatrix3fv(this.addr, false, v);
- copyArray(cache, v);
- } else {
- if (arraysEqual(cache, elements)) return;
- mat3array.set(elements);
- gl.uniformMatrix3fv(this.addr, false, mat3array);
- copyArray(cache, elements);
- }
- }
+ return true;
+ }
- function setValueM4(gl, v) {
- const cache = this.cache;
- const elements = v.elements;
-
- if (elements === undefined) {
- if (arraysEqual(cache, v)) return;
- gl.uniformMatrix4fv(this.addr, false, v);
- copyArray(cache, v);
- } else {
- if (arraysEqual(cache, elements)) return;
- mat4array.set(elements);
- gl.uniformMatrix4fv(this.addr, false, mat4array);
- copyArray(cache, elements);
- }
- } // Single integer / boolean
+ function copyArray(a, b) {
+ for (let i = 0, l = b.length; i < l; i++) {
+ a[i] = b[i];
+ }
+ } // Texture unit allocation
- function setValueV1i(gl, v) {
- const cache = this.cache;
- if (cache[0] === v) return;
- gl.uniform1i(this.addr, v);
- cache[0] = v;
- } // Single integer / boolean vector (from flat array)
+ function allocTexUnits(textures, n) {
+ let r = arrayCacheI32[n];
+ if (r === undefined) {
+ r = new Int32Array(n);
+ arrayCacheI32[n] = r;
+ }
- function setValueV2i(gl, v) {
- const cache = this.cache;
- if (arraysEqual(cache, v)) return;
- gl.uniform2iv(this.addr, v);
- copyArray(cache, v);
- }
+ for (let i = 0; i !== n; ++i) {
+ r[i] = textures.allocateTextureUnit();
+ }
- function setValueV3i(gl, v) {
- const cache = this.cache;
- if (arraysEqual(cache, v)) return;
- gl.uniform3iv(this.addr, v);
- copyArray(cache, v);
- }
+ return r;
+ } // --- Setters ---
+ // Note: Defining these methods externally, because they come in a bunch
+ // and this way their names minify.
+ // Single scalar
- function setValueV4i(gl, v) {
- const cache = this.cache;
- if (arraysEqual(cache, v)) return;
- gl.uniform4iv(this.addr, v);
- copyArray(cache, v);
- } // Single unsigned integer
+ function setValueV1f(gl, v) {
+ const cache = this.cache;
+ if (cache[0] === v) return;
+ gl.uniform1f(this.addr, v);
+ cache[0] = v;
+ } // Single float vector (from flat array or THREE.VectorN)
- function setValueV1ui(gl, v) {
- const cache = this.cache;
- if (cache[0] === v) return;
- gl.uniform1ui(this.addr, v);
- cache[0] = v;
- } // Single unsigned integer vector (from flat array)
+ function setValueV2f(gl, v) {
+ const cache = this.cache;
- function setValueV2ui(gl, v) {
- const cache = this.cache;
- if (arraysEqual(cache, v)) return;
- gl.uniform2uiv(this.addr, v);
- copyArray(cache, v);
- }
+ if (v.x !== undefined) {
+ if (cache[0] !== v.x || cache[1] !== v.y) {
+ gl.uniform2f(this.addr, v.x, v.y);
+ cache[0] = v.x;
+ cache[1] = v.y;
+ }
+ } else {
+ if (arraysEqual(cache, v)) return;
+ gl.uniform2fv(this.addr, v);
+ copyArray(cache, v);
+ }
+ }
- function setValueV3ui(gl, v) {
- const cache = this.cache;
- if (arraysEqual(cache, v)) return;
- gl.uniform3uiv(this.addr, v);
- copyArray(cache, v);
- }
+ function setValueV3f(gl, v) {
+ const cache = this.cache;
- function setValueV4ui(gl, v) {
- const cache = this.cache;
- if (arraysEqual(cache, v)) return;
- gl.uniform4uiv(this.addr, v);
- copyArray(cache, v);
- } // Single texture (2D / Cube)
+ if (v.x !== undefined) {
+ if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z) {
+ gl.uniform3f(this.addr, v.x, v.y, v.z);
+ cache[0] = v.x;
+ cache[1] = v.y;
+ cache[2] = v.z;
+ }
+ } else if (v.r !== undefined) {
+ if (cache[0] !== v.r || cache[1] !== v.g || cache[2] !== v.b) {
+ gl.uniform3f(this.addr, v.r, v.g, v.b);
+ cache[0] = v.r;
+ cache[1] = v.g;
+ cache[2] = v.b;
+ }
+ } else {
+ if (arraysEqual(cache, v)) return;
+ gl.uniform3fv(this.addr, v);
+ copyArray(cache, v);
+ }
+ }
+ function setValueV4f(gl, v) {
+ const cache = this.cache;
- function setValueT1(gl, v, textures) {
- const cache = this.cache;
- const unit = textures.allocateTextureUnit();
+ if (v.x !== undefined) {
+ if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z || cache[3] !== v.w) {
+ gl.uniform4f(this.addr, v.x, v.y, v.z, v.w);
+ cache[0] = v.x;
+ cache[1] = v.y;
+ cache[2] = v.z;
+ cache[3] = v.w;
+ }
+ } else {
+ if (arraysEqual(cache, v)) return;
+ gl.uniform4fv(this.addr, v);
+ copyArray(cache, v);
+ }
+ } // Single matrix (from flat array or THREE.MatrixN)
- if (cache[0] !== unit) {
- gl.uniform1i(this.addr, unit);
- cache[0] = unit;
- }
- textures.safeSetTexture2D(v || emptyTexture, unit);
- }
+ function setValueM2(gl, v) {
+ const cache = this.cache;
+ const elements = v.elements;
- function setValueT3D1(gl, v, textures) {
- const cache = this.cache;
- const unit = textures.allocateTextureUnit();
+ if (elements === undefined) {
+ if (arraysEqual(cache, v)) return;
+ gl.uniformMatrix2fv(this.addr, false, v);
+ copyArray(cache, v);
+ } else {
+ if (arraysEqual(cache, elements)) return;
+ mat2array.set(elements);
+ gl.uniformMatrix2fv(this.addr, false, mat2array);
+ copyArray(cache, elements);
+ }
+ }
- if (cache[0] !== unit) {
- gl.uniform1i(this.addr, unit);
- cache[0] = unit;
- }
+ function setValueM3(gl, v) {
+ const cache = this.cache;
+ const elements = v.elements;
- textures.setTexture3D(v || emptyTexture3d, unit);
- }
+ if (elements === undefined) {
+ if (arraysEqual(cache, v)) return;
+ gl.uniformMatrix3fv(this.addr, false, v);
+ copyArray(cache, v);
+ } else {
+ if (arraysEqual(cache, elements)) return;
+ mat3array.set(elements);
+ gl.uniformMatrix3fv(this.addr, false, mat3array);
+ copyArray(cache, elements);
+ }
+ }
- function setValueT6(gl, v, textures) {
- const cache = this.cache;
- const unit = textures.allocateTextureUnit();
+ function setValueM4(gl, v) {
+ const cache = this.cache;
+ const elements = v.elements;
- if (cache[0] !== unit) {
- gl.uniform1i(this.addr, unit);
- cache[0] = unit;
- }
+ if (elements === undefined) {
+ if (arraysEqual(cache, v)) return;
+ gl.uniformMatrix4fv(this.addr, false, v);
+ copyArray(cache, v);
+ } else {
+ if (arraysEqual(cache, elements)) return;
+ mat4array.set(elements);
+ gl.uniformMatrix4fv(this.addr, false, mat4array);
+ copyArray(cache, elements);
+ }
+ } // Single integer / boolean
- textures.safeSetTextureCube(v || emptyCubeTexture, unit);
- }
- function setValueT2DArray1(gl, v, textures) {
- const cache = this.cache;
- const unit = textures.allocateTextureUnit();
+ function setValueV1i(gl, v) {
+ const cache = this.cache;
+ if (cache[0] === v) return;
+ gl.uniform1i(this.addr, v);
+ cache[0] = v;
+ } // Single integer / boolean vector (from flat array)
- if (cache[0] !== unit) {
- gl.uniform1i(this.addr, unit);
- cache[0] = unit;
- }
- textures.setTexture2DArray(v || emptyTexture2dArray, unit);
- } // Helper to pick the right setter for the singular case
+ function setValueV2i(gl, v) {
+ const cache = this.cache;
+ if (arraysEqual(cache, v)) return;
+ gl.uniform2iv(this.addr, v);
+ copyArray(cache, v);
+ }
+ function setValueV3i(gl, v) {
+ const cache = this.cache;
+ if (arraysEqual(cache, v)) return;
+ gl.uniform3iv(this.addr, v);
+ copyArray(cache, v);
+ }
- function getSingularSetter(type) {
- switch (type) {
- case 0x1406:
- return setValueV1f;
- // FLOAT
+ function setValueV4i(gl, v) {
+ const cache = this.cache;
+ if (arraysEqual(cache, v)) return;
+ gl.uniform4iv(this.addr, v);
+ copyArray(cache, v);
+ } // Single unsigned integer
- case 0x8b50:
- return setValueV2f;
- // _VEC2
- case 0x8b51:
- return setValueV3f;
- // _VEC3
+ function setValueV1ui(gl, v) {
+ const cache = this.cache;
+ if (cache[0] === v) return;
+ gl.uniform1ui(this.addr, v);
+ cache[0] = v;
+ } // Single unsigned integer vector (from flat array)
- case 0x8b52:
- return setValueV4f;
- // _VEC4
- case 0x8b5a:
- return setValueM2;
- // _MAT2
+ function setValueV2ui(gl, v) {
+ const cache = this.cache;
+ if (arraysEqual(cache, v)) return;
+ gl.uniform2uiv(this.addr, v);
+ copyArray(cache, v);
+ }
- case 0x8b5b:
- return setValueM3;
- // _MAT3
+ function setValueV3ui(gl, v) {
+ const cache = this.cache;
+ if (arraysEqual(cache, v)) return;
+ gl.uniform3uiv(this.addr, v);
+ copyArray(cache, v);
+ }
- case 0x8b5c:
- return setValueM4;
- // _MAT4
+ function setValueV4ui(gl, v) {
+ const cache = this.cache;
+ if (arraysEqual(cache, v)) return;
+ gl.uniform4uiv(this.addr, v);
+ copyArray(cache, v);
+ } // Single texture (2D / Cube)
- case 0x1404:
- case 0x8b56:
- return setValueV1i;
- // INT, BOOL
- case 0x8b53:
- case 0x8b57:
- return setValueV2i;
- // _VEC2
+ function setValueT1(gl, v, textures) {
+ const cache = this.cache;
+ const unit = textures.allocateTextureUnit();
- case 0x8b54:
- case 0x8b58:
- return setValueV3i;
- // _VEC3
+ if (cache[0] !== unit) {
+ gl.uniform1i(this.addr, unit);
+ cache[0] = unit;
+ }
- case 0x8b55:
- case 0x8b59:
- return setValueV4i;
- // _VEC4
+ textures.safeSetTexture2D(v || emptyTexture, unit);
+ }
- case 0x1405:
- return setValueV1ui;
- // UINT
+ function setValueT3D1(gl, v, textures) {
+ const cache = this.cache;
+ const unit = textures.allocateTextureUnit();
- case 0x8dc6:
- return setValueV2ui;
- // _VEC2
+ if (cache[0] !== unit) {
+ gl.uniform1i(this.addr, unit);
+ cache[0] = unit;
+ }
- case 0x8dc7:
- return setValueV3ui;
- // _VEC3
+ textures.setTexture3D(v || emptyTexture3d, unit);
+ }
- case 0x8dc8:
- return setValueV4ui;
- // _VEC4
+ function setValueT6(gl, v, textures) {
+ const cache = this.cache;
+ const unit = textures.allocateTextureUnit();
- case 0x8b5e: // SAMPLER_2D
+ if (cache[0] !== unit) {
+ gl.uniform1i(this.addr, unit);
+ cache[0] = unit;
+ }
- case 0x8d66: // SAMPLER_EXTERNAL_OES
+ textures.safeSetTextureCube(v || emptyCubeTexture, unit);
+ }
- case 0x8dca: // INT_SAMPLER_2D
+ function setValueT2DArray1(gl, v, textures) {
+ const cache = this.cache;
+ const unit = textures.allocateTextureUnit();
- case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
+ if (cache[0] !== unit) {
+ gl.uniform1i(this.addr, unit);
+ cache[0] = unit;
+ }
- case 0x8b62:
- // SAMPLER_2D_SHADOW
- return setValueT1;
+ textures.setTexture2DArray(v || emptyTexture2dArray, unit);
+ } // Helper to pick the right setter for the singular case
- case 0x8b5f: // SAMPLER_3D
- case 0x8dcb: // INT_SAMPLER_3D
+ function getSingularSetter(type) {
+ switch (type) {
+ case 0x1406:
+ return setValueV1f;
+ // FLOAT
- case 0x8dd3:
- // UNSIGNED_INT_SAMPLER_3D
- return setValueT3D1;
+ case 0x8b50:
+ return setValueV2f;
+ // _VEC2
- case 0x8b60: // SAMPLER_CUBE
+ case 0x8b51:
+ return setValueV3f;
+ // _VEC3
- case 0x8dcc: // INT_SAMPLER_CUBE
+ case 0x8b52:
+ return setValueV4f;
+ // _VEC4
- case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
+ case 0x8b5a:
+ return setValueM2;
+ // _MAT2
- case 0x8dc5:
- // SAMPLER_CUBE_SHADOW
- return setValueT6;
+ case 0x8b5b:
+ return setValueM3;
+ // _MAT3
- case 0x8dc1: // SAMPLER_2D_ARRAY
+ case 0x8b5c:
+ return setValueM4;
+ // _MAT4
- case 0x8dcf: // INT_SAMPLER_2D_ARRAY
+ case 0x1404:
+ case 0x8b56:
+ return setValueV1i;
+ // INT, BOOL
- case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY
+ case 0x8b53:
+ case 0x8b57:
+ return setValueV2i;
+ // _VEC2
- case 0x8dc4:
- // SAMPLER_2D_ARRAY_SHADOW
- return setValueT2DArray1;
- }
- } // Array of scalars
+ case 0x8b54:
+ case 0x8b58:
+ return setValueV3i;
+ // _VEC3
+ case 0x8b55:
+ case 0x8b59:
+ return setValueV4i;
+ // _VEC4
- function setValueV1fArray(gl, v) {
- gl.uniform1fv(this.addr, v);
- } // Array of vectors (from flat array or array of THREE.VectorN)
+ case 0x1405:
+ return setValueV1ui;
+ // UINT
+ case 0x8dc6:
+ return setValueV2ui;
+ // _VEC2
- function setValueV2fArray(gl, v) {
- const data = flatten(v, this.size, 2);
- gl.uniform2fv(this.addr, data);
- }
+ case 0x8dc7:
+ return setValueV3ui;
+ // _VEC3
- function setValueV3fArray(gl, v) {
- const data = flatten(v, this.size, 3);
- gl.uniform3fv(this.addr, data);
- }
+ case 0x8dc8:
+ return setValueV4ui;
+ // _VEC4
- function setValueV4fArray(gl, v) {
- const data = flatten(v, this.size, 4);
- gl.uniform4fv(this.addr, data);
- } // Array of matrices (from flat array or array of THREE.MatrixN)
+ case 0x8b5e: // SAMPLER_2D
+ case 0x8d66: // SAMPLER_EXTERNAL_OES
- function setValueM2Array(gl, v) {
- const data = flatten(v, this.size, 4);
- gl.uniformMatrix2fv(this.addr, false, data);
- }
+ case 0x8dca: // INT_SAMPLER_2D
- function setValueM3Array(gl, v) {
- const data = flatten(v, this.size, 9);
- gl.uniformMatrix3fv(this.addr, false, data);
- }
+ case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
- function setValueM4Array(gl, v) {
- const data = flatten(v, this.size, 16);
- gl.uniformMatrix4fv(this.addr, false, data);
- } // Array of integer / boolean
+ case 0x8b62:
+ // SAMPLER_2D_SHADOW
+ return setValueT1;
+ case 0x8b5f: // SAMPLER_3D
- function setValueV1iArray(gl, v) {
- gl.uniform1iv(this.addr, v);
- } // Array of integer / boolean vectors (from flat array)
+ case 0x8dcb: // INT_SAMPLER_3D
+ case 0x8dd3:
+ // UNSIGNED_INT_SAMPLER_3D
+ return setValueT3D1;
- function setValueV2iArray(gl, v) {
- gl.uniform2iv(this.addr, v);
- }
+ case 0x8b60: // SAMPLER_CUBE
- function setValueV3iArray(gl, v) {
- gl.uniform3iv(this.addr, v);
- }
+ case 0x8dcc: // INT_SAMPLER_CUBE
- function setValueV4iArray(gl, v) {
- gl.uniform4iv(this.addr, v);
- } // Array of unsigned integer
+ case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
+ case 0x8dc5:
+ // SAMPLER_CUBE_SHADOW
+ return setValueT6;
- function setValueV1uiArray(gl, v) {
- gl.uniform1uiv(this.addr, v);
- } // Array of unsigned integer vectors (from flat array)
+ case 0x8dc1: // SAMPLER_2D_ARRAY
+ case 0x8dcf: // INT_SAMPLER_2D_ARRAY
- function setValueV2uiArray(gl, v) {
- gl.uniform2uiv(this.addr, v);
- }
+ case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY
- function setValueV3uiArray(gl, v) {
- gl.uniform3uiv(this.addr, v);
- }
+ case 0x8dc4:
+ // SAMPLER_2D_ARRAY_SHADOW
+ return setValueT2DArray1;
+ }
+ } // Array of scalars
- function setValueV4uiArray(gl, v) {
- gl.uniform4uiv(this.addr, v);
- } // Array of textures (2D / Cube)
+ function setValueV1fArray(gl, v) {
+ gl.uniform1fv(this.addr, v);
+ } // Array of vectors (from flat array or array of THREE.VectorN)
- function setValueT1Array(gl, v, textures) {
- const n = v.length;
- const units = allocTexUnits(textures, n);
- gl.uniform1iv(this.addr, units);
- for (let i = 0; i !== n; ++i) {
- textures.safeSetTexture2D(v[i] || emptyTexture, units[i]);
- }
- }
+ function setValueV2fArray(gl, v) {
+ const data = flatten(v, this.size, 2);
+ gl.uniform2fv(this.addr, data);
+ }
- function setValueT6Array(gl, v, textures) {
- const n = v.length;
- const units = allocTexUnits(textures, n);
- gl.uniform1iv(this.addr, units);
+ function setValueV3fArray(gl, v) {
+ const data = flatten(v, this.size, 3);
+ gl.uniform3fv(this.addr, data);
+ }
- for (let i = 0; i !== n; ++i) {
- textures.safeSetTextureCube(v[i] || emptyCubeTexture, units[i]);
- }
- } // Helper to pick the right setter for a pure (bottom-level) array
+ function setValueV4fArray(gl, v) {
+ const data = flatten(v, this.size, 4);
+ gl.uniform4fv(this.addr, data);
+ } // Array of matrices (from flat array or array of THREE.MatrixN)
- function getPureArraySetter(type) {
- switch (type) {
- case 0x1406:
- return setValueV1fArray;
- // FLOAT
+ function setValueM2Array(gl, v) {
+ const data = flatten(v, this.size, 4);
+ gl.uniformMatrix2fv(this.addr, false, data);
+ }
- case 0x8b50:
- return setValueV2fArray;
- // _VEC2
+ function setValueM3Array(gl, v) {
+ const data = flatten(v, this.size, 9);
+ gl.uniformMatrix3fv(this.addr, false, data);
+ }
- case 0x8b51:
- return setValueV3fArray;
- // _VEC3
+ function setValueM4Array(gl, v) {
+ const data = flatten(v, this.size, 16);
+ gl.uniformMatrix4fv(this.addr, false, data);
+ } // Array of integer / boolean
- case 0x8b52:
- return setValueV4fArray;
- // _VEC4
- case 0x8b5a:
- return setValueM2Array;
- // _MAT2
+ function setValueV1iArray(gl, v) {
+ gl.uniform1iv(this.addr, v);
+ } // Array of integer / boolean vectors (from flat array)
- case 0x8b5b:
- return setValueM3Array;
- // _MAT3
- case 0x8b5c:
- return setValueM4Array;
- // _MAT4
+ function setValueV2iArray(gl, v) {
+ gl.uniform2iv(this.addr, v);
+ }
- case 0x1404:
- case 0x8b56:
- return setValueV1iArray;
- // INT, BOOL
+ function setValueV3iArray(gl, v) {
+ gl.uniform3iv(this.addr, v);
+ }
- case 0x8b53:
- case 0x8b57:
- return setValueV2iArray;
- // _VEC2
+ function setValueV4iArray(gl, v) {
+ gl.uniform4iv(this.addr, v);
+ } // Array of unsigned integer
- case 0x8b54:
- case 0x8b58:
- return setValueV3iArray;
- // _VEC3
- case 0x8b55:
- case 0x8b59:
- return setValueV4iArray;
- // _VEC4
+ function setValueV1uiArray(gl, v) {
+ gl.uniform1uiv(this.addr, v);
+ } // Array of unsigned integer vectors (from flat array)
- case 0x1405:
- return setValueV1uiArray;
- // UINT
- case 0x8dc6:
- return setValueV2uiArray;
- // _VEC2
+ function setValueV2uiArray(gl, v) {
+ gl.uniform2uiv(this.addr, v);
+ }
- case 0x8dc7:
- return setValueV3uiArray;
- // _VEC3
+ function setValueV3uiArray(gl, v) {
+ gl.uniform3uiv(this.addr, v);
+ }
- case 0x8dc8:
- return setValueV4uiArray;
- // _VEC4
+ function setValueV4uiArray(gl, v) {
+ gl.uniform4uiv(this.addr, v);
+ } // Array of textures (2D / Cube)
- case 0x8b5e: // SAMPLER_2D
- case 0x8d66: // SAMPLER_EXTERNAL_OES
+ function setValueT1Array(gl, v, textures) {
+ const n = v.length;
+ const units = allocTexUnits(textures, n);
+ gl.uniform1iv(this.addr, units);
- case 0x8dca: // INT_SAMPLER_2D
+ for (let i = 0; i !== n; ++i) {
+ textures.safeSetTexture2D(v[i] || emptyTexture, units[i]);
+ }
+ }
- case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
+ function setValueT6Array(gl, v, textures) {
+ const n = v.length;
+ const units = allocTexUnits(textures, n);
+ gl.uniform1iv(this.addr, units);
- case 0x8b62:
- // SAMPLER_2D_SHADOW
- return setValueT1Array;
+ for (let i = 0; i !== n; ++i) {
+ textures.safeSetTextureCube(v[i] || emptyCubeTexture, units[i]);
+ }
+ } // Helper to pick the right setter for a pure (bottom-level) array
- case 0x8b60: // SAMPLER_CUBE
- case 0x8dcc: // INT_SAMPLER_CUBE
+ function getPureArraySetter(type) {
+ switch (type) {
+ case 0x1406:
+ return setValueV1fArray;
+ // FLOAT
- case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
+ case 0x8b50:
+ return setValueV2fArray;
+ // _VEC2
- case 0x8dc5:
- // SAMPLER_CUBE_SHADOW
- return setValueT6Array;
- }
- } // --- Uniform Classes ---
+ case 0x8b51:
+ return setValueV3fArray;
+ // _VEC3
+ case 0x8b52:
+ return setValueV4fArray;
+ // _VEC4
- function SingleUniform(id, activeInfo, addr) {
- this.id = id;
- this.addr = addr;
- this.cache = [];
- this.setValue = getSingularSetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG
- }
+ case 0x8b5a:
+ return setValueM2Array;
+ // _MAT2
- function PureArrayUniform(id, activeInfo, addr) {
- this.id = id;
- this.addr = addr;
- this.cache = [];
- this.size = activeInfo.size;
- this.setValue = getPureArraySetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG
- }
+ case 0x8b5b:
+ return setValueM3Array;
+ // _MAT3
- PureArrayUniform.prototype.updateCache = function (data) {
- const cache = this.cache;
+ case 0x8b5c:
+ return setValueM4Array;
+ // _MAT4
- if (data instanceof Float32Array && cache.length !== data.length) {
- this.cache = new Float32Array(data.length);
- }
+ case 0x1404:
+ case 0x8b56:
+ return setValueV1iArray;
+ // INT, BOOL
- copyArray(cache, data);
- };
+ case 0x8b53:
+ case 0x8b57:
+ return setValueV2iArray;
+ // _VEC2
- function StructuredUniform(id) {
- this.id = id;
- this.seq = [];
- this.map = {};
- }
+ case 0x8b54:
+ case 0x8b58:
+ return setValueV3iArray;
+ // _VEC3
- StructuredUniform.prototype.setValue = function (gl, value, textures) {
- const seq = this.seq;
+ case 0x8b55:
+ case 0x8b59:
+ return setValueV4iArray;
+ // _VEC4
- for (let i = 0, n = seq.length; i !== n; ++i) {
- const u = seq[i];
- u.setValue(gl, value[u.id], textures);
- }
- }; // --- Top-level ---
- // Parser - builds up the property tree from the path strings
-
-
- const RePathPart = /(\w+)(\])?(\[|\.)?/g; // extracts
- // - the identifier (member name or array index)
- // - followed by an optional right bracket (found when array index)
- // - followed by an optional left bracket or dot (type of subscript)
- //
- // Note: These portions can be read in a non-overlapping fashion and
- // allow straightforward parsing of the hierarchy that WebGL encodes
- // in the uniform names.
-
- function addUniform(container, uniformObject) {
- container.seq.push(uniformObject);
- container.map[uniformObject.id] = uniformObject;
- }
+ case 0x1405:
+ return setValueV1uiArray;
+ // UINT
- function parseUniform(activeInfo, addr, container) {
- const path = activeInfo.name,
- pathLength = path.length; // reset RegExp object, because of the early exit of a previous run
+ case 0x8dc6:
+ return setValueV2uiArray;
+ // _VEC2
- RePathPart.lastIndex = 0;
+ case 0x8dc7:
+ return setValueV3uiArray;
+ // _VEC3
- while (true) {
- const match = RePathPart.exec(path),
- matchEnd = RePathPart.lastIndex;
- let id = match[1];
- const idIsIndex = match[2] === ']',
- subscript = match[3];
- if (idIsIndex) id = id | 0; // convert to integer
+ case 0x8dc8:
+ return setValueV4uiArray;
+ // _VEC4
- if (subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength) {
- // bare name or "pure" bottom-level array "[0]" suffix
- addUniform(container, subscript === undefined ? new SingleUniform(id, activeInfo, addr) : new PureArrayUniform(id, activeInfo, addr));
- break;
- } else {
- // step into inner node / create it in case it doesn't exist
- const map = container.map;
- let next = map[id];
+ case 0x8b5e: // SAMPLER_2D
- if (next === undefined) {
- next = new StructuredUniform(id);
- addUniform(container, next);
- }
+ case 0x8d66: // SAMPLER_EXTERNAL_OES
- container = next;
- }
- }
- } // Root Container
+ case 0x8dca: // INT_SAMPLER_2D
+ case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
- function WebGLUniforms(gl, program) {
- this.seq = [];
- this.map = {};
- const n = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS);
+ case 0x8b62:
+ // SAMPLER_2D_SHADOW
+ return setValueT1Array;
- for (let i = 0; i < n; ++i) {
- const info = gl.getActiveUniform(program, i),
- addr = gl.getUniformLocation(program, info.name);
- parseUniform(info, addr, this);
- }
- }
+ case 0x8b60: // SAMPLER_CUBE
- WebGLUniforms.prototype.setValue = function (gl, name, value, textures) {
- const u = this.map[name];
- if (u !== undefined) u.setValue(gl, value, textures);
- };
+ case 0x8dcc: // INT_SAMPLER_CUBE
- WebGLUniforms.prototype.setOptional = function (gl, object, name) {
- const v = object[name];
- if (v !== undefined) this.setValue(gl, name, v);
- }; // Static interface
+ case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
+ case 0x8dc5:
+ // SAMPLER_CUBE_SHADOW
+ return setValueT6Array;
+ }
+ } // --- Uniform Classes ---
- WebGLUniforms.upload = function (gl, seq, values, textures) {
- for (let i = 0, n = seq.length; i !== n; ++i) {
- const u = seq[i],
- v = values[u.id];
- if (v.needsUpdate !== false) {
- // note: always updating when .needsUpdate is undefined
- u.setValue(gl, v.value, textures);
+ function SingleUniform(id, activeInfo, addr) {
+ this.id = id;
+ this.addr = addr;
+ this.cache = [];
+ this.setValue = getSingularSetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG
}
- }
- };
- WebGLUniforms.seqWithValue = function (seq, values) {
- const r = [];
+ function PureArrayUniform(id, activeInfo, addr) {
+ this.id = id;
+ this.addr = addr;
+ this.cache = [];
+ this.size = activeInfo.size;
+ this.setValue = getPureArraySetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG
+ }
- for (let i = 0, n = seq.length; i !== n; ++i) {
- const u = seq[i];
- if (u.id in values) r.push(u);
- }
+ PureArrayUniform.prototype.updateCache = function (data) {
+ const cache = this.cache;
- return r;
- };
+ if (data instanceof Float32Array && cache.length !== data.length) {
+ this.cache = new Float32Array(data.length);
+ }
- function WebGLShader(gl, type, string) {
- const shader = gl.createShader(type);
- gl.shaderSource(shader, string);
- gl.compileShader(shader);
- return shader;
- }
+ copyArray(cache, data);
+ };
- let programIdCount = 0;
+ function StructuredUniform(id) {
+ this.id = id;
+ this.seq = [];
+ this.map = {};
+ }
- function addLineNumbers(string) {
- const lines = string.split('\n');
+ StructuredUniform.prototype.setValue = function (gl, value, textures) {
+ const seq = this.seq;
- for (let i = 0; i < lines.length; i++) {
- lines[i] = i + 1 + ': ' + lines[i];
- }
+ for (let i = 0, n = seq.length; i !== n; ++i) {
+ const u = seq[i];
+ u.setValue(gl, value[u.id], textures);
+ }
+ }; // --- Top-level ---
+ // Parser - builds up the property tree from the path strings
- return lines.join('\n');
- }
- function getEncodingComponents(encoding) {
- switch (encoding) {
- case LinearEncoding:
- return ['Linear', '( value )'];
+ const RePathPart = /(\w+)(\])?(\[|\.)?/g; // extracts
+ // - the identifier (member name or array index)
+ // - followed by an optional right bracket (found when array index)
+ // - followed by an optional left bracket or dot (type of subscript)
+ //
+ // Note: These portions can be read in a non-overlapping fashion and
+ // allow straightforward parsing of the hierarchy that WebGL encodes
+ // in the uniform names.
- case sRGBEncoding:
- return ['sRGB', '( value )'];
+ function addUniform(container, uniformObject) {
+ container.seq.push(uniformObject);
+ container.map[uniformObject.id] = uniformObject;
+ }
- case RGBEEncoding:
- return ['RGBE', '( value )'];
+ function parseUniform(activeInfo, addr, container) {
+ const path = activeInfo.name,
+ pathLength = path.length; // reset RegExp object, because of the early exit of a previous run
- case RGBM7Encoding:
- return ['RGBM', '( value, 7.0 )'];
+ RePathPart.lastIndex = 0;
- case RGBM16Encoding:
- return ['RGBM', '( value, 16.0 )'];
+ while (true) {
+ const match = RePathPart.exec(path),
+ matchEnd = RePathPart.lastIndex;
+ let id = match[1];
+ const idIsIndex = match[2] === ']',
+ subscript = match[3];
+ if (idIsIndex) id = id | 0; // convert to integer
- case RGBDEncoding:
- return ['RGBD', '( value, 256.0 )'];
+ if (subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength) {
+ // bare name or "pure" bottom-level array "[0]" suffix
+ addUniform(container, subscript === undefined ? new SingleUniform(id, activeInfo, addr) : new PureArrayUniform(id, activeInfo, addr));
+ break;
+ } else {
+ // step into inner node / create it in case it doesn't exist
+ const map = container.map;
+ let next = map[id];
- case GammaEncoding:
- return ['Gamma', '( value, float( GAMMA_FACTOR ) )'];
+ if (next === undefined) {
+ next = new StructuredUniform(id);
+ addUniform(container, next);
+ }
- case LogLuvEncoding:
- return ['LogLuv', '( value )'];
+ container = next;
+ }
+ }
+ } // Root Container
- default:
- console.warn('THREE.WebGLProgram: Unsupported encoding:', encoding);
- return ['Linear', '( value )'];
- }
- }
- function getShaderErrors(gl, shader, type) {
- const status = gl.getShaderParameter(shader, gl.COMPILE_STATUS);
- const errors = gl.getShaderInfoLog(shader).trim();
- if (status && errors === '') return ''; // --enable-privileged-webgl-extension
- // console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );
+ function WebGLUniforms(gl, program) {
+ this.seq = [];
+ this.map = {};
+ const n = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS);
- return type.toUpperCase() + '\n\n' + errors + '\n\n' + addLineNumbers(gl.getShaderSource(shader));
- }
+ for (let i = 0; i < n; ++i) {
+ const info = gl.getActiveUniform(program, i),
+ addr = gl.getUniformLocation(program, info.name);
+ parseUniform(info, addr, this);
+ }
+ }
- function getTexelDecodingFunction(functionName, encoding) {
- const components = getEncodingComponents(encoding);
- return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[0] + 'ToLinear' + components[1] + '; }';
- }
+ WebGLUniforms.prototype.setValue = function (gl, name, value, textures) {
+ const u = this.map[name];
+ if (u !== undefined) u.setValue(gl, value, textures);
+ };
- function getTexelEncodingFunction(functionName, encoding) {
- const components = getEncodingComponents(encoding);
- return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[0] + components[1] + '; }';
- }
+ WebGLUniforms.prototype.setOptional = function (gl, object, name) {
+ const v = object[name];
+ if (v !== undefined) this.setValue(gl, name, v);
+ }; // Static interface
- function getToneMappingFunction(functionName, toneMapping) {
- let toneMappingName;
- switch (toneMapping) {
- case LinearToneMapping:
- toneMappingName = 'Linear';
- break;
+ WebGLUniforms.upload = function (gl, seq, values, textures) {
+ for (let i = 0, n = seq.length; i !== n; ++i) {
+ const u = seq[i],
+ v = values[u.id];
- case ReinhardToneMapping:
- toneMappingName = 'Reinhard';
- break;
+ if (v.needsUpdate !== false) {
+ // note: always updating when .needsUpdate is undefined
+ u.setValue(gl, v.value, textures);
+ }
+ }
+ };
- case CineonToneMapping:
- toneMappingName = 'OptimizedCineon';
- break;
+ WebGLUniforms.seqWithValue = function (seq, values) {
+ const r = [];
- case ACESFilmicToneMapping:
- toneMappingName = 'ACESFilmic';
- break;
+ for (let i = 0, n = seq.length; i !== n; ++i) {
+ const u = seq[i];
+ if (u.id in values) r.push(u);
+ }
- case CustomToneMapping:
- toneMappingName = 'Custom';
- break;
+ return r;
+ };
- default:
- console.warn('THREE.WebGLProgram: Unsupported toneMapping:', toneMapping);
- toneMappingName = 'Linear';
- }
+ function WebGLShader(gl, type, string) {
+ const shader = gl.createShader(type);
+ gl.shaderSource(shader, string);
+ gl.compileShader(shader);
+ return shader;
+ }
- return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }';
- }
+ let programIdCount = 0;
- function generateExtensions(parameters) {
- const chunks = [parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ? '#extension GL_OES_standard_derivatives : enable' : '', (parameters.extensionFragDepth || parameters.logarithmicDepthBuffer) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '', parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ? '#extension GL_EXT_draw_buffers : require' : '', (parameters.extensionShaderTextureLOD || parameters.envMap || parameters.transmission) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : ''];
- return chunks.filter(filterEmptyLine).join('\n');
- }
+ function addLineNumbers(string) {
+ const lines = string.split('\n');
- function generateDefines(defines) {
- const chunks = [];
+ for (let i = 0; i < lines.length; i++) {
+ lines[i] = i + 1 + ': ' + lines[i];
+ }
- for (const name in defines) {
- const value = defines[name];
- if (value === false) continue;
- chunks.push('#define ' + name + ' ' + value);
- }
+ return lines.join('\n');
+ }
- return chunks.join('\n');
- }
+ function getEncodingComponents(encoding) {
+ switch (encoding) {
+ case LinearEncoding:
+ return ['Linear', '( value )'];
- function fetchAttributeLocations(gl, program) {
- const attributes = {};
- const n = gl.getProgramParameter(program, gl.ACTIVE_ATTRIBUTES);
-
- for (let i = 0; i < n; i++) {
- const info = gl.getActiveAttrib(program, i);
- const name = info.name;
- let locationSize = 1;
- if (info.type === gl.FLOAT_MAT2) locationSize = 2;
- if (info.type === gl.FLOAT_MAT3) locationSize = 3;
- if (info.type === gl.FLOAT_MAT4) locationSize = 4; // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i );
-
- attributes[name] = {
- type: info.type,
- location: gl.getAttribLocation(program, name),
- locationSize: locationSize
- };
- }
+ case sRGBEncoding:
+ return ['sRGB', '( value )'];
- return attributes;
- }
+ case RGBEEncoding:
+ return ['RGBE', '( value )'];
- function filterEmptyLine(string) {
- return string !== '';
- }
+ case RGBM7Encoding:
+ return ['RGBM', '( value, 7.0 )'];
- function replaceLightNums(string, parameters) {
- return string.replace(/NUM_DIR_LIGHTS/g, parameters.numDirLights).replace(/NUM_SPOT_LIGHTS/g, parameters.numSpotLights).replace(/NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights).replace(/NUM_POINT_LIGHTS/g, parameters.numPointLights).replace(/NUM_HEMI_LIGHTS/g, parameters.numHemiLights).replace(/NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows).replace(/NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows).replace(/NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows);
- }
+ case RGBM16Encoding:
+ return ['RGBM', '( value, 16.0 )'];
- function replaceClippingPlaneNums(string, parameters) {
- return string.replace(/NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes).replace(/UNION_CLIPPING_PLANES/g, parameters.numClippingPlanes - parameters.numClipIntersection);
- } // Resolve Includes
+ case RGBDEncoding:
+ return ['RGBD', '( value, 256.0 )'];
+ case GammaEncoding:
+ return ['Gamma', '( value, float( GAMMA_FACTOR ) )'];
- const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm;
+ case LogLuvEncoding:
+ return ['LogLuv', '( value )'];
- function resolveIncludes(string) {
- return string.replace(includePattern, includeReplacer);
- }
+ default:
+ console.warn('THREE.WebGLProgram: Unsupported encoding:', encoding);
+ return ['Linear', '( value )'];
+ }
+ }
- function includeReplacer(match, include) {
- const string = ShaderChunk[include];
+ function getShaderErrors(gl, shader, type) {
+ const status = gl.getShaderParameter(shader, gl.COMPILE_STATUS);
+ const errors = gl.getShaderInfoLog(shader).trim();
+ if (status && errors === '') return ''; // --enable-privileged-webgl-extension
+ // console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );
- if (string === undefined) {
- throw new Error('Can not resolve #include <' + include + '>');
- }
+ return type.toUpperCase() + '\n\n' + errors + '\n\n' + addLineNumbers(gl.getShaderSource(shader));
+ }
- return resolveIncludes(string);
- } // Unroll Loops
+ function getTexelDecodingFunction(functionName, encoding) {
+ const components = getEncodingComponents(encoding);
+ return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[0] + 'ToLinear' + components[1] + '; }';
+ }
+ function getTexelEncodingFunction(functionName, encoding) {
+ const components = getEncodingComponents(encoding);
+ return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[0] + components[1] + '; }';
+ }
- const deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;
- const unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g;
+ function getToneMappingFunction(functionName, toneMapping) {
+ let toneMappingName;
- function unrollLoops(string) {
- return string.replace(unrollLoopPattern, loopReplacer).replace(deprecatedUnrollLoopPattern, deprecatedLoopReplacer);
- }
+ switch (toneMapping) {
+ case LinearToneMapping:
+ toneMappingName = 'Linear';
+ break;
- function deprecatedLoopReplacer(match, start, end, snippet) {
- console.warn('WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.');
- return loopReplacer(match, start, end, snippet);
- }
+ case ReinhardToneMapping:
+ toneMappingName = 'Reinhard';
+ break;
- function loopReplacer(match, start, end, snippet) {
- let string = '';
+ case CineonToneMapping:
+ toneMappingName = 'OptimizedCineon';
+ break;
- for (let i = parseInt(start); i < parseInt(end); i++) {
- string += snippet.replace(/\[\s*i\s*\]/g, '[ ' + i + ' ]').replace(/UNROLLED_LOOP_INDEX/g, i);
- }
+ case ACESFilmicToneMapping:
+ toneMappingName = 'ACESFilmic';
+ break;
- return string;
- } //
+ case CustomToneMapping:
+ toneMappingName = 'Custom';
+ break;
+ default:
+ console.warn('THREE.WebGLProgram: Unsupported toneMapping:', toneMapping);
+ toneMappingName = 'Linear';
+ }
- function generatePrecision(parameters) {
- let precisionstring = 'precision ' + parameters.precision + ' float;\nprecision ' + parameters.precision + ' int;';
+ return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }';
+ }
- if (parameters.precision === 'highp') {
- precisionstring += '\n#define HIGH_PRECISION';
- } else if (parameters.precision === 'mediump') {
- precisionstring += '\n#define MEDIUM_PRECISION';
- } else if (parameters.precision === 'lowp') {
- precisionstring += '\n#define LOW_PRECISION';
- }
+ function generateExtensions(parameters) {
+ const chunks = [parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ? '#extension GL_OES_standard_derivatives : enable' : '', (parameters.extensionFragDepth || parameters.logarithmicDepthBuffer) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '', parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ? '#extension GL_EXT_draw_buffers : require' : '', (parameters.extensionShaderTextureLOD || parameters.envMap || parameters.transmission) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : ''];
+ return chunks.filter(filterEmptyLine).join('\n');
+ }
- return precisionstring;
- }
+ function generateDefines(defines) {
+ const chunks = [];
- function generateShadowMapTypeDefine(parameters) {
- let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';
+ for (const name in defines) {
+ const value = defines[name];
+ if (value === false) continue;
+ chunks.push('#define ' + name + ' ' + value);
+ }
- if (parameters.shadowMapType === PCFShadowMap) {
- shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';
- } else if (parameters.shadowMapType === PCFSoftShadowMap) {
- shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';
- } else if (parameters.shadowMapType === VSMShadowMap) {
- shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM';
- }
+ return chunks.join('\n');
+ }
- return shadowMapTypeDefine;
- }
+ function fetchAttributeLocations(gl, program) {
+ const attributes = {};
+ const n = gl.getProgramParameter(program, gl.ACTIVE_ATTRIBUTES);
- function generateEnvMapTypeDefine(parameters) {
- let envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
+ for (let i = 0; i < n; i++) {
+ const info = gl.getActiveAttrib(program, i);
+ const name = info.name;
+ let locationSize = 1;
+ if (info.type === gl.FLOAT_MAT2) locationSize = 2;
+ if (info.type === gl.FLOAT_MAT3) locationSize = 3;
+ if (info.type === gl.FLOAT_MAT4) locationSize = 4; // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i );
- if (parameters.envMap) {
- switch (parameters.envMapMode) {
- case CubeReflectionMapping:
- case CubeRefractionMapping:
- envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
- break;
+ attributes[name] = {
+ type: info.type,
+ location: gl.getAttribLocation(program, name),
+ locationSize: locationSize
+ };
+ }
- case CubeUVReflectionMapping:
- case CubeUVRefractionMapping:
- envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
- break;
+ return attributes;
}
- }
-
- return envMapTypeDefine;
- }
-
- function generateEnvMapModeDefine(parameters) {
- let envMapModeDefine = 'ENVMAP_MODE_REFLECTION';
- if (parameters.envMap) {
- switch (parameters.envMapMode) {
- case CubeRefractionMapping:
- case CubeUVRefractionMapping:
- envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
- break;
+ function filterEmptyLine(string) {
+ return string !== '';
}
- }
- return envMapModeDefine;
- }
+ function replaceLightNums(string, parameters) {
+ return string.replace(/NUM_DIR_LIGHTS/g, parameters.numDirLights).replace(/NUM_SPOT_LIGHTS/g, parameters.numSpotLights).replace(/NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights).replace(/NUM_POINT_LIGHTS/g, parameters.numPointLights).replace(/NUM_HEMI_LIGHTS/g, parameters.numHemiLights).replace(/NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows).replace(/NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows).replace(/NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows);
+ }
- function generateEnvMapBlendingDefine(parameters) {
- let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE';
+ function replaceClippingPlaneNums(string, parameters) {
+ return string.replace(/NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes).replace(/UNION_CLIPPING_PLANES/g, parameters.numClippingPlanes - parameters.numClipIntersection);
+ } // Resolve Includes
- if (parameters.envMap) {
- switch (parameters.combine) {
- case MultiplyOperation:
- envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
- break;
- case MixOperation:
- envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
- break;
+ const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm;
- case AddOperation:
- envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
- break;
+ function resolveIncludes(string) {
+ return string.replace(includePattern, includeReplacer);
}
- }
-
- return envMapBlendingDefine;
- }
- function WebGLProgram(renderer, cacheKey, parameters, bindingStates) {
- // TODO Send this event to Three.js DevTools
- // console.log( 'WebGLProgram', cacheKey );
- const gl = renderer.getContext();
- const defines = parameters.defines;
- let vertexShader = parameters.vertexShader;
- let fragmentShader = parameters.fragmentShader;
- const shadowMapTypeDefine = generateShadowMapTypeDefine(parameters);
- const envMapTypeDefine = generateEnvMapTypeDefine(parameters);
- const envMapModeDefine = generateEnvMapModeDefine(parameters);
- const envMapBlendingDefine = generateEnvMapBlendingDefine(parameters);
- const gammaFactorDefine = renderer.gammaFactor > 0 ? renderer.gammaFactor : 1.0;
- const customExtensions = parameters.isWebGL2 ? '' : generateExtensions(parameters);
- const customDefines = generateDefines(defines);
- const program = gl.createProgram();
- let prefixVertex, prefixFragment;
- let versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + '\n' : '';
-
- if (parameters.isRawShaderMaterial) {
- prefixVertex = [customDefines].filter(filterEmptyLine).join('\n');
-
- if (prefixVertex.length > 0) {
- prefixVertex += '\n';
- }
-
- prefixFragment = [customExtensions, customDefines].filter(filterEmptyLine).join('\n');
-
- if (prefixFragment.length > 0) {
- prefixFragment += '\n';
- }
- } else {
- prefixVertex = [generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.instancing ? '#define USE_INSTANCING' : '', parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, '#define MAX_BONES ' + parameters.maxBones, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularTintMap ? '#define USE_SPECULARTINTMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', '#ifdef USE_INSTANCING', ' attribute mat4 instanceMatrix;', '#endif', '#ifdef USE_INSTANCING_COLOR', ' attribute vec3 instanceColor;', '#endif', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_TANGENT', ' attribute vec4 tangent;', '#endif', '#if defined( USE_COLOR_ALPHA )', ' attribute vec4 color;', '#elif defined( USE_COLOR )', ' attribute vec3 color;', '#endif', '#ifdef USE_MORPHTARGETS', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n'].filter(filterEmptyLine).join('\n');
- prefixFragment = [customExtensions, generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, '#define GAMMA_FACTOR ' + gammaFactorDefine, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.matcap ? '#define USE_MATCAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoat ? '#define USE_CLEARCOAT' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularTintMap ? '#define USE_SPECULARTINTMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.alphaTest ? '#define USE_ALPHATEST' : '', parameters.sheenTint ? '#define USE_SHEEN' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors || parameters.instancingColor ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', (parameters.extensionShaderTextureLOD || parameters.envMap) && parameters.rendererExtensionShaderTextureLod ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', parameters.toneMapping !== NoToneMapping ? '#define TONE_MAPPING' : '', parameters.toneMapping !== NoToneMapping ? ShaderChunk['tonemapping_pars_fragment'] : '', // this code is required here because it is used by the toneMapping() function defined below
- parameters.toneMapping !== NoToneMapping ? getToneMappingFunction('toneMapping', parameters.toneMapping) : '', parameters.dithering ? '#define DITHERING' : '', parameters.format === RGBFormat ? '#define OPAQUE' : '', ShaderChunk['encodings_pars_fragment'], // this code is required here because it is used by the various encoding/decoding function defined below
- parameters.map ? getTexelDecodingFunction('mapTexelToLinear', parameters.mapEncoding) : '', parameters.matcap ? getTexelDecodingFunction('matcapTexelToLinear', parameters.matcapEncoding) : '', parameters.envMap ? getTexelDecodingFunction('envMapTexelToLinear', parameters.envMapEncoding) : '', parameters.emissiveMap ? getTexelDecodingFunction('emissiveMapTexelToLinear', parameters.emissiveMapEncoding) : '', parameters.specularTintMap ? getTexelDecodingFunction('specularTintMapTexelToLinear', parameters.specularTintMapEncoding) : '', parameters.lightMap ? getTexelDecodingFunction('lightMapTexelToLinear', parameters.lightMapEncoding) : '', getTexelEncodingFunction('linearToOutputTexel', parameters.outputEncoding), parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', '\n'].filter(filterEmptyLine).join('\n');
- }
+ function includeReplacer(match, include) {
+ const string = ShaderChunk[include];
- vertexShader = resolveIncludes(vertexShader);
- vertexShader = replaceLightNums(vertexShader, parameters);
- vertexShader = replaceClippingPlaneNums(vertexShader, parameters);
- fragmentShader = resolveIncludes(fragmentShader);
- fragmentShader = replaceLightNums(fragmentShader, parameters);
- fragmentShader = replaceClippingPlaneNums(fragmentShader, parameters);
- vertexShader = unrollLoops(vertexShader);
- fragmentShader = unrollLoops(fragmentShader);
-
- if (parameters.isWebGL2 && parameters.isRawShaderMaterial !== true) {
- // GLSL 3.0 conversion for built-in materials and ShaderMaterial
- versionString = '#version 300 es\n';
- prefixVertex = ['#define attribute in', '#define varying out', '#define texture2D texture'].join('\n') + '\n' + prefixVertex;
- prefixFragment = ['#define varying in', parameters.glslVersion === GLSL3 ? '' : 'out highp vec4 pc_fragColor;', parameters.glslVersion === GLSL3 ? '' : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad'].join('\n') + '\n' + prefixFragment;
- }
+ if (string === undefined) {
+ throw new Error('Can not resolve #include <' + include + '>');
+ }
- const vertexGlsl = versionString + prefixVertex + vertexShader;
- const fragmentGlsl = versionString + prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl );
- // console.log( '*FRAGMENT*', fragmentGlsl );
+ return resolveIncludes(string);
+ } // Unroll Loops
- const glVertexShader = WebGLShader(gl, gl.VERTEX_SHADER, vertexGlsl);
- const glFragmentShader = WebGLShader(gl, gl.FRAGMENT_SHADER, fragmentGlsl);
- gl.attachShader(program, glVertexShader);
- gl.attachShader(program, glFragmentShader); // Force a particular attribute to index 0.
- if (parameters.index0AttributeName !== undefined) {
- gl.bindAttribLocation(program, 0, parameters.index0AttributeName);
- } else if (parameters.morphTargets === true) {
- // programs with morphTargets displace position out of attribute 0
- gl.bindAttribLocation(program, 0, 'position');
- }
+ const deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;
+ const unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g;
- gl.linkProgram(program); // check for link errors
-
- if (renderer.debug.checkShaderErrors) {
- const programLog = gl.getProgramInfoLog(program).trim();
- const vertexLog = gl.getShaderInfoLog(glVertexShader).trim();
- const fragmentLog = gl.getShaderInfoLog(glFragmentShader).trim();
- let runnable = true;
- let haveDiagnostics = true;
-
- if (gl.getProgramParameter(program, gl.LINK_STATUS) === false) {
- runnable = false;
- const vertexErrors = getShaderErrors(gl, glVertexShader, 'vertex');
- const fragmentErrors = getShaderErrors(gl, glFragmentShader, 'fragment');
- console.error('THREE.WebGLProgram: Shader Error ' + gl.getError() + ' - ' + 'VALIDATE_STATUS ' + gl.getProgramParameter(program, gl.VALIDATE_STATUS) + '\n\n' + 'Program Info Log: ' + programLog + '\n' + vertexErrors + '\n' + fragmentErrors);
- } else if (programLog !== '') {
- console.warn('THREE.WebGLProgram: Program Info Log:', programLog);
- } else if (vertexLog === '' || fragmentLog === '') {
- haveDiagnostics = false;
- }
-
- if (haveDiagnostics) {
- this.diagnostics = {
- runnable: runnable,
- programLog: programLog,
- vertexShader: {
- log: vertexLog,
- prefix: prefixVertex
- },
- fragmentShader: {
- log: fragmentLog,
- prefix: prefixFragment
- }
- };
+ function unrollLoops(string) {
+ return string.replace(unrollLoopPattern, loopReplacer).replace(deprecatedUnrollLoopPattern, deprecatedLoopReplacer);
}
- } // Clean up
- // Crashes in iOS9 and iOS10. #18402
- // gl.detachShader( program, glVertexShader );
- // gl.detachShader( program, glFragmentShader );
+ function deprecatedLoopReplacer(match, start, end, snippet) {
+ console.warn('WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.');
+ return loopReplacer(match, start, end, snippet);
+ }
- gl.deleteShader(glVertexShader);
- gl.deleteShader(glFragmentShader); // set up caching for uniform locations
+ function loopReplacer(match, start, end, snippet) {
+ let string = '';
- let cachedUniforms;
+ for (let i = parseInt(start); i < parseInt(end); i++) {
+ string += snippet.replace(/\[\s*i\s*\]/g, '[ ' + i + ' ]').replace(/UNROLLED_LOOP_INDEX/g, i);
+ }
- this.getUniforms = function () {
- if (cachedUniforms === undefined) {
- cachedUniforms = new WebGLUniforms(gl, program);
- }
+ return string;
+ } //
- return cachedUniforms;
- }; // set up caching for attribute locations
+ function generatePrecision(parameters) {
+ let precisionstring = 'precision ' + parameters.precision + ' float;\nprecision ' + parameters.precision + ' int;';
- let cachedAttributes;
+ if (parameters.precision === 'highp') {
+ precisionstring += '\n#define HIGH_PRECISION';
+ } else if (parameters.precision === 'mediump') {
+ precisionstring += '\n#define MEDIUM_PRECISION';
+ } else if (parameters.precision === 'lowp') {
+ precisionstring += '\n#define LOW_PRECISION';
+ }
- this.getAttributes = function () {
- if (cachedAttributes === undefined) {
- cachedAttributes = fetchAttributeLocations(gl, program);
+ return precisionstring;
}
- return cachedAttributes;
- }; // free resource
+ function generateShadowMapTypeDefine(parameters) {
+ let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';
+ if (parameters.shadowMapType === PCFShadowMap) {
+ shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';
+ } else if (parameters.shadowMapType === PCFSoftShadowMap) {
+ shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';
+ } else if (parameters.shadowMapType === VSMShadowMap) {
+ shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM';
+ }
- this.destroy = function () {
- bindingStates.releaseStatesOfProgram(this);
- gl.deleteProgram(program);
- this.program = undefined;
- }; //
+ return shadowMapTypeDefine;
+ }
+ function generateEnvMapTypeDefine(parameters) {
+ let envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
- this.name = parameters.shaderName;
- this.id = programIdCount++;
- this.cacheKey = cacheKey;
- this.usedTimes = 1;
- this.program = program;
- this.vertexShader = glVertexShader;
- this.fragmentShader = glFragmentShader;
- return this;
- }
+ if (parameters.envMap) {
+ switch (parameters.envMapMode) {
+ case CubeReflectionMapping:
+ case CubeRefractionMapping:
+ envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
+ break;
- function WebGLPrograms(renderer, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping) {
- const programs = [];
- const isWebGL2 = capabilities.isWebGL2;
- const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer;
- const floatVertexTextures = capabilities.floatVertexTextures;
- const maxVertexUniforms = capabilities.maxVertexUniforms;
- const vertexTextures = capabilities.vertexTextures;
- let precision = capabilities.precision;
- const shaderIDs = {
- MeshDepthMaterial: 'depth',
- MeshDistanceMaterial: 'distanceRGBA',
- MeshNormalMaterial: 'normal',
- MeshBasicMaterial: 'basic',
- MeshLambertMaterial: 'lambert',
- MeshPhongMaterial: 'phong',
- MeshToonMaterial: 'toon',
- MeshStandardMaterial: 'physical',
- MeshPhysicalMaterial: 'physical',
- MeshMatcapMaterial: 'matcap',
- LineBasicMaterial: 'basic',
- LineDashedMaterial: 'dashed',
- PointsMaterial: 'points',
- ShadowMaterial: 'shadow',
- SpriteMaterial: 'sprite'
- };
- const parameterNames = ['precision', 'isWebGL2', 'supportsVertexTextures', 'outputEncoding', 'instancing', 'instancingColor', 'map', 'mapEncoding', 'matcap', 'matcapEncoding', 'envMap', 'envMapMode', 'envMapEncoding', 'envMapCubeUV', 'lightMap', 'lightMapEncoding', 'aoMap', 'emissiveMap', 'emissiveMapEncoding', 'bumpMap', 'normalMap', 'objectSpaceNormalMap', 'tangentSpaceNormalMap', 'clearcoat', 'clearcoatMap', 'clearcoatRoughnessMap', 'clearcoatNormalMap', 'displacementMap', 'specularMap', 'specularIntensityMap', 'specularTintMap', 'specularTintMapEncoding', 'roughnessMap', 'metalnessMap', 'gradientMap', 'alphaMap', 'alphaTest', 'combine', 'vertexColors', 'vertexAlphas', 'vertexTangents', 'vertexUvs', 'uvsVertexOnly', 'fog', 'useFog', 'fogExp2', 'flatShading', 'sizeAttenuation', 'logarithmicDepthBuffer', 'skinning', 'maxBones', 'useVertexTexture', 'morphTargets', 'morphNormals', 'premultipliedAlpha', 'numDirLights', 'numPointLights', 'numSpotLights', 'numHemiLights', 'numRectAreaLights', 'numDirLightShadows', 'numPointLightShadows', 'numSpotLightShadows', 'shadowMapEnabled', 'shadowMapType', 'toneMapping', 'physicallyCorrectLights', 'doubleSided', 'flipSided', 'numClippingPlanes', 'numClipIntersection', 'depthPacking', 'dithering', 'format', 'sheenTint', 'transmission', 'transmissionMap', 'thicknessMap'];
-
- function getMaxBones(object) {
- const skeleton = object.skeleton;
- const bones = skeleton.bones;
-
- if (floatVertexTextures) {
- return 1024;
- } else {
- // default for when object is not specified
- // ( for example when prebuilding shader to be used with multiple objects )
- //
- // - leave some extra space for other uniforms
- // - limit here is ANGLE's 254 max uniform vectors
- // (up to 54 should be safe)
- const nVertexUniforms = maxVertexUniforms;
- const nVertexMatrices = Math.floor((nVertexUniforms - 20) / 4);
- const maxBones = Math.min(nVertexMatrices, bones.length);
-
- if (maxBones < bones.length) {
- console.warn('THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.');
- return 0;
+ case CubeUVReflectionMapping:
+ case CubeUVRefractionMapping:
+ envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
+ break;
+ }
}
- return maxBones;
+ return envMapTypeDefine;
}
- }
-
- function getTextureEncodingFromMap(map) {
- let encoding;
-
- if (map && map.isTexture) {
- encoding = map.encoding;
- } else if (map && map.isWebGLRenderTarget) {
- console.warn('THREE.WebGLPrograms.getTextureEncodingFromMap: don\'t use render targets as textures. Use their .texture property instead.');
- encoding = map.texture.encoding;
- } else {
- encoding = LinearEncoding;
- }
-
- return encoding;
- }
-
- function getParameters(material, lights, shadows, scene, object) {
- const fog = scene.fog;
- const environment = material.isMeshStandardMaterial ? scene.environment : null;
- const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment);
- const shaderID = shaderIDs[material.type]; // heuristics to create shader parameters according to lights in the scene
- // (not to blow over maxLights budget)
- const maxBones = object.isSkinnedMesh ? getMaxBones(object) : 0;
+ function generateEnvMapModeDefine(parameters) {
+ let envMapModeDefine = 'ENVMAP_MODE_REFLECTION';
- if (material.precision !== null) {
- precision = capabilities.getMaxPrecision(material.precision);
-
- if (precision !== material.precision) {
- console.warn('THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.');
+ if (parameters.envMap) {
+ switch (parameters.envMapMode) {
+ case CubeRefractionMapping:
+ case CubeUVRefractionMapping:
+ envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
+ break;
+ }
}
- }
- let vertexShader, fragmentShader;
+ return envMapModeDefine;
+ }
- if (shaderID) {
- const shader = ShaderLib[shaderID];
- vertexShader = shader.vertexShader;
- fragmentShader = shader.fragmentShader;
- } else {
- vertexShader = material.vertexShader;
- fragmentShader = material.fragmentShader;
- }
-
- const currentRenderTarget = renderer.getRenderTarget();
- const useAlphaTest = material.alphaTest > 0;
- const useClearcoat = material.clearcoat > 0;
- const parameters = {
- isWebGL2: isWebGL2,
- shaderID: shaderID,
- shaderName: material.type,
- vertexShader: vertexShader,
- fragmentShader: fragmentShader,
- defines: material.defines,
- isRawShaderMaterial: material.isRawShaderMaterial === true,
- glslVersion: material.glslVersion,
- precision: precision,
- instancing: object.isInstancedMesh === true,
- instancingColor: object.isInstancedMesh === true && object.instanceColor !== null,
- supportsVertexTextures: vertexTextures,
- outputEncoding: currentRenderTarget !== null ? getTextureEncodingFromMap(currentRenderTarget.texture) : renderer.outputEncoding,
- map: !!material.map,
- mapEncoding: getTextureEncodingFromMap(material.map),
- matcap: !!material.matcap,
- matcapEncoding: getTextureEncodingFromMap(material.matcap),
- envMap: !!envMap,
- envMapMode: envMap && envMap.mapping,
- envMapEncoding: getTextureEncodingFromMap(envMap),
- envMapCubeUV: !!envMap && (envMap.mapping === CubeUVReflectionMapping || envMap.mapping === CubeUVRefractionMapping),
- lightMap: !!material.lightMap,
- lightMapEncoding: getTextureEncodingFromMap(material.lightMap),
- aoMap: !!material.aoMap,
- emissiveMap: !!material.emissiveMap,
- emissiveMapEncoding: getTextureEncodingFromMap(material.emissiveMap),
- bumpMap: !!material.bumpMap,
- normalMap: !!material.normalMap,
- objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap,
- tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap,
- clearcoat: useClearcoat,
- clearcoatMap: useClearcoat && !!material.clearcoatMap,
- clearcoatRoughnessMap: useClearcoat && !!material.clearcoatRoughnessMap,
- clearcoatNormalMap: useClearcoat && !!material.clearcoatNormalMap,
- displacementMap: !!material.displacementMap,
- roughnessMap: !!material.roughnessMap,
- metalnessMap: !!material.metalnessMap,
- specularMap: !!material.specularMap,
- specularIntensityMap: !!material.specularIntensityMap,
- specularTintMap: !!material.specularTintMap,
- specularTintMapEncoding: getTextureEncodingFromMap(material.specularTintMap),
- alphaMap: !!material.alphaMap,
- alphaTest: useAlphaTest,
- gradientMap: !!material.gradientMap,
- sheenTint: !!material.sheenTint && (material.sheenTint.r > 0 || material.sheenTint.g > 0 || material.sheenTint.b > 0),
- transmission: material.transmission > 0,
- transmissionMap: !!material.transmissionMap,
- thicknessMap: !!material.thicknessMap,
- combine: material.combine,
- vertexTangents: !!material.normalMap && !!object.geometry && !!object.geometry.attributes.tangent,
- vertexColors: material.vertexColors,
- vertexAlphas: material.vertexColors === true && !!object.geometry && !!object.geometry.attributes.color && object.geometry.attributes.color.itemSize === 4,
- vertexUvs: !!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatMap || !!material.clearcoatRoughnessMap || !!material.clearcoatNormalMap || !!material.displacementMap || !!material.transmissionMap || !!material.thicknessMap || !!material.specularIntensityMap || !!material.specularTintMap,
- uvsVertexOnly: !(!!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatNormalMap || material.transmission > 0 || !!material.transmissionMap || !!material.thicknessMap || !!material.specularIntensityMap || !!material.specularTintMap) && !!material.displacementMap,
- fog: !!fog,
- useFog: material.fog,
- fogExp2: fog && fog.isFogExp2,
- flatShading: !!material.flatShading,
- sizeAttenuation: material.sizeAttenuation,
- logarithmicDepthBuffer: logarithmicDepthBuffer,
- skinning: object.isSkinnedMesh === true && maxBones > 0,
- maxBones: maxBones,
- useVertexTexture: floatVertexTextures,
- morphTargets: !!object.geometry && !!object.geometry.morphAttributes.position,
- morphNormals: !!object.geometry && !!object.geometry.morphAttributes.normal,
- numDirLights: lights.directional.length,
- numPointLights: lights.point.length,
- numSpotLights: lights.spot.length,
- numRectAreaLights: lights.rectArea.length,
- numHemiLights: lights.hemi.length,
- numDirLightShadows: lights.directionalShadowMap.length,
- numPointLightShadows: lights.pointShadowMap.length,
- numSpotLightShadows: lights.spotShadowMap.length,
- numClippingPlanes: clipping.numPlanes,
- numClipIntersection: clipping.numIntersection,
- format: material.format,
- dithering: material.dithering,
- shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0,
- shadowMapType: renderer.shadowMap.type,
- toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping,
- physicallyCorrectLights: renderer.physicallyCorrectLights,
- premultipliedAlpha: material.premultipliedAlpha,
- doubleSided: material.side === DoubleSide,
- flipSided: material.side === BackSide,
- depthPacking: material.depthPacking !== undefined ? material.depthPacking : false,
- index0AttributeName: material.index0AttributeName,
- extensionDerivatives: material.extensions && material.extensions.derivatives,
- extensionFragDepth: material.extensions && material.extensions.fragDepth,
- extensionDrawBuffers: material.extensions && material.extensions.drawBuffers,
- extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD,
- rendererExtensionFragDepth: isWebGL2 || extensions.has('EXT_frag_depth'),
- rendererExtensionDrawBuffers: isWebGL2 || extensions.has('WEBGL_draw_buffers'),
- rendererExtensionShaderTextureLod: isWebGL2 || extensions.has('EXT_shader_texture_lod'),
- customProgramCacheKey: material.customProgramCacheKey()
- };
- return parameters;
- }
+ function generateEnvMapBlendingDefine(parameters) {
+ let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE';
- function getProgramCacheKey(parameters) {
- const array = [];
+ if (parameters.envMap) {
+ switch (parameters.combine) {
+ case MultiplyOperation:
+ envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
+ break;
- if (parameters.shaderID) {
- array.push(parameters.shaderID);
- } else {
- array.push(parameters.fragmentShader);
- array.push(parameters.vertexShader);
- }
+ case MixOperation:
+ envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
+ break;
- if (parameters.defines !== undefined) {
- for (const name in parameters.defines) {
- array.push(name);
- array.push(parameters.defines[name]);
+ case AddOperation:
+ envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
+ break;
+ }
}
- }
- if (parameters.isRawShaderMaterial === false) {
- for (let i = 0; i < parameterNames.length; i++) {
- array.push(parameters[parameterNames[i]]);
- }
+ return envMapBlendingDefine;
+ }
+
+ function WebGLProgram(renderer, cacheKey, parameters, bindingStates) {
+ // TODO Send this event to Three.js DevTools
+ // console.log( 'WebGLProgram', cacheKey );
+ const gl = renderer.getContext();
+ const defines = parameters.defines;
+ let vertexShader = parameters.vertexShader;
+ let fragmentShader = parameters.fragmentShader;
+ const shadowMapTypeDefine = generateShadowMapTypeDefine(parameters);
+ const envMapTypeDefine = generateEnvMapTypeDefine(parameters);
+ const envMapModeDefine = generateEnvMapModeDefine(parameters);
+ const envMapBlendingDefine = generateEnvMapBlendingDefine(parameters);
+ const gammaFactorDefine = renderer.gammaFactor > 0 ? renderer.gammaFactor : 1.0;
+ const customExtensions = parameters.isWebGL2 ? '' : generateExtensions(parameters);
+ const customDefines = generateDefines(defines);
+ const program = gl.createProgram();
+ let prefixVertex, prefixFragment;
+ let versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + '\n' : '';
+
+ if (parameters.isRawShaderMaterial) {
+ prefixVertex = [customDefines].filter(filterEmptyLine).join('\n');
+
+ if (prefixVertex.length > 0) {
+ prefixVertex += '\n';
+ }
- array.push(renderer.outputEncoding);
- array.push(renderer.gammaFactor);
- }
+ prefixFragment = [customExtensions, customDefines].filter(filterEmptyLine).join('\n');
- array.push(parameters.customProgramCacheKey);
- return array.join();
- }
+ if (prefixFragment.length > 0) {
+ prefixFragment += '\n';
+ }
+ } else {
+ prefixVertex = [generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.instancing ? '#define USE_INSTANCING' : '', parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, '#define MAX_BONES ' + parameters.maxBones, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularTintMap ? '#define USE_SPECULARTINTMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', '#ifdef USE_INSTANCING', ' attribute mat4 instanceMatrix;', '#endif', '#ifdef USE_INSTANCING_COLOR', ' attribute vec3 instanceColor;', '#endif', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_TANGENT', ' attribute vec4 tangent;', '#endif', '#if defined( USE_COLOR_ALPHA )', ' attribute vec4 color;', '#elif defined( USE_COLOR )', ' attribute vec3 color;', '#endif', '#ifdef USE_MORPHTARGETS', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n'].filter(filterEmptyLine).join('\n');
+ prefixFragment = [customExtensions, generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, '#define GAMMA_FACTOR ' + gammaFactorDefine, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.matcap ? '#define USE_MATCAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoat ? '#define USE_CLEARCOAT' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularTintMap ? '#define USE_SPECULARTINTMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.alphaTest ? '#define USE_ALPHATEST' : '', parameters.sheenTint ? '#define USE_SHEEN' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors || parameters.instancingColor ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', (parameters.extensionShaderTextureLOD || parameters.envMap) && parameters.rendererExtensionShaderTextureLod ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', parameters.toneMapping !== NoToneMapping ? '#define TONE_MAPPING' : '', parameters.toneMapping !== NoToneMapping ? ShaderChunk['tonemapping_pars_fragment'] : '', // this code is required here because it is used by the toneMapping() function defined below
+ parameters.toneMapping !== NoToneMapping ? getToneMappingFunction('toneMapping', parameters.toneMapping) : '', parameters.dithering ? '#define DITHERING' : '', parameters.format === RGBFormat ? '#define OPAQUE' : '', ShaderChunk['encodings_pars_fragment'], // this code is required here because it is used by the various encoding/decoding function defined below
+ parameters.map ? getTexelDecodingFunction('mapTexelToLinear', parameters.mapEncoding) : '', parameters.matcap ? getTexelDecodingFunction('matcapTexelToLinear', parameters.matcapEncoding) : '', parameters.envMap ? getTexelDecodingFunction('envMapTexelToLinear', parameters.envMapEncoding) : '', parameters.emissiveMap ? getTexelDecodingFunction('emissiveMapTexelToLinear', parameters.emissiveMapEncoding) : '', parameters.specularTintMap ? getTexelDecodingFunction('specularTintMapTexelToLinear', parameters.specularTintMapEncoding) : '', parameters.lightMap ? getTexelDecodingFunction('lightMapTexelToLinear', parameters.lightMapEncoding) : '', getTexelEncodingFunction('linearToOutputTexel', parameters.outputEncoding), parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', '\n'].filter(filterEmptyLine).join('\n');
+ }
+
+ vertexShader = resolveIncludes(vertexShader);
+ vertexShader = replaceLightNums(vertexShader, parameters);
+ vertexShader = replaceClippingPlaneNums(vertexShader, parameters);
+ fragmentShader = resolveIncludes(fragmentShader);
+ fragmentShader = replaceLightNums(fragmentShader, parameters);
+ fragmentShader = replaceClippingPlaneNums(fragmentShader, parameters);
+ vertexShader = unrollLoops(vertexShader);
+ fragmentShader = unrollLoops(fragmentShader);
+
+ if (parameters.isWebGL2 && parameters.isRawShaderMaterial !== true) {
+ // GLSL 3.0 conversion for built-in materials and ShaderMaterial
+ versionString = '#version 300 es\n';
+ prefixVertex = ['#define attribute in', '#define varying out', '#define texture2D texture'].join('\n') + '\n' + prefixVertex;
+ prefixFragment = ['#define varying in', parameters.glslVersion === GLSL3 ? '' : 'out highp vec4 pc_fragColor;', parameters.glslVersion === GLSL3 ? '' : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad'].join('\n') + '\n' + prefixFragment;
+ }
+
+ const vertexGlsl = versionString + prefixVertex + vertexShader;
+ const fragmentGlsl = versionString + prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl );
+ // console.log( '*FRAGMENT*', fragmentGlsl );
+
+ const glVertexShader = WebGLShader(gl, gl.VERTEX_SHADER, vertexGlsl);
+ const glFragmentShader = WebGLShader(gl, gl.FRAGMENT_SHADER, fragmentGlsl);
+ gl.attachShader(program, glVertexShader);
+ gl.attachShader(program, glFragmentShader); // Force a particular attribute to index 0.
+
+ if (parameters.index0AttributeName !== undefined) {
+ gl.bindAttribLocation(program, 0, parameters.index0AttributeName);
+ } else if (parameters.morphTargets === true) {
+ // programs with morphTargets displace position out of attribute 0
+ gl.bindAttribLocation(program, 0, 'position');
+ }
+
+ gl.linkProgram(program); // check for link errors
+
+ if (renderer.debug.checkShaderErrors) {
+ const programLog = gl.getProgramInfoLog(program).trim();
+ const vertexLog = gl.getShaderInfoLog(glVertexShader).trim();
+ const fragmentLog = gl.getShaderInfoLog(glFragmentShader).trim();
+ let runnable = true;
+ let haveDiagnostics = true;
+
+ if (gl.getProgramParameter(program, gl.LINK_STATUS) === false) {
+ runnable = false;
+ const vertexErrors = getShaderErrors(gl, glVertexShader, 'vertex');
+ const fragmentErrors = getShaderErrors(gl, glFragmentShader, 'fragment');
+ console.error('THREE.WebGLProgram: Shader Error ' + gl.getError() + ' - ' + 'VALIDATE_STATUS ' + gl.getProgramParameter(program, gl.VALIDATE_STATUS) + '\n\n' + 'Program Info Log: ' + programLog + '\n' + vertexErrors + '\n' + fragmentErrors);
+ } else if (programLog !== '') {
+ console.warn('THREE.WebGLProgram: Program Info Log:', programLog);
+ } else if (vertexLog === '' || fragmentLog === '') {
+ haveDiagnostics = false;
+ }
- function getUniforms(material) {
- const shaderID = shaderIDs[material.type];
- let uniforms;
+ if (haveDiagnostics) {
+ this.diagnostics = {
+ runnable: runnable,
+ programLog: programLog,
+ vertexShader: {
+ log: vertexLog,
+ prefix: prefixVertex
+ },
+ fragmentShader: {
+ log: fragmentLog,
+ prefix: prefixFragment
+ }
+ };
+ }
+ } // Clean up
+ // Crashes in iOS9 and iOS10. #18402
+ // gl.detachShader( program, glVertexShader );
+ // gl.detachShader( program, glFragmentShader );
- if (shaderID) {
- const shader = ShaderLib[shaderID];
- uniforms = UniformsUtils.clone(shader.uniforms);
- } else {
- uniforms = material.uniforms;
- }
- return uniforms;
- }
+ gl.deleteShader(glVertexShader);
+ gl.deleteShader(glFragmentShader); // set up caching for uniform locations
- function acquireProgram(parameters, cacheKey) {
- let program; // Check if code has been already compiled
+ let cachedUniforms;
- for (let p = 0, pl = programs.length; p < pl; p++) {
- const preexistingProgram = programs[p];
+ this.getUniforms = function () {
+ if (cachedUniforms === undefined) {
+ cachedUniforms = new WebGLUniforms(gl, program);
+ }
- if (preexistingProgram.cacheKey === cacheKey) {
- program = preexistingProgram;
- ++program.usedTimes;
- break;
- }
- }
+ return cachedUniforms;
+ }; // set up caching for attribute locations
- if (program === undefined) {
- program = new WebGLProgram(renderer, cacheKey, parameters, bindingStates);
- programs.push(program);
- }
- return program;
- }
+ let cachedAttributes;
- function releaseProgram(program) {
- if (--program.usedTimes === 0) {
- // Remove from unordered set
- const i = programs.indexOf(program);
- programs[i] = programs[programs.length - 1];
- programs.pop(); // Free WebGL resources
+ this.getAttributes = function () {
+ if (cachedAttributes === undefined) {
+ cachedAttributes = fetchAttributeLocations(gl, program);
+ }
- program.destroy();
- }
- }
+ return cachedAttributes;
+ }; // free resource
- return {
- getParameters: getParameters,
- getProgramCacheKey: getProgramCacheKey,
- getUniforms: getUniforms,
- acquireProgram: acquireProgram,
- releaseProgram: releaseProgram,
- // Exposed for resource monitoring & error feedback via renderer.info:
- programs: programs
- };
- }
- function WebGLProperties() {
- let properties = new WeakMap();
+ this.destroy = function () {
+ bindingStates.releaseStatesOfProgram(this);
+ gl.deleteProgram(program);
+ this.program = undefined;
+ }; //
- function get(object) {
- let map = properties.get(object);
- if (map === undefined) {
- map = {};
- properties.set(object, map);
+ this.name = parameters.shaderName;
+ this.id = programIdCount++;
+ this.cacheKey = cacheKey;
+ this.usedTimes = 1;
+ this.program = program;
+ this.vertexShader = glVertexShader;
+ this.fragmentShader = glFragmentShader;
+ return this;
}
- return map;
- }
+ function WebGLPrograms(renderer, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping) {
+ const programs = [];
+ const isWebGL2 = capabilities.isWebGL2;
+ const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer;
+ const floatVertexTextures = capabilities.floatVertexTextures;
+ const maxVertexUniforms = capabilities.maxVertexUniforms;
+ const vertexTextures = capabilities.vertexTextures;
+ let precision = capabilities.precision;
+ const shaderIDs = {
+ MeshDepthMaterial: 'depth',
+ MeshDistanceMaterial: 'distanceRGBA',
+ MeshNormalMaterial: 'normal',
+ MeshBasicMaterial: 'basic',
+ MeshLambertMaterial: 'lambert',
+ MeshPhongMaterial: 'phong',
+ MeshToonMaterial: 'toon',
+ MeshStandardMaterial: 'physical',
+ MeshPhysicalMaterial: 'physical',
+ MeshMatcapMaterial: 'matcap',
+ LineBasicMaterial: 'basic',
+ LineDashedMaterial: 'dashed',
+ PointsMaterial: 'points',
+ ShadowMaterial: 'shadow',
+ SpriteMaterial: 'sprite'
+ };
+ const parameterNames = ['precision', 'isWebGL2', 'supportsVertexTextures', 'outputEncoding', 'instancing', 'instancingColor', 'map', 'mapEncoding', 'matcap', 'matcapEncoding', 'envMap', 'envMapMode', 'envMapEncoding', 'envMapCubeUV', 'lightMap', 'lightMapEncoding', 'aoMap', 'emissiveMap', 'emissiveMapEncoding', 'bumpMap', 'normalMap', 'objectSpaceNormalMap', 'tangentSpaceNormalMap', 'clearcoat', 'clearcoatMap', 'clearcoatRoughnessMap', 'clearcoatNormalMap', 'displacementMap', 'specularMap', 'specularIntensityMap', 'specularTintMap', 'specularTintMapEncoding', 'roughnessMap', 'metalnessMap', 'gradientMap', 'alphaMap', 'alphaTest', 'combine', 'vertexColors', 'vertexAlphas', 'vertexTangents', 'vertexUvs', 'uvsVertexOnly', 'fog', 'useFog', 'fogExp2', 'flatShading', 'sizeAttenuation', 'logarithmicDepthBuffer', 'skinning', 'maxBones', 'useVertexTexture', 'morphTargets', 'morphNormals', 'premultipliedAlpha', 'numDirLights', 'numPointLights', 'numSpotLights', 'numHemiLights', 'numRectAreaLights', 'numDirLightShadows', 'numPointLightShadows', 'numSpotLightShadows', 'shadowMapEnabled', 'shadowMapType', 'toneMapping', 'physicallyCorrectLights', 'doubleSided', 'flipSided', 'numClippingPlanes', 'numClipIntersection', 'depthPacking', 'dithering', 'format', 'sheenTint', 'transmission', 'transmissionMap', 'thicknessMap'];
- function remove(object) {
- properties.delete(object);
- }
+ function getMaxBones(object) {
+ const skeleton = object.skeleton;
+ const bones = skeleton.bones;
- function update(object, key, value) {
- properties.get(object)[key] = value;
- }
+ if (floatVertexTextures) {
+ return 1024;
+ } else {
+ // default for when object is not specified
+ // ( for example when prebuilding shader to be used with multiple objects )
+ //
+ // - leave some extra space for other uniforms
+ // - limit here is ANGLE's 254 max uniform vectors
+ // (up to 54 should be safe)
+ const nVertexUniforms = maxVertexUniforms;
+ const nVertexMatrices = Math.floor((nVertexUniforms - 20) / 4);
+ const maxBones = Math.min(nVertexMatrices, bones.length);
+
+ if (maxBones < bones.length) {
+ console.warn('THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.');
+ return 0;
+ }
- function dispose() {
- properties = new WeakMap();
- }
+ return maxBones;
+ }
+ }
- return {
- get: get,
- remove: remove,
- update: update,
- dispose: dispose
- };
- }
+ function getTextureEncodingFromMap(map) {
+ let encoding;
- function painterSortStable(a, b) {
- if (a.groupOrder !== b.groupOrder) {
- return a.groupOrder - b.groupOrder;
- } else if (a.renderOrder !== b.renderOrder) {
- return a.renderOrder - b.renderOrder;
- } else if (a.program !== b.program) {
- return a.program.id - b.program.id;
- } else if (a.material.id !== b.material.id) {
- return a.material.id - b.material.id;
- } else if (a.z !== b.z) {
- return a.z - b.z;
- } else {
- return a.id - b.id;
- }
- }
+ if (map && map.isTexture) {
+ encoding = map.encoding;
+ } else if (map && map.isWebGLRenderTarget) {
+ console.warn('THREE.WebGLPrograms.getTextureEncodingFromMap: don\'t use render targets as textures. Use their .texture property instead.');
+ encoding = map.texture.encoding;
+ } else {
+ encoding = LinearEncoding;
+ }
- function reversePainterSortStable(a, b) {
- if (a.groupOrder !== b.groupOrder) {
- return a.groupOrder - b.groupOrder;
- } else if (a.renderOrder !== b.renderOrder) {
- return a.renderOrder - b.renderOrder;
- } else if (a.z !== b.z) {
- return b.z - a.z;
- } else {
- return a.id - b.id;
- }
- }
+ return encoding;
+ }
- function WebGLRenderList(properties) {
- const renderItems = [];
- let renderItemsIndex = 0;
- const opaque = [];
- const transmissive = [];
- const transparent = [];
- const defaultProgram = {
- id: -1
- };
-
- function init() {
- renderItemsIndex = 0;
- opaque.length = 0;
- transmissive.length = 0;
- transparent.length = 0;
- }
+ function getParameters(material, lights, shadows, scene, object) {
+ const fog = scene.fog;
+ const environment = material.isMeshStandardMaterial ? scene.environment : null;
+ const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment);
+ const shaderID = shaderIDs[material.type]; // heuristics to create shader parameters according to lights in the scene
+ // (not to blow over maxLights budget)
- function getNextRenderItem(object, geometry, material, groupOrder, z, group) {
- let renderItem = renderItems[renderItemsIndex];
- const materialProperties = properties.get(material);
-
- if (renderItem === undefined) {
- renderItem = {
- id: object.id,
- object: object,
- geometry: geometry,
- material: material,
- program: materialProperties.program || defaultProgram,
- groupOrder: groupOrder,
- renderOrder: object.renderOrder,
- z: z,
- group: group
- };
- renderItems[renderItemsIndex] = renderItem;
- } else {
- renderItem.id = object.id;
- renderItem.object = object;
- renderItem.geometry = geometry;
- renderItem.material = material;
- renderItem.program = materialProperties.program || defaultProgram;
- renderItem.groupOrder = groupOrder;
- renderItem.renderOrder = object.renderOrder;
- renderItem.z = z;
- renderItem.group = group;
- }
-
- renderItemsIndex++;
- return renderItem;
- }
+ const maxBones = object.isSkinnedMesh ? getMaxBones(object) : 0;
- function push(object, geometry, material, groupOrder, z, group) {
- const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group);
+ if (material.precision !== null) {
+ precision = capabilities.getMaxPrecision(material.precision);
- if (material.transmission > 0.0) {
- transmissive.push(renderItem);
- } else if (material.transparent === true) {
- transparent.push(renderItem);
- } else {
- opaque.push(renderItem);
- }
- }
+ if (precision !== material.precision) {
+ console.warn('THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.');
+ }
+ }
- function unshift(object, geometry, material, groupOrder, z, group) {
- const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group);
+ let vertexShader, fragmentShader;
- if (material.transmission > 0.0) {
- transmissive.unshift(renderItem);
- } else if (material.transparent === true) {
- transparent.unshift(renderItem);
- } else {
- opaque.unshift(renderItem);
- }
- }
+ if (shaderID) {
+ const shader = ShaderLib[shaderID];
+ vertexShader = shader.vertexShader;
+ fragmentShader = shader.fragmentShader;
+ } else {
+ vertexShader = material.vertexShader;
+ fragmentShader = material.fragmentShader;
+ }
- function sort(customOpaqueSort, customTransparentSort) {
- if (opaque.length > 1) opaque.sort(customOpaqueSort || painterSortStable);
- if (transmissive.length > 1) transmissive.sort(customTransparentSort || reversePainterSortStable);
- if (transparent.length > 1) transparent.sort(customTransparentSort || reversePainterSortStable);
- }
+ const currentRenderTarget = renderer.getRenderTarget();
+ const useAlphaTest = material.alphaTest > 0;
+ const useClearcoat = material.clearcoat > 0;
+ const parameters = {
+ isWebGL2: isWebGL2,
+ shaderID: shaderID,
+ shaderName: material.type,
+ vertexShader: vertexShader,
+ fragmentShader: fragmentShader,
+ defines: material.defines,
+ isRawShaderMaterial: material.isRawShaderMaterial === true,
+ glslVersion: material.glslVersion,
+ precision: precision,
+ instancing: object.isInstancedMesh === true,
+ instancingColor: object.isInstancedMesh === true && object.instanceColor !== null,
+ supportsVertexTextures: vertexTextures,
+ outputEncoding: currentRenderTarget !== null ? getTextureEncodingFromMap(currentRenderTarget.texture) : renderer.outputEncoding,
+ map: !!material.map,
+ mapEncoding: getTextureEncodingFromMap(material.map),
+ matcap: !!material.matcap,
+ matcapEncoding: getTextureEncodingFromMap(material.matcap),
+ envMap: !!envMap,
+ envMapMode: envMap && envMap.mapping,
+ envMapEncoding: getTextureEncodingFromMap(envMap),
+ envMapCubeUV: !!envMap && (envMap.mapping === CubeUVReflectionMapping || envMap.mapping === CubeUVRefractionMapping),
+ lightMap: !!material.lightMap,
+ lightMapEncoding: getTextureEncodingFromMap(material.lightMap),
+ aoMap: !!material.aoMap,
+ emissiveMap: !!material.emissiveMap,
+ emissiveMapEncoding: getTextureEncodingFromMap(material.emissiveMap),
+ bumpMap: !!material.bumpMap,
+ normalMap: !!material.normalMap,
+ objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap,
+ tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap,
+ clearcoat: useClearcoat,
+ clearcoatMap: useClearcoat && !!material.clearcoatMap,
+ clearcoatRoughnessMap: useClearcoat && !!material.clearcoatRoughnessMap,
+ clearcoatNormalMap: useClearcoat && !!material.clearcoatNormalMap,
+ displacementMap: !!material.displacementMap,
+ roughnessMap: !!material.roughnessMap,
+ metalnessMap: !!material.metalnessMap,
+ specularMap: !!material.specularMap,
+ specularIntensityMap: !!material.specularIntensityMap,
+ specularTintMap: !!material.specularTintMap,
+ specularTintMapEncoding: getTextureEncodingFromMap(material.specularTintMap),
+ alphaMap: !!material.alphaMap,
+ alphaTest: useAlphaTest,
+ gradientMap: !!material.gradientMap,
+ sheenTint: !!material.sheenTint && (material.sheenTint.r > 0 || material.sheenTint.g > 0 || material.sheenTint.b > 0),
+ transmission: material.transmission > 0,
+ transmissionMap: !!material.transmissionMap,
+ thicknessMap: !!material.thicknessMap,
+ combine: material.combine,
+ vertexTangents: !!material.normalMap && !!object.geometry && !!object.geometry.attributes.tangent,
+ vertexColors: material.vertexColors,
+ vertexAlphas: material.vertexColors === true && !!object.geometry && !!object.geometry.attributes.color && object.geometry.attributes.color.itemSize === 4,
+ vertexUvs: !!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatMap || !!material.clearcoatRoughnessMap || !!material.clearcoatNormalMap || !!material.displacementMap || !!material.transmissionMap || !!material.thicknessMap || !!material.specularIntensityMap || !!material.specularTintMap,
+ uvsVertexOnly: !(!!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatNormalMap || material.transmission > 0 || !!material.transmissionMap || !!material.thicknessMap || !!material.specularIntensityMap || !!material.specularTintMap) && !!material.displacementMap,
+ fog: !!fog,
+ useFog: material.fog,
+ fogExp2: fog && fog.isFogExp2,
+ flatShading: !!material.flatShading,
+ sizeAttenuation: material.sizeAttenuation,
+ logarithmicDepthBuffer: logarithmicDepthBuffer,
+ skinning: object.isSkinnedMesh === true && maxBones > 0,
+ maxBones: maxBones,
+ useVertexTexture: floatVertexTextures,
+ morphTargets: !!object.geometry && !!object.geometry.morphAttributes.position,
+ morphNormals: !!object.geometry && !!object.geometry.morphAttributes.normal,
+ numDirLights: lights.directional.length,
+ numPointLights: lights.point.length,
+ numSpotLights: lights.spot.length,
+ numRectAreaLights: lights.rectArea.length,
+ numHemiLights: lights.hemi.length,
+ numDirLightShadows: lights.directionalShadowMap.length,
+ numPointLightShadows: lights.pointShadowMap.length,
+ numSpotLightShadows: lights.spotShadowMap.length,
+ numClippingPlanes: clipping.numPlanes,
+ numClipIntersection: clipping.numIntersection,
+ format: material.format,
+ dithering: material.dithering,
+ shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0,
+ shadowMapType: renderer.shadowMap.type,
+ toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping,
+ physicallyCorrectLights: renderer.physicallyCorrectLights,
+ premultipliedAlpha: material.premultipliedAlpha,
+ doubleSided: material.side === DoubleSide,
+ flipSided: material.side === BackSide,
+ depthPacking: material.depthPacking !== undefined ? material.depthPacking : false,
+ index0AttributeName: material.index0AttributeName,
+ extensionDerivatives: material.extensions && material.extensions.derivatives,
+ extensionFragDepth: material.extensions && material.extensions.fragDepth,
+ extensionDrawBuffers: material.extensions && material.extensions.drawBuffers,
+ extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD,
+ rendererExtensionFragDepth: isWebGL2 || extensions.has('EXT_frag_depth'),
+ rendererExtensionDrawBuffers: isWebGL2 || extensions.has('WEBGL_draw_buffers'),
+ rendererExtensionShaderTextureLod: isWebGL2 || extensions.has('EXT_shader_texture_lod'),
+ customProgramCacheKey: material.customProgramCacheKey()
+ };
+ return parameters;
+ }
- function finish() {
- // Clear references from inactive renderItems in the list
- for (let i = renderItemsIndex, il = renderItems.length; i < il; i++) {
- const renderItem = renderItems[i];
- if (renderItem.id === null) break;
- renderItem.id = null;
- renderItem.object = null;
- renderItem.geometry = null;
- renderItem.material = null;
- renderItem.program = null;
- renderItem.group = null;
- }
- }
+ function getProgramCacheKey(parameters) {
+ const array = [];
- return {
- opaque: opaque,
- transmissive: transmissive,
- transparent: transparent,
- init: init,
- push: push,
- unshift: unshift,
- finish: finish,
- sort: sort
- };
- }
+ if (parameters.shaderID) {
+ array.push(parameters.shaderID);
+ } else {
+ array.push(parameters.fragmentShader);
+ array.push(parameters.vertexShader);
+ }
+
+ if (parameters.defines !== undefined) {
+ for (const name in parameters.defines) {
+ array.push(name);
+ array.push(parameters.defines[name]);
+ }
+ }
- function WebGLRenderLists(properties) {
- let lists = new WeakMap();
+ if (parameters.isRawShaderMaterial === false) {
+ for (let i = 0; i < parameterNames.length; i++) {
+ array.push(parameters[parameterNames[i]]);
+ }
- function get(scene, renderCallDepth) {
- let list;
+ array.push(renderer.outputEncoding);
+ array.push(renderer.gammaFactor);
+ }
- if (lists.has(scene) === false) {
- list = new WebGLRenderList(properties);
- lists.set(scene, [list]);
- } else {
- if (renderCallDepth >= lists.get(scene).length) {
- list = new WebGLRenderList(properties);
- lists.get(scene).push(list);
- } else {
- list = lists.get(scene)[renderCallDepth];
+ array.push(parameters.customProgramCacheKey);
+ return array.join();
}
- }
-
- return list;
- }
- function dispose() {
- lists = new WeakMap();
- }
+ function getUniforms(material) {
+ const shaderID = shaderIDs[material.type];
+ let uniforms;
- return {
- get: get,
- dispose: dispose
- };
- }
+ if (shaderID) {
+ const shader = ShaderLib[shaderID];
+ uniforms = UniformsUtils.clone(shader.uniforms);
+ } else {
+ uniforms = material.uniforms;
+ }
- function UniformsCache() {
- const lights = {};
- return {
- get: function (light) {
- if (lights[light.id] !== undefined) {
- return lights[light.id];
+ return uniforms;
}
- let uniforms;
+ function acquireProgram(parameters, cacheKey) {
+ let program; // Check if code has been already compiled
- switch (light.type) {
- case 'DirectionalLight':
- uniforms = {
- direction: new Vector3(),
- color: new Color()
- };
- break;
+ for (let p = 0, pl = programs.length; p < pl; p++) {
+ const preexistingProgram = programs[p];
- case 'SpotLight':
- uniforms = {
- position: new Vector3(),
- direction: new Vector3(),
- color: new Color(),
- distance: 0,
- coneCos: 0,
- penumbraCos: 0,
- decay: 0
- };
- break;
+ if (preexistingProgram.cacheKey === cacheKey) {
+ program = preexistingProgram;
+ ++program.usedTimes;
+ break;
+ }
+ }
- case 'PointLight':
- uniforms = {
- position: new Vector3(),
- color: new Color(),
- distance: 0,
- decay: 0
- };
- break;
+ if (program === undefined) {
+ program = new WebGLProgram(renderer, cacheKey, parameters, bindingStates);
+ programs.push(program);
+ }
- case 'HemisphereLight':
- uniforms = {
- direction: new Vector3(),
- skyColor: new Color(),
- groundColor: new Color()
- };
- break;
+ return program;
+ }
- case 'RectAreaLight':
- uniforms = {
- color: new Color(),
- position: new Vector3(),
- halfWidth: new Vector3(),
- halfHeight: new Vector3()
- };
- break;
+ function releaseProgram(program) {
+ if (--program.usedTimes === 0) {
+ // Remove from unordered set
+ const i = programs.indexOf(program);
+ programs[i] = programs[programs.length - 1];
+ programs.pop(); // Free WebGL resources
+
+ program.destroy();
+ }
}
- lights[light.id] = uniforms;
- return uniforms;
+ return {
+ getParameters: getParameters,
+ getProgramCacheKey: getProgramCacheKey,
+ getUniforms: getUniforms,
+ acquireProgram: acquireProgram,
+ releaseProgram: releaseProgram,
+ // Exposed for resource monitoring & error feedback via renderer.info:
+ programs: programs
+ };
}
- };
- }
- function ShadowUniformsCache() {
- const lights = {};
- return {
- get: function (light) {
- if (lights[light.id] !== undefined) {
- return lights[light.id];
- }
+ function WebGLProperties() {
+ let properties = new WeakMap();
- let uniforms;
+ function get(object) {
+ let map = properties.get(object);
- switch (light.type) {
- case 'DirectionalLight':
- uniforms = {
- shadowBias: 0,
- shadowNormalBias: 0,
- shadowRadius: 1,
- shadowMapSize: new Vector2()
- };
- break;
+ if (map === undefined) {
+ map = {};
+ properties.set(object, map);
+ }
- case 'SpotLight':
- uniforms = {
- shadowBias: 0,
- shadowNormalBias: 0,
- shadowRadius: 1,
- shadowMapSize: new Vector2()
- };
- break;
+ return map;
+ }
- case 'PointLight':
- uniforms = {
- shadowBias: 0,
- shadowNormalBias: 0,
- shadowRadius: 1,
- shadowMapSize: new Vector2(),
- shadowCameraNear: 1,
- shadowCameraFar: 1000
- };
- break;
- // TODO (abelnation): set RectAreaLight shadow uniforms
+ function remove(object) {
+ properties.delete(object);
}
- lights[light.id] = uniforms;
- return uniforms;
- }
- };
- }
+ function update(object, key, value) {
+ properties.get(object)[key] = value;
+ }
- let nextVersion = 0;
+ function dispose() {
+ properties = new WeakMap();
+ }
- function shadowCastingLightsFirst(lightA, lightB) {
- return (lightB.castShadow ? 1 : 0) - (lightA.castShadow ? 1 : 0);
- }
+ return {
+ get: get,
+ remove: remove,
+ update: update,
+ dispose: dispose
+ };
+ }
- function WebGLLights(extensions, capabilities) {
- const cache = new UniformsCache();
- const shadowCache = ShadowUniformsCache();
- const state = {
- version: 0,
- hash: {
- directionalLength: -1,
- pointLength: -1,
- spotLength: -1,
- rectAreaLength: -1,
- hemiLength: -1,
- numDirectionalShadows: -1,
- numPointShadows: -1,
- numSpotShadows: -1
- },
- ambient: [0, 0, 0],
- probe: [],
- directional: [],
- directionalShadow: [],
- directionalShadowMap: [],
- directionalShadowMatrix: [],
- spot: [],
- spotShadow: [],
- spotShadowMap: [],
- spotShadowMatrix: [],
- rectArea: [],
- rectAreaLTC1: null,
- rectAreaLTC2: null,
- point: [],
- pointShadow: [],
- pointShadowMap: [],
- pointShadowMatrix: [],
- hemi: []
- };
-
- for (let i = 0; i < 9; i++) state.probe.push(new Vector3());
-
- const vector3 = new Vector3();
- const matrix4 = new Matrix4();
- const matrix42 = new Matrix4();
-
- function setup(lights, physicallyCorrectLights) {
- let r = 0,
- g = 0,
- b = 0;
-
- for (let i = 0; i < 9; i++) state.probe[i].set(0, 0, 0);
-
- let directionalLength = 0;
- let pointLength = 0;
- let spotLength = 0;
- let rectAreaLength = 0;
- let hemiLength = 0;
- let numDirectionalShadows = 0;
- let numPointShadows = 0;
- let numSpotShadows = 0;
- lights.sort(shadowCastingLightsFirst); // artist-friendly light intensity scaling factor
-
- const scaleFactor = physicallyCorrectLights !== true ? Math.PI : 1;
-
- for (let i = 0, l = lights.length; i < l; i++) {
- const light = lights[i];
- const color = light.color;
- const intensity = light.intensity;
- const distance = light.distance;
- const shadowMap = light.shadow && light.shadow.map ? light.shadow.map.texture : null;
-
- if (light.isAmbientLight) {
- r += color.r * intensity * scaleFactor;
- g += color.g * intensity * scaleFactor;
- b += color.b * intensity * scaleFactor;
- } else if (light.isLightProbe) {
- for (let j = 0; j < 9; j++) {
- state.probe[j].addScaledVector(light.sh.coefficients[j], intensity);
- }
- } else if (light.isDirectionalLight) {
- const uniforms = cache.get(light);
- uniforms.color.copy(light.color).multiplyScalar(light.intensity * scaleFactor);
-
- if (light.castShadow) {
- const shadow = light.shadow;
- const shadowUniforms = shadowCache.get(light);
- shadowUniforms.shadowBias = shadow.bias;
- shadowUniforms.shadowNormalBias = shadow.normalBias;
- shadowUniforms.shadowRadius = shadow.radius;
- shadowUniforms.shadowMapSize = shadow.mapSize;
- state.directionalShadow[directionalLength] = shadowUniforms;
- state.directionalShadowMap[directionalLength] = shadowMap;
- state.directionalShadowMatrix[directionalLength] = light.shadow.matrix;
- numDirectionalShadows++;
- }
-
- state.directional[directionalLength] = uniforms;
- directionalLength++;
- } else if (light.isSpotLight) {
- const uniforms = cache.get(light);
- uniforms.position.setFromMatrixPosition(light.matrixWorld);
- uniforms.color.copy(color).multiplyScalar(intensity * scaleFactor);
- uniforms.distance = distance;
- uniforms.coneCos = Math.cos(light.angle);
- uniforms.penumbraCos = Math.cos(light.angle * (1 - light.penumbra));
- uniforms.decay = light.decay;
-
- if (light.castShadow) {
- const shadow = light.shadow;
- const shadowUniforms = shadowCache.get(light);
- shadowUniforms.shadowBias = shadow.bias;
- shadowUniforms.shadowNormalBias = shadow.normalBias;
- shadowUniforms.shadowRadius = shadow.radius;
- shadowUniforms.shadowMapSize = shadow.mapSize;
- state.spotShadow[spotLength] = shadowUniforms;
- state.spotShadowMap[spotLength] = shadowMap;
- state.spotShadowMatrix[spotLength] = light.shadow.matrix;
- numSpotShadows++;
- }
-
- state.spot[spotLength] = uniforms;
- spotLength++;
- } else if (light.isRectAreaLight) {
- const uniforms = cache.get(light); // (a) intensity is the total visible light emitted
- //uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) );
- // (b) intensity is the brightness of the light
-
- uniforms.color.copy(color).multiplyScalar(intensity);
- uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0);
- uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0);
- state.rectArea[rectAreaLength] = uniforms;
- rectAreaLength++;
- } else if (light.isPointLight) {
- const uniforms = cache.get(light);
- uniforms.color.copy(light.color).multiplyScalar(light.intensity * scaleFactor);
- uniforms.distance = light.distance;
- uniforms.decay = light.decay;
-
- if (light.castShadow) {
- const shadow = light.shadow;
- const shadowUniforms = shadowCache.get(light);
- shadowUniforms.shadowBias = shadow.bias;
- shadowUniforms.shadowNormalBias = shadow.normalBias;
- shadowUniforms.shadowRadius = shadow.radius;
- shadowUniforms.shadowMapSize = shadow.mapSize;
- shadowUniforms.shadowCameraNear = shadow.camera.near;
- shadowUniforms.shadowCameraFar = shadow.camera.far;
- state.pointShadow[pointLength] = shadowUniforms;
- state.pointShadowMap[pointLength] = shadowMap;
- state.pointShadowMatrix[pointLength] = light.shadow.matrix;
- numPointShadows++;
- }
-
- state.point[pointLength] = uniforms;
- pointLength++;
- } else if (light.isHemisphereLight) {
- const uniforms = cache.get(light);
- uniforms.skyColor.copy(light.color).multiplyScalar(intensity * scaleFactor);
- uniforms.groundColor.copy(light.groundColor).multiplyScalar(intensity * scaleFactor);
- state.hemi[hemiLength] = uniforms;
- hemiLength++;
- }
- }
-
- if (rectAreaLength > 0) {
- if (capabilities.isWebGL2) {
- // WebGL 2
- state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1;
- state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2;
+ function painterSortStable(a, b) {
+ if (a.groupOrder !== b.groupOrder) {
+ return a.groupOrder - b.groupOrder;
+ } else if (a.renderOrder !== b.renderOrder) {
+ return a.renderOrder - b.renderOrder;
+ } else if (a.program !== b.program) {
+ return a.program.id - b.program.id;
+ } else if (a.material.id !== b.material.id) {
+ return a.material.id - b.material.id;
+ } else if (a.z !== b.z) {
+ return a.z - b.z;
} else {
- // WebGL 1
- if (extensions.has('OES_texture_float_linear') === true) {
- state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1;
- state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2;
- } else if (extensions.has('OES_texture_half_float_linear') === true) {
- state.rectAreaLTC1 = UniformsLib.LTC_HALF_1;
- state.rectAreaLTC2 = UniformsLib.LTC_HALF_2;
- } else {
- console.error('THREE.WebGLRenderer: Unable to use RectAreaLight. Missing WebGL extensions.');
- }
- }
- }
-
- state.ambient[0] = r;
- state.ambient[1] = g;
- state.ambient[2] = b;
- const hash = state.hash;
-
- if (hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows) {
- state.directional.length = directionalLength;
- state.spot.length = spotLength;
- state.rectArea.length = rectAreaLength;
- state.point.length = pointLength;
- state.hemi.length = hemiLength;
- state.directionalShadow.length = numDirectionalShadows;
- state.directionalShadowMap.length = numDirectionalShadows;
- state.pointShadow.length = numPointShadows;
- state.pointShadowMap.length = numPointShadows;
- state.spotShadow.length = numSpotShadows;
- state.spotShadowMap.length = numSpotShadows;
- state.directionalShadowMatrix.length = numDirectionalShadows;
- state.pointShadowMatrix.length = numPointShadows;
- state.spotShadowMatrix.length = numSpotShadows;
- hash.directionalLength = directionalLength;
- hash.pointLength = pointLength;
- hash.spotLength = spotLength;
- hash.rectAreaLength = rectAreaLength;
- hash.hemiLength = hemiLength;
- hash.numDirectionalShadows = numDirectionalShadows;
- hash.numPointShadows = numPointShadows;
- hash.numSpotShadows = numSpotShadows;
- state.version = nextVersion++;
+ return a.id - b.id;
+ }
}
- }
- function setupView(lights, camera) {
- let directionalLength = 0;
- let pointLength = 0;
- let spotLength = 0;
- let rectAreaLength = 0;
- let hemiLength = 0;
- const viewMatrix = camera.matrixWorldInverse;
-
- for (let i = 0, l = lights.length; i < l; i++) {
- const light = lights[i];
-
- if (light.isDirectionalLight) {
- const uniforms = state.directional[directionalLength];
- uniforms.direction.setFromMatrixPosition(light.matrixWorld);
- vector3.setFromMatrixPosition(light.target.matrixWorld);
- uniforms.direction.sub(vector3);
- uniforms.direction.transformDirection(viewMatrix);
- directionalLength++;
- } else if (light.isSpotLight) {
- const uniforms = state.spot[spotLength];
- uniforms.position.setFromMatrixPosition(light.matrixWorld);
- uniforms.position.applyMatrix4(viewMatrix);
- uniforms.direction.setFromMatrixPosition(light.matrixWorld);
- vector3.setFromMatrixPosition(light.target.matrixWorld);
- uniforms.direction.sub(vector3);
- uniforms.direction.transformDirection(viewMatrix);
- spotLength++;
- } else if (light.isRectAreaLight) {
- const uniforms = state.rectArea[rectAreaLength];
- uniforms.position.setFromMatrixPosition(light.matrixWorld);
- uniforms.position.applyMatrix4(viewMatrix); // extract local rotation of light to derive width/height half vectors
-
- matrix42.identity();
- matrix4.copy(light.matrixWorld);
- matrix4.premultiply(viewMatrix);
- matrix42.extractRotation(matrix4);
- uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0);
- uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0);
- uniforms.halfWidth.applyMatrix4(matrix42);
- uniforms.halfHeight.applyMatrix4(matrix42);
- rectAreaLength++;
- } else if (light.isPointLight) {
- const uniforms = state.point[pointLength];
- uniforms.position.setFromMatrixPosition(light.matrixWorld);
- uniforms.position.applyMatrix4(viewMatrix);
- pointLength++;
- } else if (light.isHemisphereLight) {
- const uniforms = state.hemi[hemiLength];
- uniforms.direction.setFromMatrixPosition(light.matrixWorld);
- uniforms.direction.transformDirection(viewMatrix);
- uniforms.direction.normalize();
- hemiLength++;
+ function reversePainterSortStable(a, b) {
+ if (a.groupOrder !== b.groupOrder) {
+ return a.groupOrder - b.groupOrder;
+ } else if (a.renderOrder !== b.renderOrder) {
+ return a.renderOrder - b.renderOrder;
+ } else if (a.z !== b.z) {
+ return b.z - a.z;
+ } else {
+ return a.id - b.id;
}
}
- }
-
- return {
- setup: setup,
- setupView: setupView,
- state: state
- };
- }
- function WebGLRenderState(extensions, capabilities) {
- const lights = new WebGLLights(extensions, capabilities);
- const lightsArray = [];
- const shadowsArray = [];
-
- function init() {
- lightsArray.length = 0;
- shadowsArray.length = 0;
- }
+ function WebGLRenderList(properties) {
+ const renderItems = [];
+ let renderItemsIndex = 0;
+ const opaque = [];
+ const transmissive = [];
+ const transparent = [];
+ const defaultProgram = {
+ id: -1
+ };
- function pushLight(light) {
- lightsArray.push(light);
- }
+ function init() {
+ renderItemsIndex = 0;
+ opaque.length = 0;
+ transmissive.length = 0;
+ transparent.length = 0;
+ }
+
+ function getNextRenderItem(object, geometry, material, groupOrder, z, group) {
+ let renderItem = renderItems[renderItemsIndex];
+ const materialProperties = properties.get(material);
+
+ if (renderItem === undefined) {
+ renderItem = {
+ id: object.id,
+ object: object,
+ geometry: geometry,
+ material: material,
+ program: materialProperties.program || defaultProgram,
+ groupOrder: groupOrder,
+ renderOrder: object.renderOrder,
+ z: z,
+ group: group
+ };
+ renderItems[renderItemsIndex] = renderItem;
+ } else {
+ renderItem.id = object.id;
+ renderItem.object = object;
+ renderItem.geometry = geometry;
+ renderItem.material = material;
+ renderItem.program = materialProperties.program || defaultProgram;
+ renderItem.groupOrder = groupOrder;
+ renderItem.renderOrder = object.renderOrder;
+ renderItem.z = z;
+ renderItem.group = group;
+ }
- function pushShadow(shadowLight) {
- shadowsArray.push(shadowLight);
- }
+ renderItemsIndex++;
+ return renderItem;
+ }
- function setupLights(physicallyCorrectLights) {
- lights.setup(lightsArray, physicallyCorrectLights);
- }
+ function push(object, geometry, material, groupOrder, z, group) {
+ const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group);
- function setupLightsView(camera) {
- lights.setupView(lightsArray, camera);
- }
+ if (material.transmission > 0.0) {
+ transmissive.push(renderItem);
+ } else if (material.transparent === true) {
+ transparent.push(renderItem);
+ } else {
+ opaque.push(renderItem);
+ }
+ }
- const state = {
- lightsArray: lightsArray,
- shadowsArray: shadowsArray,
- lights: lights
- };
- return {
- init: init,
- state: state,
- setupLights: setupLights,
- setupLightsView: setupLightsView,
- pushLight: pushLight,
- pushShadow: pushShadow
- };
- }
+ function unshift(object, geometry, material, groupOrder, z, group) {
+ const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group);
- function WebGLRenderStates(extensions, capabilities) {
- let renderStates = new WeakMap();
+ if (material.transmission > 0.0) {
+ transmissive.unshift(renderItem);
+ } else if (material.transparent === true) {
+ transparent.unshift(renderItem);
+ } else {
+ opaque.unshift(renderItem);
+ }
+ }
- function get(scene, renderCallDepth = 0) {
- let renderState;
+ function sort(customOpaqueSort, customTransparentSort) {
+ if (opaque.length > 1) opaque.sort(customOpaqueSort || painterSortStable);
+ if (transmissive.length > 1) transmissive.sort(customTransparentSort || reversePainterSortStable);
+ if (transparent.length > 1) transparent.sort(customTransparentSort || reversePainterSortStable);
+ }
- if (renderStates.has(scene) === false) {
- renderState = new WebGLRenderState(extensions, capabilities);
- renderStates.set(scene, [renderState]);
- } else {
- if (renderCallDepth >= renderStates.get(scene).length) {
- renderState = new WebGLRenderState(extensions, capabilities);
- renderStates.get(scene).push(renderState);
- } else {
- renderState = renderStates.get(scene)[renderCallDepth];
+ function finish() {
+ // Clear references from inactive renderItems in the list
+ for (let i = renderItemsIndex, il = renderItems.length; i < il; i++) {
+ const renderItem = renderItems[i];
+ if (renderItem.id === null) break;
+ renderItem.id = null;
+ renderItem.object = null;
+ renderItem.geometry = null;
+ renderItem.material = null;
+ renderItem.program = null;
+ renderItem.group = null;
+ }
}
+
+ return {
+ opaque: opaque,
+ transmissive: transmissive,
+ transparent: transparent,
+ init: init,
+ push: push,
+ unshift: unshift,
+ finish: finish,
+ sort: sort
+ };
}
- return renderState;
- }
+ function WebGLRenderLists(properties) {
+ let lists = new WeakMap();
- function dispose() {
- renderStates = new WeakMap();
- }
+ function get(scene, renderCallDepth) {
+ let list;
- return {
- get: get,
- dispose: dispose
- };
- }
+ if (lists.has(scene) === false) {
+ list = new WebGLRenderList(properties);
+ lists.set(scene, [list]);
+ } else {
+ if (renderCallDepth >= lists.get(scene).length) {
+ list = new WebGLRenderList(properties);
+ lists.get(scene).push(list);
+ } else {
+ list = lists.get(scene)[renderCallDepth];
+ }
+ }
- /**
- * parameters = {
- *
- * opacity: <float>,
- *
- * map: new THREE.Texture( <Image> ),
- *
- * alphaMap: new THREE.Texture( <Image> ),
- *
- * displacementMap: new THREE.Texture( <Image> ),
- * displacementScale: <float>,
- * displacementBias: <float>,
- *
- * wireframe: <boolean>,
- * wireframeLinewidth: <float>
- * }
- */
-
- class MeshDepthMaterial extends Material {
- constructor(parameters) {
- super();
- this.type = 'MeshDepthMaterial';
- this.depthPacking = BasicDepthPacking;
- this.map = null;
- this.alphaMap = null;
- this.displacementMap = null;
- this.displacementScale = 1;
- this.displacementBias = 0;
- this.wireframe = false;
- this.wireframeLinewidth = 1;
- this.fog = false;
- this.setValues(parameters);
- }
+ return list;
+ }
- copy(source) {
- super.copy(source);
- this.depthPacking = source.depthPacking;
- this.map = source.map;
- this.alphaMap = source.alphaMap;
- this.displacementMap = source.displacementMap;
- this.displacementScale = source.displacementScale;
- this.displacementBias = source.displacementBias;
- this.wireframe = source.wireframe;
- this.wireframeLinewidth = source.wireframeLinewidth;
- return this;
- }
+ function dispose() {
+ lists = new WeakMap();
+ }
- }
+ return {
+ get: get,
+ dispose: dispose
+ };
+ }
- MeshDepthMaterial.prototype.isMeshDepthMaterial = true;
-
- /**
- * parameters = {
- *
- * referencePosition: <float>,
- * nearDistance: <float>,
- * farDistance: <float>,
- *
- * map: new THREE.Texture( <Image> ),
- *
- * alphaMap: new THREE.Texture( <Image> ),
- *
- * displacementMap: new THREE.Texture( <Image> ),
- * displacementScale: <float>,
- * displacementBias: <float>
- *
- * }
- */
-
- class MeshDistanceMaterial extends Material {
- constructor(parameters) {
- super();
- this.type = 'MeshDistanceMaterial';
- this.referencePosition = new Vector3();
- this.nearDistance = 1;
- this.farDistance = 1000;
- this.map = null;
- this.alphaMap = null;
- this.displacementMap = null;
- this.displacementScale = 1;
- this.displacementBias = 0;
- this.fog = false;
- this.setValues(parameters);
- }
+ function UniformsCache() {
+ const lights = {};
+ return {
+ get: function (light) {
+ if (lights[light.id] !== undefined) {
+ return lights[light.id];
+ }
- copy(source) {
- super.copy(source);
- this.referencePosition.copy(source.referencePosition);
- this.nearDistance = source.nearDistance;
- this.farDistance = source.farDistance;
- this.map = source.map;
- this.alphaMap = source.alphaMap;
- this.displacementMap = source.displacementMap;
- this.displacementScale = source.displacementScale;
- this.displacementBias = source.displacementBias;
- return this;
- }
+ let uniforms;
- }
+ switch (light.type) {
+ case 'DirectionalLight':
+ uniforms = {
+ direction: new Vector3(),
+ color: new Color()
+ };
+ break;
- MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true;
+ case 'SpotLight':
+ uniforms = {
+ position: new Vector3(),
+ direction: new Vector3(),
+ color: new Color(),
+ distance: 0,
+ coneCos: 0,
+ penumbraCos: 0,
+ decay: 0
+ };
+ break;
- var vsm_frag = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\nuniform float samples;\n#include <packing>\nvoid main() {\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );\n\tfloat uvStart = samples <= 1.0 ? 0.0 : - 1.0;\n\tfor ( float i = 0.0; i < samples; i ++ ) {\n\t\tfloat uvOffset = uvStart + i * uvStride;\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean / samples;\n\tsquared_mean = squared_mean / samples;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}";
+ case 'PointLight':
+ uniforms = {
+ position: new Vector3(),
+ color: new Color(),
+ distance: 0,
+ decay: 0
+ };
+ break;
- var vsm_vert = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}";
+ case 'HemisphereLight':
+ uniforms = {
+ direction: new Vector3(),
+ skyColor: new Color(),
+ groundColor: new Color()
+ };
+ break;
- function WebGLShadowMap(_renderer, _objects, _capabilities) {
- let _frustum = new Frustum();
+ case 'RectAreaLight':
+ uniforms = {
+ color: new Color(),
+ position: new Vector3(),
+ halfWidth: new Vector3(),
+ halfHeight: new Vector3()
+ };
+ break;
+ }
- const _shadowMapSize = new Vector2(),
- _viewportSize = new Vector2(),
- _viewport = new Vector4(),
- _depthMaterial = new MeshDepthMaterial({
- depthPacking: RGBADepthPacking
- }),
- _distanceMaterial = new MeshDistanceMaterial(),
- _materialCache = {},
- _maxTextureSize = _capabilities.maxTextureSize;
+ lights[light.id] = uniforms;
+ return uniforms;
+ }
+ };
+ }
- const shadowSide = {
- 0: BackSide,
- 1: FrontSide,
- 2: DoubleSide
- };
- const shadowMaterialVertical = new ShaderMaterial({
- uniforms: {
- shadow_pass: {
- value: null
- },
- resolution: {
- value: new Vector2()
- },
- radius: {
- value: 4.0
- },
- samples: {
- value: 8.0
- }
- },
- vertexShader: vsm_vert,
- fragmentShader: vsm_frag
- });
- const shadowMaterialHorizontal = shadowMaterialVertical.clone();
- shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1;
- const fullScreenTri = new BufferGeometry();
- fullScreenTri.setAttribute('position', new BufferAttribute(new Float32Array([-1, -1, 0.5, 3, -1, 0.5, -1, 3, 0.5]), 3));
- const fullScreenMesh = new Mesh(fullScreenTri, shadowMaterialVertical);
- const scope = this;
- this.enabled = false;
- this.autoUpdate = true;
- this.needsUpdate = false;
- this.type = PCFShadowMap;
+ function ShadowUniformsCache() {
+ const lights = {};
+ return {
+ get: function (light) {
+ if (lights[light.id] !== undefined) {
+ return lights[light.id];
+ }
- this.render = function (lights, scene, camera) {
- if (scope.enabled === false) return;
- if (scope.autoUpdate === false && scope.needsUpdate === false) return;
- if (lights.length === 0) return;
+ let uniforms;
- const currentRenderTarget = _renderer.getRenderTarget();
+ switch (light.type) {
+ case 'DirectionalLight':
+ uniforms = {
+ shadowBias: 0,
+ shadowNormalBias: 0,
+ shadowRadius: 1,
+ shadowMapSize: new Vector2()
+ };
+ break;
- const activeCubeFace = _renderer.getActiveCubeFace();
+ case 'SpotLight':
+ uniforms = {
+ shadowBias: 0,
+ shadowNormalBias: 0,
+ shadowRadius: 1,
+ shadowMapSize: new Vector2()
+ };
+ break;
- const activeMipmapLevel = _renderer.getActiveMipmapLevel();
+ case 'PointLight':
+ uniforms = {
+ shadowBias: 0,
+ shadowNormalBias: 0,
+ shadowRadius: 1,
+ shadowMapSize: new Vector2(),
+ shadowCameraNear: 1,
+ shadowCameraFar: 1000
+ };
+ break;
+ // TODO (abelnation): set RectAreaLight shadow uniforms
+ }
- const _state = _renderer.state; // Set GL state for depth map.
+ lights[light.id] = uniforms;
+ return uniforms;
+ }
+ };
+ }
- _state.setBlending(NoBlending);
+ let nextVersion = 0;
- _state.buffers.color.setClear(1, 1, 1, 1);
+ function shadowCastingLightsFirst(lightA, lightB) {
+ return (lightB.castShadow ? 1 : 0) - (lightA.castShadow ? 1 : 0);
+ }
- _state.buffers.depth.setTest(true);
+ function WebGLLights(extensions, capabilities) {
+ const cache = new UniformsCache();
+ const shadowCache = ShadowUniformsCache();
+ const state = {
+ version: 0,
+ hash: {
+ directionalLength: -1,
+ pointLength: -1,
+ spotLength: -1,
+ rectAreaLength: -1,
+ hemiLength: -1,
+ numDirectionalShadows: -1,
+ numPointShadows: -1,
+ numSpotShadows: -1
+ },
+ ambient: [0, 0, 0],
+ probe: [],
+ directional: [],
+ directionalShadow: [],
+ directionalShadowMap: [],
+ directionalShadowMatrix: [],
+ spot: [],
+ spotShadow: [],
+ spotShadowMap: [],
+ spotShadowMatrix: [],
+ rectArea: [],
+ rectAreaLTC1: null,
+ rectAreaLTC2: null,
+ point: [],
+ pointShadow: [],
+ pointShadowMap: [],
+ pointShadowMatrix: [],
+ hemi: []
+ };
- _state.setScissorTest(false); // render depth map
+ for (let i = 0; i < 9; i++) state.probe.push(new Vector3());
+
+ const vector3 = new Vector3();
+ const matrix4 = new Matrix4();
+ const matrix42 = new Matrix4();
+
+ function setup(lights, physicallyCorrectLights) {
+ let r = 0,
+ g = 0,
+ b = 0;
+
+ for (let i = 0; i < 9; i++) state.probe[i].set(0, 0, 0);
+
+ let directionalLength = 0;
+ let pointLength = 0;
+ let spotLength = 0;
+ let rectAreaLength = 0;
+ let hemiLength = 0;
+ let numDirectionalShadows = 0;
+ let numPointShadows = 0;
+ let numSpotShadows = 0;
+ lights.sort(shadowCastingLightsFirst); // artist-friendly light intensity scaling factor
+
+ const scaleFactor = physicallyCorrectLights !== true ? Math.PI : 1;
+
+ for (let i = 0, l = lights.length; i < l; i++) {
+ const light = lights[i];
+ const color = light.color;
+ const intensity = light.intensity;
+ const distance = light.distance;
+ const shadowMap = light.shadow && light.shadow.map ? light.shadow.map.texture : null;
+
+ if (light.isAmbientLight) {
+ r += color.r * intensity * scaleFactor;
+ g += color.g * intensity * scaleFactor;
+ b += color.b * intensity * scaleFactor;
+ } else if (light.isLightProbe) {
+ for (let j = 0; j < 9; j++) {
+ state.probe[j].addScaledVector(light.sh.coefficients[j], intensity);
+ }
+ } else if (light.isDirectionalLight) {
+ const uniforms = cache.get(light);
+ uniforms.color.copy(light.color).multiplyScalar(light.intensity * scaleFactor);
+
+ if (light.castShadow) {
+ const shadow = light.shadow;
+ const shadowUniforms = shadowCache.get(light);
+ shadowUniforms.shadowBias = shadow.bias;
+ shadowUniforms.shadowNormalBias = shadow.normalBias;
+ shadowUniforms.shadowRadius = shadow.radius;
+ shadowUniforms.shadowMapSize = shadow.mapSize;
+ state.directionalShadow[directionalLength] = shadowUniforms;
+ state.directionalShadowMap[directionalLength] = shadowMap;
+ state.directionalShadowMatrix[directionalLength] = light.shadow.matrix;
+ numDirectionalShadows++;
+ }
+ state.directional[directionalLength] = uniforms;
+ directionalLength++;
+ } else if (light.isSpotLight) {
+ const uniforms = cache.get(light);
+ uniforms.position.setFromMatrixPosition(light.matrixWorld);
+ uniforms.color.copy(color).multiplyScalar(intensity * scaleFactor);
+ uniforms.distance = distance;
+ uniforms.coneCos = Math.cos(light.angle);
+ uniforms.penumbraCos = Math.cos(light.angle * (1 - light.penumbra));
+ uniforms.decay = light.decay;
+
+ if (light.castShadow) {
+ const shadow = light.shadow;
+ const shadowUniforms = shadowCache.get(light);
+ shadowUniforms.shadowBias = shadow.bias;
+ shadowUniforms.shadowNormalBias = shadow.normalBias;
+ shadowUniforms.shadowRadius = shadow.radius;
+ shadowUniforms.shadowMapSize = shadow.mapSize;
+ state.spotShadow[spotLength] = shadowUniforms;
+ state.spotShadowMap[spotLength] = shadowMap;
+ state.spotShadowMatrix[spotLength] = light.shadow.matrix;
+ numSpotShadows++;
+ }
- for (let i = 0, il = lights.length; i < il; i++) {
- const light = lights[i];
- const shadow = light.shadow;
+ state.spot[spotLength] = uniforms;
+ spotLength++;
+ } else if (light.isRectAreaLight) {
+ const uniforms = cache.get(light); // (a) intensity is the total visible light emitted
+ //uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) );
+ // (b) intensity is the brightness of the light
+
+ uniforms.color.copy(color).multiplyScalar(intensity);
+ uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0);
+ uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0);
+ state.rectArea[rectAreaLength] = uniforms;
+ rectAreaLength++;
+ } else if (light.isPointLight) {
+ const uniforms = cache.get(light);
+ uniforms.color.copy(light.color).multiplyScalar(light.intensity * scaleFactor);
+ uniforms.distance = light.distance;
+ uniforms.decay = light.decay;
+
+ if (light.castShadow) {
+ const shadow = light.shadow;
+ const shadowUniforms = shadowCache.get(light);
+ shadowUniforms.shadowBias = shadow.bias;
+ shadowUniforms.shadowNormalBias = shadow.normalBias;
+ shadowUniforms.shadowRadius = shadow.radius;
+ shadowUniforms.shadowMapSize = shadow.mapSize;
+ shadowUniforms.shadowCameraNear = shadow.camera.near;
+ shadowUniforms.shadowCameraFar = shadow.camera.far;
+ state.pointShadow[pointLength] = shadowUniforms;
+ state.pointShadowMap[pointLength] = shadowMap;
+ state.pointShadowMatrix[pointLength] = light.shadow.matrix;
+ numPointShadows++;
+ }
- if (shadow === undefined) {
- console.warn('THREE.WebGLShadowMap:', light, 'has no shadow.');
- continue;
- }
+ state.point[pointLength] = uniforms;
+ pointLength++;
+ } else if (light.isHemisphereLight) {
+ const uniforms = cache.get(light);
+ uniforms.skyColor.copy(light.color).multiplyScalar(intensity * scaleFactor);
+ uniforms.groundColor.copy(light.groundColor).multiplyScalar(intensity * scaleFactor);
+ state.hemi[hemiLength] = uniforms;
+ hemiLength++;
+ }
+ }
- if (shadow.autoUpdate === false && shadow.needsUpdate === false) continue;
+ if (rectAreaLength > 0) {
+ if (capabilities.isWebGL2) {
+ // WebGL 2
+ state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1;
+ state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2;
+ } else {
+ // WebGL 1
+ if (extensions.has('OES_texture_float_linear') === true) {
+ state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1;
+ state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2;
+ } else if (extensions.has('OES_texture_half_float_linear') === true) {
+ state.rectAreaLTC1 = UniformsLib.LTC_HALF_1;
+ state.rectAreaLTC2 = UniformsLib.LTC_HALF_2;
+ } else {
+ console.error('THREE.WebGLRenderer: Unable to use RectAreaLight. Missing WebGL extensions.');
+ }
+ }
+ }
- _shadowMapSize.copy(shadow.mapSize);
+ state.ambient[0] = r;
+ state.ambient[1] = g;
+ state.ambient[2] = b;
+ const hash = state.hash;
+
+ if (hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows) {
+ state.directional.length = directionalLength;
+ state.spot.length = spotLength;
+ state.rectArea.length = rectAreaLength;
+ state.point.length = pointLength;
+ state.hemi.length = hemiLength;
+ state.directionalShadow.length = numDirectionalShadows;
+ state.directionalShadowMap.length = numDirectionalShadows;
+ state.pointShadow.length = numPointShadows;
+ state.pointShadowMap.length = numPointShadows;
+ state.spotShadow.length = numSpotShadows;
+ state.spotShadowMap.length = numSpotShadows;
+ state.directionalShadowMatrix.length = numDirectionalShadows;
+ state.pointShadowMatrix.length = numPointShadows;
+ state.spotShadowMatrix.length = numSpotShadows;
+ hash.directionalLength = directionalLength;
+ hash.pointLength = pointLength;
+ hash.spotLength = spotLength;
+ hash.rectAreaLength = rectAreaLength;
+ hash.hemiLength = hemiLength;
+ hash.numDirectionalShadows = numDirectionalShadows;
+ hash.numPointShadows = numPointShadows;
+ hash.numSpotShadows = numSpotShadows;
+ state.version = nextVersion++;
+ }
+ }
- const shadowFrameExtents = shadow.getFrameExtents();
+ function setupView(lights, camera) {
+ let directionalLength = 0;
+ let pointLength = 0;
+ let spotLength = 0;
+ let rectAreaLength = 0;
+ let hemiLength = 0;
+ const viewMatrix = camera.matrixWorldInverse;
+
+ for (let i = 0, l = lights.length; i < l; i++) {
+ const light = lights[i];
+
+ if (light.isDirectionalLight) {
+ const uniforms = state.directional[directionalLength];
+ uniforms.direction.setFromMatrixPosition(light.matrixWorld);
+ vector3.setFromMatrixPosition(light.target.matrixWorld);
+ uniforms.direction.sub(vector3);
+ uniforms.direction.transformDirection(viewMatrix);
+ directionalLength++;
+ } else if (light.isSpotLight) {
+ const uniforms = state.spot[spotLength];
+ uniforms.position.setFromMatrixPosition(light.matrixWorld);
+ uniforms.position.applyMatrix4(viewMatrix);
+ uniforms.direction.setFromMatrixPosition(light.matrixWorld);
+ vector3.setFromMatrixPosition(light.target.matrixWorld);
+ uniforms.direction.sub(vector3);
+ uniforms.direction.transformDirection(viewMatrix);
+ spotLength++;
+ } else if (light.isRectAreaLight) {
+ const uniforms = state.rectArea[rectAreaLength];
+ uniforms.position.setFromMatrixPosition(light.matrixWorld);
+ uniforms.position.applyMatrix4(viewMatrix); // extract local rotation of light to derive width/height half vectors
+
+ matrix42.identity();
+ matrix4.copy(light.matrixWorld);
+ matrix4.premultiply(viewMatrix);
+ matrix42.extractRotation(matrix4);
+ uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0);
+ uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0);
+ uniforms.halfWidth.applyMatrix4(matrix42);
+ uniforms.halfHeight.applyMatrix4(matrix42);
+ rectAreaLength++;
+ } else if (light.isPointLight) {
+ const uniforms = state.point[pointLength];
+ uniforms.position.setFromMatrixPosition(light.matrixWorld);
+ uniforms.position.applyMatrix4(viewMatrix);
+ pointLength++;
+ } else if (light.isHemisphereLight) {
+ const uniforms = state.hemi[hemiLength];
+ uniforms.direction.setFromMatrixPosition(light.matrixWorld);
+ uniforms.direction.transformDirection(viewMatrix);
+ uniforms.direction.normalize();
+ hemiLength++;
+ }
+ }
+ }
- _shadowMapSize.multiply(shadowFrameExtents);
+ return {
+ setup: setup,
+ setupView: setupView,
+ state: state
+ };
+ }
- _viewportSize.copy(shadow.mapSize);
+ function WebGLRenderState(extensions, capabilities) {
+ const lights = new WebGLLights(extensions, capabilities);
+ const lightsArray = [];
+ const shadowsArray = [];
- if (_shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize) {
- if (_shadowMapSize.x > _maxTextureSize) {
- _viewportSize.x = Math.floor(_maxTextureSize / shadowFrameExtents.x);
- _shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x;
- shadow.mapSize.x = _viewportSize.x;
- }
+ function init() {
+ lightsArray.length = 0;
+ shadowsArray.length = 0;
+ }
- if (_shadowMapSize.y > _maxTextureSize) {
- _viewportSize.y = Math.floor(_maxTextureSize / shadowFrameExtents.y);
- _shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y;
- shadow.mapSize.y = _viewportSize.y;
- }
+ function pushLight(light) {
+ lightsArray.push(light);
}
- if (shadow.map === null && !shadow.isPointLightShadow && this.type === VSMShadowMap) {
- const pars = {
- minFilter: LinearFilter,
- magFilter: LinearFilter,
- format: RGBAFormat
- };
- shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
- shadow.map.texture.name = light.name + '.shadowMap';
- shadow.mapPass = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
- shadow.camera.updateProjectionMatrix();
+ function pushShadow(shadowLight) {
+ shadowsArray.push(shadowLight);
}
- if (shadow.map === null) {
- const pars = {
- minFilter: NearestFilter,
- magFilter: NearestFilter,
- format: RGBAFormat
- };
- shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
- shadow.map.texture.name = light.name + '.shadowMap';
- shadow.camera.updateProjectionMatrix();
+ function setupLights(physicallyCorrectLights) {
+ lights.setup(lightsArray, physicallyCorrectLights);
}
- _renderer.setRenderTarget(shadow.map);
+ function setupLightsView(camera) {
+ lights.setupView(lightsArray, camera);
+ }
- _renderer.clear();
+ const state = {
+ lightsArray: lightsArray,
+ shadowsArray: shadowsArray,
+ lights: lights
+ };
+ return {
+ init: init,
+ state: state,
+ setupLights: setupLights,
+ setupLightsView: setupLightsView,
+ pushLight: pushLight,
+ pushShadow: pushShadow
+ };
+ }
- const viewportCount = shadow.getViewportCount();
+ function WebGLRenderStates(extensions, capabilities) {
+ let renderStates = new WeakMap();
- for (let vp = 0; vp < viewportCount; vp++) {
- const viewport = shadow.getViewport(vp);
+ function get(scene, renderCallDepth = 0) {
+ let renderState;
- _viewport.set(_viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w);
+ if (renderStates.has(scene) === false) {
+ renderState = new WebGLRenderState(extensions, capabilities);
+ renderStates.set(scene, [renderState]);
+ } else {
+ if (renderCallDepth >= renderStates.get(scene).length) {
+ renderState = new WebGLRenderState(extensions, capabilities);
+ renderStates.get(scene).push(renderState);
+ } else {
+ renderState = renderStates.get(scene)[renderCallDepth];
+ }
+ }
- _state.viewport(_viewport);
+ return renderState;
+ }
+
+ function dispose() {
+ renderStates = new WeakMap();
+ }
- shadow.updateMatrices(light, vp);
- _frustum = shadow.getFrustum();
- renderObject(scene, camera, shadow.camera, light, this.type);
- } // do blur pass for VSM
+ return {
+ get: get,
+ dispose: dispose
+ };
+ }
+ /**
+ * parameters = {
+ *
+ * opacity: <float>,
+ *
+ * map: new THREE.Texture( <Image> ),
+ *
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * displacementMap: new THREE.Texture( <Image> ),
+ * displacementScale: <float>,
+ * displacementBias: <float>,
+ *
+ * wireframe: <boolean>,
+ * wireframeLinewidth: <float>
+ * }
+ */
- if (!shadow.isPointLightShadow && this.type === VSMShadowMap) {
- VSMPass(shadow, camera);
+ class MeshDepthMaterial extends Material {
+ constructor(parameters) {
+ super();
+ this.type = 'MeshDepthMaterial';
+ this.depthPacking = BasicDepthPacking;
+ this.map = null;
+ this.alphaMap = null;
+ this.displacementMap = null;
+ this.displacementScale = 1;
+ this.displacementBias = 0;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.fog = false;
+ this.setValues(parameters);
+ }
+
+ copy(source) {
+ super.copy(source);
+ this.depthPacking = source.depthPacking;
+ this.map = source.map;
+ this.alphaMap = source.alphaMap;
+ this.displacementMap = source.displacementMap;
+ this.displacementScale = source.displacementScale;
+ this.displacementBias = source.displacementBias;
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ return this;
}
- shadow.needsUpdate = false;
}
- scope.needsUpdate = false;
+ MeshDepthMaterial.prototype.isMeshDepthMaterial = true;
- _renderer.setRenderTarget(currentRenderTarget, activeCubeFace, activeMipmapLevel);
- };
+ /**
+ * parameters = {
+ *
+ * referencePosition: <float>,
+ * nearDistance: <float>,
+ * farDistance: <float>,
+ *
+ * map: new THREE.Texture( <Image> ),
+ *
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * displacementMap: new THREE.Texture( <Image> ),
+ * displacementScale: <float>,
+ * displacementBias: <float>
+ *
+ * }
+ */
- function VSMPass(shadow, camera) {
- const geometry = _objects.update(fullScreenMesh); // vertical pass
+ class MeshDistanceMaterial extends Material {
+ constructor(parameters) {
+ super();
+ this.type = 'MeshDistanceMaterial';
+ this.referencePosition = new Vector3();
+ this.nearDistance = 1;
+ this.farDistance = 1000;
+ this.map = null;
+ this.alphaMap = null;
+ this.displacementMap = null;
+ this.displacementScale = 1;
+ this.displacementBias = 0;
+ this.fog = false;
+ this.setValues(parameters);
+ }
+
+ copy(source) {
+ super.copy(source);
+ this.referencePosition.copy(source.referencePosition);
+ this.nearDistance = source.nearDistance;
+ this.farDistance = source.farDistance;
+ this.map = source.map;
+ this.alphaMap = source.alphaMap;
+ this.displacementMap = source.displacementMap;
+ this.displacementScale = source.displacementScale;
+ this.displacementBias = source.displacementBias;
+ return this;
+ }
+ }
- shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture;
- shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize;
- shadowMaterialVertical.uniforms.radius.value = shadow.radius;
- shadowMaterialVertical.uniforms.samples.value = shadow.blurSamples;
+ MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true;
- _renderer.setRenderTarget(shadow.mapPass);
+ var vsm_frag = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\nuniform float samples;\n#include <packing>\nvoid main() {\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );\n\tfloat uvStart = samples <= 1.0 ? 0.0 : - 1.0;\n\tfor ( float i = 0.0; i < samples; i ++ ) {\n\t\tfloat uvOffset = uvStart + i * uvStride;\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean / samples;\n\tsquared_mean = squared_mean / samples;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}";
- _renderer.clear();
+ var vsm_vert = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}";
- _renderer.renderBufferDirect(camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null); // horizontal pass
+ function WebGLShadowMap(_renderer, _objects, _capabilities) {
+ let _frustum = new Frustum();
+ const _shadowMapSize = new Vector2(),
+ _viewportSize = new Vector2(),
+ _viewport = new Vector4(),
+ _depthMaterial = new MeshDepthMaterial({
+ depthPacking: RGBADepthPacking
+ }),
+ _distanceMaterial = new MeshDistanceMaterial(),
+ _materialCache = {},
+ _maxTextureSize = _capabilities.maxTextureSize;
- shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture;
- shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize;
- shadowMaterialHorizontal.uniforms.radius.value = shadow.radius;
- shadowMaterialHorizontal.uniforms.samples.value = shadow.blurSamples;
+ const shadowSide = {
+ 0: BackSide,
+ 1: FrontSide,
+ 2: DoubleSide
+ };
+ const shadowMaterialVertical = new ShaderMaterial({
+ uniforms: {
+ shadow_pass: {
+ value: null
+ },
+ resolution: {
+ value: new Vector2()
+ },
+ radius: {
+ value: 4.0
+ },
+ samples: {
+ value: 8.0
+ }
+ },
+ vertexShader: vsm_vert,
+ fragmentShader: vsm_frag
+ });
+ const shadowMaterialHorizontal = shadowMaterialVertical.clone();
+ shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1;
+ const fullScreenTri = new BufferGeometry();
+ fullScreenTri.setAttribute('position', new BufferAttribute(new Float32Array([-1, -1, 0.5, 3, -1, 0.5, -1, 3, 0.5]), 3));
+ const fullScreenMesh = new Mesh(fullScreenTri, shadowMaterialVertical);
+ const scope = this;
+ this.enabled = false;
+ this.autoUpdate = true;
+ this.needsUpdate = false;
+ this.type = PCFShadowMap;
- _renderer.setRenderTarget(shadow.map);
+ this.render = function (lights, scene, camera) {
+ if (scope.enabled === false) return;
+ if (scope.autoUpdate === false && scope.needsUpdate === false) return;
+ if (lights.length === 0) return;
- _renderer.clear();
+ const currentRenderTarget = _renderer.getRenderTarget();
- _renderer.renderBufferDirect(camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null);
- }
+ const activeCubeFace = _renderer.getActiveCubeFace();
- function getDepthMaterial(object, geometry, material, light, shadowCameraNear, shadowCameraFar, type) {
- let result = null;
- const customMaterial = light.isPointLight === true ? object.customDistanceMaterial : object.customDepthMaterial;
+ const activeMipmapLevel = _renderer.getActiveMipmapLevel();
- if (customMaterial !== undefined) {
- result = customMaterial;
- } else {
- result = light.isPointLight === true ? _distanceMaterial : _depthMaterial;
- }
+ const _state = _renderer.state; // Set GL state for depth map.
- if (_renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0 || material.displacementMap && material.displacementScale !== 0 || material.alphaMap && material.alphaTest > 0) {
- // in this case we need a unique material instance reflecting the
- // appropriate state
- const keyA = result.uuid,
- keyB = material.uuid;
- let materialsForVariant = _materialCache[keyA];
+ _state.setBlending(NoBlending);
- if (materialsForVariant === undefined) {
- materialsForVariant = {};
- _materialCache[keyA] = materialsForVariant;
- }
+ _state.buffers.color.setClear(1, 1, 1, 1);
- let cachedMaterial = materialsForVariant[keyB];
+ _state.buffers.depth.setTest(true);
- if (cachedMaterial === undefined) {
- cachedMaterial = result.clone();
- materialsForVariant[keyB] = cachedMaterial;
- }
+ _state.setScissorTest(false); // render depth map
- result = cachedMaterial;
- }
- result.visible = material.visible;
- result.wireframe = material.wireframe;
+ for (let i = 0, il = lights.length; i < il; i++) {
+ const light = lights[i];
+ const shadow = light.shadow;
- if (type === VSMShadowMap) {
- result.side = material.shadowSide !== null ? material.shadowSide : material.side;
- } else {
- result.side = material.shadowSide !== null ? material.shadowSide : shadowSide[material.side];
- }
+ if (shadow === undefined) {
+ console.warn('THREE.WebGLShadowMap:', light, 'has no shadow.');
+ continue;
+ }
- result.alphaMap = material.alphaMap;
- result.alphaTest = material.alphaTest;
- result.clipShadows = material.clipShadows;
- result.clippingPlanes = material.clippingPlanes;
- result.clipIntersection = material.clipIntersection;
- result.displacementMap = material.displacementMap;
- result.displacementScale = material.displacementScale;
- result.displacementBias = material.displacementBias;
- result.wireframeLinewidth = material.wireframeLinewidth;
- result.linewidth = material.linewidth;
+ if (shadow.autoUpdate === false && shadow.needsUpdate === false) continue;
- if (light.isPointLight === true && result.isMeshDistanceMaterial === true) {
- result.referencePosition.setFromMatrixPosition(light.matrixWorld);
- result.nearDistance = shadowCameraNear;
- result.farDistance = shadowCameraFar;
- }
+ _shadowMapSize.copy(shadow.mapSize);
- return result;
- }
+ const shadowFrameExtents = shadow.getFrameExtents();
- function renderObject(object, camera, shadowCamera, light, type) {
- if (object.visible === false) return;
- const visible = object.layers.test(camera.layers);
+ _shadowMapSize.multiply(shadowFrameExtents);
- if (visible && (object.isMesh || object.isLine || object.isPoints)) {
- if ((object.castShadow || object.receiveShadow && type === VSMShadowMap) && (!object.frustumCulled || _frustum.intersectsObject(object))) {
- object.modelViewMatrix.multiplyMatrices(shadowCamera.matrixWorldInverse, object.matrixWorld);
+ _viewportSize.copy(shadow.mapSize);
- const geometry = _objects.update(object);
+ if (_shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize) {
+ if (_shadowMapSize.x > _maxTextureSize) {
+ _viewportSize.x = Math.floor(_maxTextureSize / shadowFrameExtents.x);
+ _shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x;
+ shadow.mapSize.x = _viewportSize.x;
+ }
- const material = object.material;
+ if (_shadowMapSize.y > _maxTextureSize) {
+ _viewportSize.y = Math.floor(_maxTextureSize / shadowFrameExtents.y);
+ _shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y;
+ shadow.mapSize.y = _viewportSize.y;
+ }
+ }
- if (Array.isArray(material)) {
- const groups = geometry.groups;
+ if (shadow.map === null && !shadow.isPointLightShadow && this.type === VSMShadowMap) {
+ const pars = {
+ minFilter: LinearFilter,
+ magFilter: LinearFilter,
+ format: RGBAFormat
+ };
+ shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
+ shadow.map.texture.name = light.name + '.shadowMap';
+ shadow.mapPass = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
+ shadow.camera.updateProjectionMatrix();
+ }
- for (let k = 0, kl = groups.length; k < kl; k++) {
- const group = groups[k];
- const groupMaterial = material[group.materialIndex];
+ if (shadow.map === null) {
+ const pars = {
+ minFilter: NearestFilter,
+ magFilter: NearestFilter,
+ format: RGBAFormat
+ };
+ shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
+ shadow.map.texture.name = light.name + '.shadowMap';
+ shadow.camera.updateProjectionMatrix();
+ }
- if (groupMaterial && groupMaterial.visible) {
- const depthMaterial = getDepthMaterial(object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type);
+ _renderer.setRenderTarget(shadow.map);
- _renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, group);
- }
- }
- } else if (material.visible) {
- const depthMaterial = getDepthMaterial(object, geometry, material, light, shadowCamera.near, shadowCamera.far, type);
+ _renderer.clear();
- _renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, null);
- }
- }
- }
+ const viewportCount = shadow.getViewportCount();
- const children = object.children;
+ for (let vp = 0; vp < viewportCount; vp++) {
+ const viewport = shadow.getViewport(vp);
- for (let i = 0, l = children.length; i < l; i++) {
- renderObject(children[i], camera, shadowCamera, light, type);
- }
- }
- }
+ _viewport.set(_viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w);
- function WebGLState(gl, extensions, capabilities) {
- const isWebGL2 = capabilities.isWebGL2;
+ _state.viewport(_viewport);
- function ColorBuffer() {
- let locked = false;
- const color = new Vector4();
- let currentColorMask = null;
- const currentColorClear = new Vector4(0, 0, 0, 0);
- return {
- setMask: function (colorMask) {
- if (currentColorMask !== colorMask && !locked) {
- gl.colorMask(colorMask, colorMask, colorMask, colorMask);
- currentColorMask = colorMask;
- }
- },
- setLocked: function (lock) {
- locked = lock;
- },
- setClear: function (r, g, b, a, premultipliedAlpha) {
- if (premultipliedAlpha === true) {
- r *= a;
- g *= a;
- b *= a;
- }
+ shadow.updateMatrices(light, vp);
+ _frustum = shadow.getFrustum();
+ renderObject(scene, camera, shadow.camera, light, this.type);
+ } // do blur pass for VSM
- color.set(r, g, b, a);
- if (currentColorClear.equals(color) === false) {
- gl.clearColor(r, g, b, a);
- currentColorClear.copy(color);
- }
- },
- reset: function () {
- locked = false;
- currentColorMask = null;
- currentColorClear.set(-1, 0, 0, 0); // set to invalid state
- }
- };
- }
+ if (!shadow.isPointLightShadow && this.type === VSMShadowMap) {
+ VSMPass(shadow, camera);
+ }
- function DepthBuffer() {
- let locked = false;
- let currentDepthMask = null;
- let currentDepthFunc = null;
- let currentDepthClear = null;
- return {
- setTest: function (depthTest) {
- if (depthTest) {
- enable(gl.DEPTH_TEST);
- } else {
- disable(gl.DEPTH_TEST);
+ shadow.needsUpdate = false;
}
- },
- setMask: function (depthMask) {
- if (currentDepthMask !== depthMask && !locked) {
- gl.depthMask(depthMask);
- currentDepthMask = depthMask;
- }
- },
- setFunc: function (depthFunc) {
- if (currentDepthFunc !== depthFunc) {
- if (depthFunc) {
- switch (depthFunc) {
- case NeverDepth:
- gl.depthFunc(gl.NEVER);
- break;
- case AlwaysDepth:
- gl.depthFunc(gl.ALWAYS);
- break;
+ scope.needsUpdate = false;
- case LessDepth:
- gl.depthFunc(gl.LESS);
- break;
+ _renderer.setRenderTarget(currentRenderTarget, activeCubeFace, activeMipmapLevel);
+ };
- case LessEqualDepth:
- gl.depthFunc(gl.LEQUAL);
- break;
+ function VSMPass(shadow, camera) {
+ const geometry = _objects.update(fullScreenMesh); // vertical pass
- case EqualDepth:
- gl.depthFunc(gl.EQUAL);
- break;
- case GreaterEqualDepth:
- gl.depthFunc(gl.GEQUAL);
- break;
+ shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture;
+ shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize;
+ shadowMaterialVertical.uniforms.radius.value = shadow.radius;
+ shadowMaterialVertical.uniforms.samples.value = shadow.blurSamples;
- case GreaterDepth:
- gl.depthFunc(gl.GREATER);
- break;
+ _renderer.setRenderTarget(shadow.mapPass);
- case NotEqualDepth:
- gl.depthFunc(gl.NOTEQUAL);
- break;
+ _renderer.clear();
- default:
- gl.depthFunc(gl.LEQUAL);
- }
- } else {
- gl.depthFunc(gl.LEQUAL);
- }
+ _renderer.renderBufferDirect(camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null); // horizontal pass
- currentDepthFunc = depthFunc;
- }
- },
- setLocked: function (lock) {
- locked = lock;
- },
- setClear: function (depth) {
- if (currentDepthClear !== depth) {
- gl.clearDepth(depth);
- currentDepthClear = depth;
- }
- },
- reset: function () {
- locked = false;
- currentDepthMask = null;
- currentDepthFunc = null;
- currentDepthClear = null;
- }
- };
- }
- function StencilBuffer() {
- let locked = false;
- let currentStencilMask = null;
- let currentStencilFunc = null;
- let currentStencilRef = null;
- let currentStencilFuncMask = null;
- let currentStencilFail = null;
- let currentStencilZFail = null;
- let currentStencilZPass = null;
- let currentStencilClear = null;
- return {
- setTest: function (stencilTest) {
- if (!locked) {
- if (stencilTest) {
- enable(gl.STENCIL_TEST);
- } else {
- disable(gl.STENCIL_TEST);
- }
- }
- },
- setMask: function (stencilMask) {
- if (currentStencilMask !== stencilMask && !locked) {
- gl.stencilMask(stencilMask);
- currentStencilMask = stencilMask;
- }
- },
- setFunc: function (stencilFunc, stencilRef, stencilMask) {
- if (currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask) {
- gl.stencilFunc(stencilFunc, stencilRef, stencilMask);
- currentStencilFunc = stencilFunc;
- currentStencilRef = stencilRef;
- currentStencilFuncMask = stencilMask;
- }
- },
- setOp: function (stencilFail, stencilZFail, stencilZPass) {
- if (currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass) {
- gl.stencilOp(stencilFail, stencilZFail, stencilZPass);
- currentStencilFail = stencilFail;
- currentStencilZFail = stencilZFail;
- currentStencilZPass = stencilZPass;
- }
- },
- setLocked: function (lock) {
- locked = lock;
- },
- setClear: function (stencil) {
- if (currentStencilClear !== stencil) {
- gl.clearStencil(stencil);
- currentStencilClear = stencil;
- }
- },
- reset: function () {
- locked = false;
- currentStencilMask = null;
- currentStencilFunc = null;
- currentStencilRef = null;
- currentStencilFuncMask = null;
- currentStencilFail = null;
- currentStencilZFail = null;
- currentStencilZPass = null;
- currentStencilClear = null;
- }
- };
- } //
-
-
- const colorBuffer = new ColorBuffer();
- const depthBuffer = new DepthBuffer();
- const stencilBuffer = new StencilBuffer();
- let enabledCapabilities = {};
- let xrFramebuffer = null;
- let currentBoundFramebuffers = {};
- let currentProgram = null;
- let currentBlendingEnabled = false;
- let currentBlending = null;
- let currentBlendEquation = null;
- let currentBlendSrc = null;
- let currentBlendDst = null;
- let currentBlendEquationAlpha = null;
- let currentBlendSrcAlpha = null;
- let currentBlendDstAlpha = null;
- let currentPremultipledAlpha = false;
- let currentFlipSided = null;
- let currentCullFace = null;
- let currentLineWidth = null;
- let currentPolygonOffsetFactor = null;
- let currentPolygonOffsetUnits = null;
- const maxTextures = gl.getParameter(gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS);
- let lineWidthAvailable = false;
- let version = 0;
- const glVersion = gl.getParameter(gl.VERSION);
-
- if (glVersion.indexOf('WebGL') !== -1) {
- version = parseFloat(/^WebGL (\d)/.exec(glVersion)[1]);
- lineWidthAvailable = version >= 1.0;
- } else if (glVersion.indexOf('OpenGL ES') !== -1) {
- version = parseFloat(/^OpenGL ES (\d)/.exec(glVersion)[1]);
- lineWidthAvailable = version >= 2.0;
- }
+ shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture;
+ shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize;
+ shadowMaterialHorizontal.uniforms.radius.value = shadow.radius;
+ shadowMaterialHorizontal.uniforms.samples.value = shadow.blurSamples;
- let currentTextureSlot = null;
- let currentBoundTextures = {};
- const scissorParam = gl.getParameter(gl.SCISSOR_BOX);
- const viewportParam = gl.getParameter(gl.VIEWPORT);
- const currentScissor = new Vector4().fromArray(scissorParam);
- const currentViewport = new Vector4().fromArray(viewportParam);
+ _renderer.setRenderTarget(shadow.map);
- function createTexture(type, target, count) {
- const data = new Uint8Array(4); // 4 is required to match default unpack alignment of 4.
+ _renderer.clear();
- const texture = gl.createTexture();
- gl.bindTexture(type, texture);
- gl.texParameteri(type, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
- gl.texParameteri(type, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
+ _renderer.renderBufferDirect(camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null);
+ }
- for (let i = 0; i < count; i++) {
- gl.texImage2D(target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data);
- }
+ function getDepthMaterial(object, geometry, material, light, shadowCameraNear, shadowCameraFar, type) {
+ let result = null;
+ const customMaterial = light.isPointLight === true ? object.customDistanceMaterial : object.customDepthMaterial;
- return texture;
- }
+ if (customMaterial !== undefined) {
+ result = customMaterial;
+ } else {
+ result = light.isPointLight === true ? _distanceMaterial : _depthMaterial;
+ }
- const emptyTextures = {};
- emptyTextures[gl.TEXTURE_2D] = createTexture(gl.TEXTURE_2D, gl.TEXTURE_2D, 1);
- emptyTextures[gl.TEXTURE_CUBE_MAP] = createTexture(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6); // init
-
- colorBuffer.setClear(0, 0, 0, 1);
- depthBuffer.setClear(1);
- stencilBuffer.setClear(0);
- enable(gl.DEPTH_TEST);
- depthBuffer.setFunc(LessEqualDepth);
- setFlipSided(false);
- setCullFace(CullFaceBack);
- enable(gl.CULL_FACE);
- setBlending(NoBlending); //
-
- function enable(id) {
- if (enabledCapabilities[id] !== true) {
- gl.enable(id);
- enabledCapabilities[id] = true;
- }
- }
+ if (_renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0 || material.displacementMap && material.displacementScale !== 0 || material.alphaMap && material.alphaTest > 0) {
+ // in this case we need a unique material instance reflecting the
+ // appropriate state
+ const keyA = result.uuid,
+ keyB = material.uuid;
+ let materialsForVariant = _materialCache[keyA];
- function disable(id) {
- if (enabledCapabilities[id] !== false) {
- gl.disable(id);
- enabledCapabilities[id] = false;
- }
- }
+ if (materialsForVariant === undefined) {
+ materialsForVariant = {};
+ _materialCache[keyA] = materialsForVariant;
+ }
- function bindXRFramebuffer(framebuffer) {
- if (framebuffer !== xrFramebuffer) {
- gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
- xrFramebuffer = framebuffer;
- }
- }
+ let cachedMaterial = materialsForVariant[keyB];
+
+ if (cachedMaterial === undefined) {
+ cachedMaterial = result.clone();
+ materialsForVariant[keyB] = cachedMaterial;
+ }
- function bindFramebuffer(target, framebuffer) {
- if (framebuffer === null && xrFramebuffer !== null) framebuffer = xrFramebuffer; // use active XR framebuffer if available
+ result = cachedMaterial;
+ }
- if (currentBoundFramebuffers[target] !== framebuffer) {
- gl.bindFramebuffer(target, framebuffer);
- currentBoundFramebuffers[target] = framebuffer;
+ result.visible = material.visible;
+ result.wireframe = material.wireframe;
- if (isWebGL2) {
- // gl.DRAW_FRAMEBUFFER is equivalent to gl.FRAMEBUFFER
- if (target === gl.DRAW_FRAMEBUFFER) {
- currentBoundFramebuffers[gl.FRAMEBUFFER] = framebuffer;
+ if (type === VSMShadowMap) {
+ result.side = material.shadowSide !== null ? material.shadowSide : material.side;
+ } else {
+ result.side = material.shadowSide !== null ? material.shadowSide : shadowSide[material.side];
}
- if (target === gl.FRAMEBUFFER) {
- currentBoundFramebuffers[gl.DRAW_FRAMEBUFFER] = framebuffer;
+ result.alphaMap = material.alphaMap;
+ result.alphaTest = material.alphaTest;
+ result.clipShadows = material.clipShadows;
+ result.clippingPlanes = material.clippingPlanes;
+ result.clipIntersection = material.clipIntersection;
+ result.displacementMap = material.displacementMap;
+ result.displacementScale = material.displacementScale;
+ result.displacementBias = material.displacementBias;
+ result.wireframeLinewidth = material.wireframeLinewidth;
+ result.linewidth = material.linewidth;
+
+ if (light.isPointLight === true && result.isMeshDistanceMaterial === true) {
+ result.referencePosition.setFromMatrixPosition(light.matrixWorld);
+ result.nearDistance = shadowCameraNear;
+ result.farDistance = shadowCameraFar;
}
+
+ return result;
}
- return true;
- }
+ function renderObject(object, camera, shadowCamera, light, type) {
+ if (object.visible === false) return;
+ const visible = object.layers.test(camera.layers);
- return false;
- }
+ if (visible && (object.isMesh || object.isLine || object.isPoints)) {
+ if ((object.castShadow || object.receiveShadow && type === VSMShadowMap) && (!object.frustumCulled || _frustum.intersectsObject(object))) {
+ object.modelViewMatrix.multiplyMatrices(shadowCamera.matrixWorldInverse, object.matrixWorld);
- function useProgram(program) {
- if (currentProgram !== program) {
- gl.useProgram(program);
- currentProgram = program;
- return true;
- }
+ const geometry = _objects.update(object);
- return false;
- }
+ const material = object.material;
- const equationToGL = {
- [AddEquation]: gl.FUNC_ADD,
- [SubtractEquation]: gl.FUNC_SUBTRACT,
- [ReverseSubtractEquation]: gl.FUNC_REVERSE_SUBTRACT
- };
+ if (Array.isArray(material)) {
+ const groups = geometry.groups;
- if (isWebGL2) {
- equationToGL[MinEquation] = gl.MIN;
- equationToGL[MaxEquation] = gl.MAX;
- } else {
- const extension = extensions.get('EXT_blend_minmax');
+ for (let k = 0, kl = groups.length; k < kl; k++) {
+ const group = groups[k];
+ const groupMaterial = material[group.materialIndex];
- if (extension !== null) {
- equationToGL[MinEquation] = extension.MIN_EXT;
- equationToGL[MaxEquation] = extension.MAX_EXT;
- }
- }
+ if (groupMaterial && groupMaterial.visible) {
+ const depthMaterial = getDepthMaterial(object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type);
- const factorToGL = {
- [ZeroFactor]: gl.ZERO,
- [OneFactor]: gl.ONE,
- [SrcColorFactor]: gl.SRC_COLOR,
- [SrcAlphaFactor]: gl.SRC_ALPHA,
- [SrcAlphaSaturateFactor]: gl.SRC_ALPHA_SATURATE,
- [DstColorFactor]: gl.DST_COLOR,
- [DstAlphaFactor]: gl.DST_ALPHA,
- [OneMinusSrcColorFactor]: gl.ONE_MINUS_SRC_COLOR,
- [OneMinusSrcAlphaFactor]: gl.ONE_MINUS_SRC_ALPHA,
- [OneMinusDstColorFactor]: gl.ONE_MINUS_DST_COLOR,
- [OneMinusDstAlphaFactor]: gl.ONE_MINUS_DST_ALPHA
- };
-
- function setBlending(blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha) {
- if (blending === NoBlending) {
- if (currentBlendingEnabled === true) {
- disable(gl.BLEND);
- currentBlendingEnabled = false;
- }
+ _renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, group);
+ }
+ }
+ } else if (material.visible) {
+ const depthMaterial = getDepthMaterial(object, geometry, material, light, shadowCamera.near, shadowCamera.far, type);
- return;
- }
+ _renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, null);
+ }
+ }
+ }
- if (currentBlendingEnabled === false) {
- enable(gl.BLEND);
- currentBlendingEnabled = true;
- }
+ const children = object.children;
- if (blending !== CustomBlending) {
- if (blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha) {
- if (currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation) {
- gl.blendEquation(gl.FUNC_ADD);
- currentBlendEquation = AddEquation;
- currentBlendEquationAlpha = AddEquation;
+ for (let i = 0, l = children.length; i < l; i++) {
+ renderObject(children[i], camera, shadowCamera, light, type);
}
+ }
+ }
- if (premultipliedAlpha) {
- switch (blending) {
- case NormalBlending:
- gl.blendFuncSeparate(gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
- break;
-
- case AdditiveBlending:
- gl.blendFunc(gl.ONE, gl.ONE);
- break;
+ function WebGLState(gl, extensions, capabilities) {
+ const isWebGL2 = capabilities.isWebGL2;
- case SubtractiveBlending:
- gl.blendFuncSeparate(gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA);
- break;
+ function ColorBuffer() {
+ let locked = false;
+ const color = new Vector4();
+ let currentColorMask = null;
+ const currentColorClear = new Vector4(0, 0, 0, 0);
+ return {
+ setMask: function (colorMask) {
+ if (currentColorMask !== colorMask && !locked) {
+ gl.colorMask(colorMask, colorMask, colorMask, colorMask);
+ currentColorMask = colorMask;
+ }
+ },
+ setLocked: function (lock) {
+ locked = lock;
+ },
+ setClear: function (r, g, b, a, premultipliedAlpha) {
+ if (premultipliedAlpha === true) {
+ r *= a;
+ g *= a;
+ b *= a;
+ }
- case MultiplyBlending:
- gl.blendFuncSeparate(gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA);
- break;
+ color.set(r, g, b, a);
- default:
- console.error('THREE.WebGLState: Invalid blending: ', blending);
- break;
+ if (currentColorClear.equals(color) === false) {
+ gl.clearColor(r, g, b, a);
+ currentColorClear.copy(color);
+ }
+ },
+ reset: function () {
+ locked = false;
+ currentColorMask = null;
+ currentColorClear.set(-1, 0, 0, 0); // set to invalid state
}
- } else {
- switch (blending) {
- case NormalBlending:
- gl.blendFuncSeparate(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
- break;
-
- case AdditiveBlending:
- gl.blendFunc(gl.SRC_ALPHA, gl.ONE);
- break;
-
- case SubtractiveBlending:
- gl.blendFunc(gl.ZERO, gl.ONE_MINUS_SRC_COLOR);
- break;
+ };
+ }
- case MultiplyBlending:
- gl.blendFunc(gl.ZERO, gl.SRC_COLOR);
- break;
+ function DepthBuffer() {
+ let locked = false;
+ let currentDepthMask = null;
+ let currentDepthFunc = null;
+ let currentDepthClear = null;
+ return {
+ setTest: function (depthTest) {
+ if (depthTest) {
+ enable(gl.DEPTH_TEST);
+ } else {
+ disable(gl.DEPTH_TEST);
+ }
+ },
+ setMask: function (depthMask) {
+ if (currentDepthMask !== depthMask && !locked) {
+ gl.depthMask(depthMask);
+ currentDepthMask = depthMask;
+ }
+ },
+ setFunc: function (depthFunc) {
+ if (currentDepthFunc !== depthFunc) {
+ if (depthFunc) {
+ switch (depthFunc) {
+ case NeverDepth:
+ gl.depthFunc(gl.NEVER);
+ break;
+
+ case AlwaysDepth:
+ gl.depthFunc(gl.ALWAYS);
+ break;
+
+ case LessDepth:
+ gl.depthFunc(gl.LESS);
+ break;
+
+ case LessEqualDepth:
+ gl.depthFunc(gl.LEQUAL);
+ break;
+
+ case EqualDepth:
+ gl.depthFunc(gl.EQUAL);
+ break;
+
+ case GreaterEqualDepth:
+ gl.depthFunc(gl.GEQUAL);
+ break;
+
+ case GreaterDepth:
+ gl.depthFunc(gl.GREATER);
+ break;
+
+ case NotEqualDepth:
+ gl.depthFunc(gl.NOTEQUAL);
+ break;
+
+ default:
+ gl.depthFunc(gl.LEQUAL);
+ }
+ } else {
+ gl.depthFunc(gl.LEQUAL);
+ }
- default:
- console.error('THREE.WebGLState: Invalid blending: ', blending);
- break;
+ currentDepthFunc = depthFunc;
+ }
+ },
+ setLocked: function (lock) {
+ locked = lock;
+ },
+ setClear: function (depth) {
+ if (currentDepthClear !== depth) {
+ gl.clearDepth(depth);
+ currentDepthClear = depth;
+ }
+ },
+ reset: function () {
+ locked = false;
+ currentDepthMask = null;
+ currentDepthFunc = null;
+ currentDepthClear = null;
}
- }
-
- currentBlendSrc = null;
- currentBlendDst = null;
- currentBlendSrcAlpha = null;
- currentBlendDstAlpha = null;
- currentBlending = blending;
- currentPremultipledAlpha = premultipliedAlpha;
+ };
}
- return;
- } // custom blending
-
-
- blendEquationAlpha = blendEquationAlpha || blendEquation;
- blendSrcAlpha = blendSrcAlpha || blendSrc;
- blendDstAlpha = blendDstAlpha || blendDst;
-
- if (blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha) {
- gl.blendEquationSeparate(equationToGL[blendEquation], equationToGL[blendEquationAlpha]);
- currentBlendEquation = blendEquation;
- currentBlendEquationAlpha = blendEquationAlpha;
- }
+ function StencilBuffer() {
+ let locked = false;
+ let currentStencilMask = null;
+ let currentStencilFunc = null;
+ let currentStencilRef = null;
+ let currentStencilFuncMask = null;
+ let currentStencilFail = null;
+ let currentStencilZFail = null;
+ let currentStencilZPass = null;
+ let currentStencilClear = null;
+ return {
+ setTest: function (stencilTest) {
+ if (!locked) {
+ if (stencilTest) {
+ enable(gl.STENCIL_TEST);
+ } else {
+ disable(gl.STENCIL_TEST);
+ }
+ }
+ },
+ setMask: function (stencilMask) {
+ if (currentStencilMask !== stencilMask && !locked) {
+ gl.stencilMask(stencilMask);
+ currentStencilMask = stencilMask;
+ }
+ },
+ setFunc: function (stencilFunc, stencilRef, stencilMask) {
+ if (currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask) {
+ gl.stencilFunc(stencilFunc, stencilRef, stencilMask);
+ currentStencilFunc = stencilFunc;
+ currentStencilRef = stencilRef;
+ currentStencilFuncMask = stencilMask;
+ }
+ },
+ setOp: function (stencilFail, stencilZFail, stencilZPass) {
+ if (currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass) {
+ gl.stencilOp(stencilFail, stencilZFail, stencilZPass);
+ currentStencilFail = stencilFail;
+ currentStencilZFail = stencilZFail;
+ currentStencilZPass = stencilZPass;
+ }
+ },
+ setLocked: function (lock) {
+ locked = lock;
+ },
+ setClear: function (stencil) {
+ if (currentStencilClear !== stencil) {
+ gl.clearStencil(stencil);
+ currentStencilClear = stencil;
+ }
+ },
+ reset: function () {
+ locked = false;
+ currentStencilMask = null;
+ currentStencilFunc = null;
+ currentStencilRef = null;
+ currentStencilFuncMask = null;
+ currentStencilFail = null;
+ currentStencilZFail = null;
+ currentStencilZPass = null;
+ currentStencilClear = null;
+ }
+ };
+ } //
- if (blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha) {
- gl.blendFuncSeparate(factorToGL[blendSrc], factorToGL[blendDst], factorToGL[blendSrcAlpha], factorToGL[blendDstAlpha]);
- currentBlendSrc = blendSrc;
- currentBlendDst = blendDst;
- currentBlendSrcAlpha = blendSrcAlpha;
- currentBlendDstAlpha = blendDstAlpha;
- }
- currentBlending = blending;
- currentPremultipledAlpha = null;
- }
+ const colorBuffer = new ColorBuffer();
+ const depthBuffer = new DepthBuffer();
+ const stencilBuffer = new StencilBuffer();
+ let enabledCapabilities = {};
+ let xrFramebuffer = null;
+ let currentBoundFramebuffers = {};
+ let currentProgram = null;
+ let currentBlendingEnabled = false;
+ let currentBlending = null;
+ let currentBlendEquation = null;
+ let currentBlendSrc = null;
+ let currentBlendDst = null;
+ let currentBlendEquationAlpha = null;
+ let currentBlendSrcAlpha = null;
+ let currentBlendDstAlpha = null;
+ let currentPremultipledAlpha = false;
+ let currentFlipSided = null;
+ let currentCullFace = null;
+ let currentLineWidth = null;
+ let currentPolygonOffsetFactor = null;
+ let currentPolygonOffsetUnits = null;
+ const maxTextures = gl.getParameter(gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS);
+ let lineWidthAvailable = false;
+ let version = 0;
+ const glVersion = gl.getParameter(gl.VERSION);
+
+ if (glVersion.indexOf('WebGL') !== -1) {
+ version = parseFloat(/^WebGL (\d)/.exec(glVersion)[1]);
+ lineWidthAvailable = version >= 1.0;
+ } else if (glVersion.indexOf('OpenGL ES') !== -1) {
+ version = parseFloat(/^OpenGL ES (\d)/.exec(glVersion)[1]);
+ lineWidthAvailable = version >= 2.0;
+ }
+
+ let currentTextureSlot = null;
+ let currentBoundTextures = {};
+ const scissorParam = gl.getParameter(gl.SCISSOR_BOX);
+ const viewportParam = gl.getParameter(gl.VIEWPORT);
+ const currentScissor = new Vector4().fromArray(scissorParam);
+ const currentViewport = new Vector4().fromArray(viewportParam);
+
+ function createTexture(type, target, count) {
+ const data = new Uint8Array(4); // 4 is required to match default unpack alignment of 4.
+
+ const texture = gl.createTexture();
+ gl.bindTexture(type, texture);
+ gl.texParameteri(type, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
+ gl.texParameteri(type, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
+
+ for (let i = 0; i < count; i++) {
+ gl.texImage2D(target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data);
+ }
- function setMaterial(material, frontFaceCW) {
- material.side === DoubleSide ? disable(gl.CULL_FACE) : enable(gl.CULL_FACE);
- let flipSided = material.side === BackSide;
- if (frontFaceCW) flipSided = !flipSided;
- setFlipSided(flipSided);
- material.blending === NormalBlending && material.transparent === false ? setBlending(NoBlending) : setBlending(material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha);
- depthBuffer.setFunc(material.depthFunc);
- depthBuffer.setTest(material.depthTest);
- depthBuffer.setMask(material.depthWrite);
- colorBuffer.setMask(material.colorWrite);
- const stencilWrite = material.stencilWrite;
- stencilBuffer.setTest(stencilWrite);
-
- if (stencilWrite) {
- stencilBuffer.setMask(material.stencilWriteMask);
- stencilBuffer.setFunc(material.stencilFunc, material.stencilRef, material.stencilFuncMask);
- stencilBuffer.setOp(material.stencilFail, material.stencilZFail, material.stencilZPass);
- }
-
- setPolygonOffset(material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits);
- material.alphaToCoverage === true ? enable(gl.SAMPLE_ALPHA_TO_COVERAGE) : disable(gl.SAMPLE_ALPHA_TO_COVERAGE);
- } //
-
-
- function setFlipSided(flipSided) {
- if (currentFlipSided !== flipSided) {
- if (flipSided) {
- gl.frontFace(gl.CW);
- } else {
- gl.frontFace(gl.CCW);
+ return texture;
}
- currentFlipSided = flipSided;
- }
- }
+ const emptyTextures = {};
+ emptyTextures[gl.TEXTURE_2D] = createTexture(gl.TEXTURE_2D, gl.TEXTURE_2D, 1);
+ emptyTextures[gl.TEXTURE_CUBE_MAP] = createTexture(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6); // init
- function setCullFace(cullFace) {
- if (cullFace !== CullFaceNone) {
+ colorBuffer.setClear(0, 0, 0, 1);
+ depthBuffer.setClear(1);
+ stencilBuffer.setClear(0);
+ enable(gl.DEPTH_TEST);
+ depthBuffer.setFunc(LessEqualDepth);
+ setFlipSided(false);
+ setCullFace(CullFaceBack);
enable(gl.CULL_FACE);
+ setBlending(NoBlending); //
- if (cullFace !== currentCullFace) {
- if (cullFace === CullFaceBack) {
- gl.cullFace(gl.BACK);
- } else if (cullFace === CullFaceFront) {
- gl.cullFace(gl.FRONT);
- } else {
- gl.cullFace(gl.FRONT_AND_BACK);
+ function enable(id) {
+ if (enabledCapabilities[id] !== true) {
+ gl.enable(id);
+ enabledCapabilities[id] = true;
}
}
- } else {
- disable(gl.CULL_FACE);
- }
- currentCullFace = cullFace;
- }
+ function disable(id) {
+ if (enabledCapabilities[id] !== false) {
+ gl.disable(id);
+ enabledCapabilities[id] = false;
+ }
+ }
- function setLineWidth(width) {
- if (width !== currentLineWidth) {
- if (lineWidthAvailable) gl.lineWidth(width);
- currentLineWidth = width;
- }
- }
+ function bindXRFramebuffer(framebuffer) {
+ if (framebuffer !== xrFramebuffer) {
+ gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
+ xrFramebuffer = framebuffer;
+ }
+ }
- function setPolygonOffset(polygonOffset, factor, units) {
- if (polygonOffset) {
- enable(gl.POLYGON_OFFSET_FILL);
+ function bindFramebuffer(target, framebuffer) {
+ if (framebuffer === null && xrFramebuffer !== null) framebuffer = xrFramebuffer; // use active XR framebuffer if available
- if (currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units) {
- gl.polygonOffset(factor, units);
- currentPolygonOffsetFactor = factor;
- currentPolygonOffsetUnits = units;
- }
- } else {
- disable(gl.POLYGON_OFFSET_FILL);
- }
- }
+ if (currentBoundFramebuffers[target] !== framebuffer) {
+ gl.bindFramebuffer(target, framebuffer);
+ currentBoundFramebuffers[target] = framebuffer;
- function setScissorTest(scissorTest) {
- if (scissorTest) {
- enable(gl.SCISSOR_TEST);
- } else {
- disable(gl.SCISSOR_TEST);
- }
- } // texture
+ if (isWebGL2) {
+ // gl.DRAW_FRAMEBUFFER is equivalent to gl.FRAMEBUFFER
+ if (target === gl.DRAW_FRAMEBUFFER) {
+ currentBoundFramebuffers[gl.FRAMEBUFFER] = framebuffer;
+ }
+ if (target === gl.FRAMEBUFFER) {
+ currentBoundFramebuffers[gl.DRAW_FRAMEBUFFER] = framebuffer;
+ }
+ }
- function activeTexture(webglSlot) {
- if (webglSlot === undefined) webglSlot = gl.TEXTURE0 + maxTextures - 1;
+ return true;
+ }
- if (currentTextureSlot !== webglSlot) {
- gl.activeTexture(webglSlot);
- currentTextureSlot = webglSlot;
- }
- }
+ return false;
+ }
- function bindTexture(webglType, webglTexture) {
- if (currentTextureSlot === null) {
- activeTexture();
- }
+ function useProgram(program) {
+ if (currentProgram !== program) {
+ gl.useProgram(program);
+ currentProgram = program;
+ return true;
+ }
- let boundTexture = currentBoundTextures[currentTextureSlot];
+ return false;
+ }
- if (boundTexture === undefined) {
- boundTexture = {
- type: undefined,
- texture: undefined
+ const equationToGL = {
+ [AddEquation]: gl.FUNC_ADD,
+ [SubtractEquation]: gl.FUNC_SUBTRACT,
+ [ReverseSubtractEquation]: gl.FUNC_REVERSE_SUBTRACT
};
- currentBoundTextures[currentTextureSlot] = boundTexture;
- }
- if (boundTexture.type !== webglType || boundTexture.texture !== webglTexture) {
- gl.bindTexture(webglType, webglTexture || emptyTextures[webglType]);
- boundTexture.type = webglType;
- boundTexture.texture = webglTexture;
- }
- }
+ if (isWebGL2) {
+ equationToGL[MinEquation] = gl.MIN;
+ equationToGL[MaxEquation] = gl.MAX;
+ } else {
+ const extension = extensions.get('EXT_blend_minmax');
- function unbindTexture() {
- const boundTexture = currentBoundTextures[currentTextureSlot];
+ if (extension !== null) {
+ equationToGL[MinEquation] = extension.MIN_EXT;
+ equationToGL[MaxEquation] = extension.MAX_EXT;
+ }
+ }
- if (boundTexture !== undefined && boundTexture.type !== undefined) {
- gl.bindTexture(boundTexture.type, null);
- boundTexture.type = undefined;
- boundTexture.texture = undefined;
- }
- }
+ const factorToGL = {
+ [ZeroFactor]: gl.ZERO,
+ [OneFactor]: gl.ONE,
+ [SrcColorFactor]: gl.SRC_COLOR,
+ [SrcAlphaFactor]: gl.SRC_ALPHA,
+ [SrcAlphaSaturateFactor]: gl.SRC_ALPHA_SATURATE,
+ [DstColorFactor]: gl.DST_COLOR,
+ [DstAlphaFactor]: gl.DST_ALPHA,
+ [OneMinusSrcColorFactor]: gl.ONE_MINUS_SRC_COLOR,
+ [OneMinusSrcAlphaFactor]: gl.ONE_MINUS_SRC_ALPHA,
+ [OneMinusDstColorFactor]: gl.ONE_MINUS_DST_COLOR,
+ [OneMinusDstAlphaFactor]: gl.ONE_MINUS_DST_ALPHA
+ };
- function compressedTexImage2D() {
- try {
- gl.compressedTexImage2D.apply(gl, arguments);
- } catch (error) {
- console.error('THREE.WebGLState:', error);
- }
- }
+ function setBlending(blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha) {
+ if (blending === NoBlending) {
+ if (currentBlendingEnabled === true) {
+ disable(gl.BLEND);
+ currentBlendingEnabled = false;
+ }
- function texImage2D() {
- try {
- gl.texImage2D.apply(gl, arguments);
- } catch (error) {
- console.error('THREE.WebGLState:', error);
- }
- }
+ return;
+ }
- function texImage3D() {
- try {
- gl.texImage3D.apply(gl, arguments);
- } catch (error) {
- console.error('THREE.WebGLState:', error);
- }
- } //
+ if (currentBlendingEnabled === false) {
+ enable(gl.BLEND);
+ currentBlendingEnabled = true;
+ }
+ if (blending !== CustomBlending) {
+ if (blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha) {
+ if (currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation) {
+ gl.blendEquation(gl.FUNC_ADD);
+ currentBlendEquation = AddEquation;
+ currentBlendEquationAlpha = AddEquation;
+ }
- function scissor(scissor) {
- if (currentScissor.equals(scissor) === false) {
- gl.scissor(scissor.x, scissor.y, scissor.z, scissor.w);
- currentScissor.copy(scissor);
- }
- }
-
- function viewport(viewport) {
- if (currentViewport.equals(viewport) === false) {
- gl.viewport(viewport.x, viewport.y, viewport.z, viewport.w);
- currentViewport.copy(viewport);
- }
- } //
-
-
- function reset() {
- // reset state
- gl.disable(gl.BLEND);
- gl.disable(gl.CULL_FACE);
- gl.disable(gl.DEPTH_TEST);
- gl.disable(gl.POLYGON_OFFSET_FILL);
- gl.disable(gl.SCISSOR_TEST);
- gl.disable(gl.STENCIL_TEST);
- gl.disable(gl.SAMPLE_ALPHA_TO_COVERAGE);
- gl.blendEquation(gl.FUNC_ADD);
- gl.blendFunc(gl.ONE, gl.ZERO);
- gl.blendFuncSeparate(gl.ONE, gl.ZERO, gl.ONE, gl.ZERO);
- gl.colorMask(true, true, true, true);
- gl.clearColor(0, 0, 0, 0);
- gl.depthMask(true);
- gl.depthFunc(gl.LESS);
- gl.clearDepth(1);
- gl.stencilMask(0xffffffff);
- gl.stencilFunc(gl.ALWAYS, 0, 0xffffffff);
- gl.stencilOp(gl.KEEP, gl.KEEP, gl.KEEP);
- gl.clearStencil(0);
- gl.cullFace(gl.BACK);
- gl.frontFace(gl.CCW);
- gl.polygonOffset(0, 0);
- gl.activeTexture(gl.TEXTURE0);
- gl.bindFramebuffer(gl.FRAMEBUFFER, null);
-
- if (isWebGL2 === true) {
- gl.bindFramebuffer(gl.DRAW_FRAMEBUFFER, null);
- gl.bindFramebuffer(gl.READ_FRAMEBUFFER, null);
- }
-
- gl.useProgram(null);
- gl.lineWidth(1);
- gl.scissor(0, 0, gl.canvas.width, gl.canvas.height);
- gl.viewport(0, 0, gl.canvas.width, gl.canvas.height); // reset internals
-
- enabledCapabilities = {};
- currentTextureSlot = null;
- currentBoundTextures = {};
- xrFramebuffer = null;
- currentBoundFramebuffers = {};
- currentProgram = null;
- currentBlendingEnabled = false;
- currentBlending = null;
- currentBlendEquation = null;
- currentBlendSrc = null;
- currentBlendDst = null;
- currentBlendEquationAlpha = null;
- currentBlendSrcAlpha = null;
- currentBlendDstAlpha = null;
- currentPremultipledAlpha = false;
- currentFlipSided = null;
- currentCullFace = null;
- currentLineWidth = null;
- currentPolygonOffsetFactor = null;
- currentPolygonOffsetUnits = null;
- currentScissor.set(0, 0, gl.canvas.width, gl.canvas.height);
- currentViewport.set(0, 0, gl.canvas.width, gl.canvas.height);
- colorBuffer.reset();
- depthBuffer.reset();
- stencilBuffer.reset();
- }
+ if (premultipliedAlpha) {
+ switch (blending) {
+ case NormalBlending:
+ gl.blendFuncSeparate(gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
+ break;
- return {
- buffers: {
- color: colorBuffer,
- depth: depthBuffer,
- stencil: stencilBuffer
- },
- enable: enable,
- disable: disable,
- bindFramebuffer: bindFramebuffer,
- bindXRFramebuffer: bindXRFramebuffer,
- useProgram: useProgram,
- setBlending: setBlending,
- setMaterial: setMaterial,
- setFlipSided: setFlipSided,
- setCullFace: setCullFace,
- setLineWidth: setLineWidth,
- setPolygonOffset: setPolygonOffset,
- setScissorTest: setScissorTest,
- activeTexture: activeTexture,
- bindTexture: bindTexture,
- unbindTexture: unbindTexture,
- compressedTexImage2D: compressedTexImage2D,
- texImage2D: texImage2D,
- texImage3D: texImage3D,
- scissor: scissor,
- viewport: viewport,
- reset: reset
- };
- }
-
- function WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info) {
- const isWebGL2 = capabilities.isWebGL2;
- const maxTextures = capabilities.maxTextures;
- const maxCubemapSize = capabilities.maxCubemapSize;
- const maxTextureSize = capabilities.maxTextureSize;
- const maxSamples = capabilities.maxSamples;
+ case AdditiveBlending:
+ gl.blendFunc(gl.ONE, gl.ONE);
+ break;
- const _videoTextures = new WeakMap();
+ case SubtractiveBlending:
+ gl.blendFuncSeparate(gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA);
+ break;
- let _canvas; // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas,
- // also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")!
- // Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d).
+ case MultiplyBlending:
+ gl.blendFuncSeparate(gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA);
+ break;
+ default:
+ console.error('THREE.WebGLState: Invalid blending: ', blending);
+ break;
+ }
+ } else {
+ switch (blending) {
+ case NormalBlending:
+ gl.blendFuncSeparate(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
+ break;
+
+ case AdditiveBlending:
+ gl.blendFunc(gl.SRC_ALPHA, gl.ONE);
+ break;
+
+ case SubtractiveBlending:
+ gl.blendFunc(gl.ZERO, gl.ONE_MINUS_SRC_COLOR);
+ break;
+
+ case MultiplyBlending:
+ gl.blendFunc(gl.ZERO, gl.SRC_COLOR);
+ break;
+
+ default:
+ console.error('THREE.WebGLState: Invalid blending: ', blending);
+ break;
+ }
+ }
- let useOffscreenCanvas = false;
+ currentBlendSrc = null;
+ currentBlendDst = null;
+ currentBlendSrcAlpha = null;
+ currentBlendDstAlpha = null;
+ currentBlending = blending;
+ currentPremultipledAlpha = premultipliedAlpha;
+ }
- try {
- useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' && new OffscreenCanvas(1, 1).getContext('2d') !== null;
- } catch (err) {// Ignore any errors
- }
+ return;
+ } // custom blending
- function createCanvas(width, height) {
- // Use OffscreenCanvas when available. Specially needed in web workers
- return useOffscreenCanvas ? new OffscreenCanvas(width, height) : document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas');
- }
- function resizeImage(image, needsPowerOfTwo, needsNewCanvas, maxSize) {
- let scale = 1; // handle case if texture exceeds max size
+ blendEquationAlpha = blendEquationAlpha || blendEquation;
+ blendSrcAlpha = blendSrcAlpha || blendSrc;
+ blendDstAlpha = blendDstAlpha || blendDst;
- if (image.width > maxSize || image.height > maxSize) {
- scale = maxSize / Math.max(image.width, image.height);
- } // only perform resize if necessary
+ if (blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha) {
+ gl.blendEquationSeparate(equationToGL[blendEquation], equationToGL[blendEquationAlpha]);
+ currentBlendEquation = blendEquation;
+ currentBlendEquationAlpha = blendEquationAlpha;
+ }
+ if (blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha) {
+ gl.blendFuncSeparate(factorToGL[blendSrc], factorToGL[blendDst], factorToGL[blendSrcAlpha], factorToGL[blendDstAlpha]);
+ currentBlendSrc = blendSrc;
+ currentBlendDst = blendDst;
+ currentBlendSrcAlpha = blendSrcAlpha;
+ currentBlendDstAlpha = blendDstAlpha;
+ }
- if (scale < 1 || needsPowerOfTwo === true) {
- // only perform resize for certain image types
- if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) {
- const floor = needsPowerOfTwo ? floorPowerOfTwo : Math.floor;
- const width = floor(scale * image.width);
- const height = floor(scale * image.height);
- if (_canvas === undefined) _canvas = createCanvas(width, height); // cube textures can't reuse the same canvas
-
- const canvas = needsNewCanvas ? createCanvas(width, height) : _canvas;
- canvas.width = width;
- canvas.height = height;
- const context = canvas.getContext('2d');
- context.drawImage(image, 0, 0, width, height);
- console.warn('THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').');
- return canvas;
- } else {
- if ('data' in image) {
- console.warn('THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').');
+ currentBlending = blending;
+ currentPremultipledAlpha = null;
+ }
+
+ function setMaterial(material, frontFaceCW) {
+ material.side === DoubleSide ? disable(gl.CULL_FACE) : enable(gl.CULL_FACE);
+ let flipSided = material.side === BackSide;
+ if (frontFaceCW) flipSided = !flipSided;
+ setFlipSided(flipSided);
+ material.blending === NormalBlending && material.transparent === false ? setBlending(NoBlending) : setBlending(material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha);
+ depthBuffer.setFunc(material.depthFunc);
+ depthBuffer.setTest(material.depthTest);
+ depthBuffer.setMask(material.depthWrite);
+ colorBuffer.setMask(material.colorWrite);
+ const stencilWrite = material.stencilWrite;
+ stencilBuffer.setTest(stencilWrite);
+
+ if (stencilWrite) {
+ stencilBuffer.setMask(material.stencilWriteMask);
+ stencilBuffer.setFunc(material.stencilFunc, material.stencilRef, material.stencilFuncMask);
+ stencilBuffer.setOp(material.stencilFail, material.stencilZFail, material.stencilZPass);
}
- return image;
- }
- }
+ setPolygonOffset(material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits);
+ material.alphaToCoverage === true ? enable(gl.SAMPLE_ALPHA_TO_COVERAGE) : disable(gl.SAMPLE_ALPHA_TO_COVERAGE);
+ } //
- return image;
- }
- function isPowerOfTwo$1(image) {
- return isPowerOfTwo(image.width) && isPowerOfTwo(image.height);
- }
+ function setFlipSided(flipSided) {
+ if (currentFlipSided !== flipSided) {
+ if (flipSided) {
+ gl.frontFace(gl.CW);
+ } else {
+ gl.frontFace(gl.CCW);
+ }
- function textureNeedsPowerOfTwo(texture) {
- if (isWebGL2) return false;
- return texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping || texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
- }
+ currentFlipSided = flipSided;
+ }
+ }
- function textureNeedsGenerateMipmaps(texture, supportsMips) {
- return texture.generateMipmaps && supportsMips && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
- }
+ function setCullFace(cullFace) {
+ if (cullFace !== CullFaceNone) {
+ enable(gl.CULL_FACE);
- function generateMipmap(target, texture, width, height, depth = 1) {
- _gl.generateMipmap(target);
+ if (cullFace !== currentCullFace) {
+ if (cullFace === CullFaceBack) {
+ gl.cullFace(gl.BACK);
+ } else if (cullFace === CullFaceFront) {
+ gl.cullFace(gl.FRONT);
+ } else {
+ gl.cullFace(gl.FRONT_AND_BACK);
+ }
+ }
+ } else {
+ disable(gl.CULL_FACE);
+ }
- const textureProperties = properties.get(texture);
- textureProperties.__maxMipLevel = Math.log2(Math.max(width, height, depth));
- }
+ currentCullFace = cullFace;
+ }
- function getInternalFormat(internalFormatName, glFormat, glType) {
- if (isWebGL2 === false) return glFormat;
+ function setLineWidth(width) {
+ if (width !== currentLineWidth) {
+ if (lineWidthAvailable) gl.lineWidth(width);
+ currentLineWidth = width;
+ }
+ }
- if (internalFormatName !== null) {
- if (_gl[internalFormatName] !== undefined) return _gl[internalFormatName];
- console.warn('THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'');
- }
+ function setPolygonOffset(polygonOffset, factor, units) {
+ if (polygonOffset) {
+ enable(gl.POLYGON_OFFSET_FILL);
- let internalFormat = glFormat;
+ if (currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units) {
+ gl.polygonOffset(factor, units);
+ currentPolygonOffsetFactor = factor;
+ currentPolygonOffsetUnits = units;
+ }
+ } else {
+ disable(gl.POLYGON_OFFSET_FILL);
+ }
+ }
- if (glFormat === _gl.RED) {
- if (glType === _gl.FLOAT) internalFormat = _gl.R32F;
- if (glType === _gl.HALF_FLOAT) internalFormat = _gl.R16F;
- if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.R8;
- }
+ function setScissorTest(scissorTest) {
+ if (scissorTest) {
+ enable(gl.SCISSOR_TEST);
+ } else {
+ disable(gl.SCISSOR_TEST);
+ }
+ } // texture
- if (glFormat === _gl.RGB) {
- if (glType === _gl.FLOAT) internalFormat = _gl.RGB32F;
- if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGB16F;
- if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RGB8;
- }
- if (glFormat === _gl.RGBA) {
- if (glType === _gl.FLOAT) internalFormat = _gl.RGBA32F;
- if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGBA16F;
- if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RGBA8;
- }
+ function activeTexture(webglSlot) {
+ if (webglSlot === undefined) webglSlot = gl.TEXTURE0 + maxTextures - 1;
- if (internalFormat === _gl.R16F || internalFormat === _gl.R32F || internalFormat === _gl.RGBA16F || internalFormat === _gl.RGBA32F) {
- extensions.get('EXT_color_buffer_float');
- }
+ if (currentTextureSlot !== webglSlot) {
+ gl.activeTexture(webglSlot);
+ currentTextureSlot = webglSlot;
+ }
+ }
- return internalFormat;
- } // Fallback filters for non-power-of-2 textures
+ function bindTexture(webglType, webglTexture) {
+ if (currentTextureSlot === null) {
+ activeTexture();
+ }
+ let boundTexture = currentBoundTextures[currentTextureSlot];
- function filterFallback(f) {
- if (f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter) {
- return _gl.NEAREST;
- }
+ if (boundTexture === undefined) {
+ boundTexture = {
+ type: undefined,
+ texture: undefined
+ };
+ currentBoundTextures[currentTextureSlot] = boundTexture;
+ }
- return _gl.LINEAR;
- } //
+ if (boundTexture.type !== webglType || boundTexture.texture !== webglTexture) {
+ gl.bindTexture(webglType, webglTexture || emptyTextures[webglType]);
+ boundTexture.type = webglType;
+ boundTexture.texture = webglTexture;
+ }
+ }
+ function unbindTexture() {
+ const boundTexture = currentBoundTextures[currentTextureSlot];
- function onTextureDispose(event) {
- const texture = event.target;
- texture.removeEventListener('dispose', onTextureDispose);
- deallocateTexture(texture);
+ if (boundTexture !== undefined && boundTexture.type !== undefined) {
+ gl.bindTexture(boundTexture.type, null);
+ boundTexture.type = undefined;
+ boundTexture.texture = undefined;
+ }
+ }
- if (texture.isVideoTexture) {
- _videoTextures.delete(texture);
- }
+ function compressedTexImage2D() {
+ try {
+ gl.compressedTexImage2D.apply(gl, arguments);
+ } catch (error) {
+ console.error('THREE.WebGLState:', error);
+ }
+ }
- info.memory.textures--;
- }
+ function texImage2D() {
+ try {
+ gl.texImage2D.apply(gl, arguments);
+ } catch (error) {
+ console.error('THREE.WebGLState:', error);
+ }
+ }
- function onRenderTargetDispose(event) {
- const renderTarget = event.target;
- renderTarget.removeEventListener('dispose', onRenderTargetDispose);
- deallocateRenderTarget(renderTarget);
- } //
+ function texImage3D() {
+ try {
+ gl.texImage3D.apply(gl, arguments);
+ } catch (error) {
+ console.error('THREE.WebGLState:', error);
+ }
+ } //
- function deallocateTexture(texture) {
- const textureProperties = properties.get(texture);
- if (textureProperties.__webglInit === undefined) return;
+ function scissor(scissor) {
+ if (currentScissor.equals(scissor) === false) {
+ gl.scissor(scissor.x, scissor.y, scissor.z, scissor.w);
+ currentScissor.copy(scissor);
+ }
+ }
- _gl.deleteTexture(textureProperties.__webglTexture);
+ function viewport(viewport) {
+ if (currentViewport.equals(viewport) === false) {
+ gl.viewport(viewport.x, viewport.y, viewport.z, viewport.w);
+ currentViewport.copy(viewport);
+ }
+ } //
- properties.remove(texture);
- }
- function deallocateRenderTarget(renderTarget) {
- const texture = renderTarget.texture;
- const renderTargetProperties = properties.get(renderTarget);
- const textureProperties = properties.get(texture);
- if (!renderTarget) return;
+ function reset() {
+ // reset state
+ gl.disable(gl.BLEND);
+ gl.disable(gl.CULL_FACE);
+ gl.disable(gl.DEPTH_TEST);
+ gl.disable(gl.POLYGON_OFFSET_FILL);
+ gl.disable(gl.SCISSOR_TEST);
+ gl.disable(gl.STENCIL_TEST);
+ gl.disable(gl.SAMPLE_ALPHA_TO_COVERAGE);
+ gl.blendEquation(gl.FUNC_ADD);
+ gl.blendFunc(gl.ONE, gl.ZERO);
+ gl.blendFuncSeparate(gl.ONE, gl.ZERO, gl.ONE, gl.ZERO);
+ gl.colorMask(true, true, true, true);
+ gl.clearColor(0, 0, 0, 0);
+ gl.depthMask(true);
+ gl.depthFunc(gl.LESS);
+ gl.clearDepth(1);
+ gl.stencilMask(0xffffffff);
+ gl.stencilFunc(gl.ALWAYS, 0, 0xffffffff);
+ gl.stencilOp(gl.KEEP, gl.KEEP, gl.KEEP);
+ gl.clearStencil(0);
+ gl.cullFace(gl.BACK);
+ gl.frontFace(gl.CCW);
+ gl.polygonOffset(0, 0);
+ gl.activeTexture(gl.TEXTURE0);
+ gl.bindFramebuffer(gl.FRAMEBUFFER, null);
- if (textureProperties.__webglTexture !== undefined) {
- _gl.deleteTexture(textureProperties.__webglTexture);
+ if (isWebGL2 === true) {
+ gl.bindFramebuffer(gl.DRAW_FRAMEBUFFER, null);
+ gl.bindFramebuffer(gl.READ_FRAMEBUFFER, null);
+ }
- info.memory.textures--;
- }
+ gl.useProgram(null);
+ gl.lineWidth(1);
+ gl.scissor(0, 0, gl.canvas.width, gl.canvas.height);
+ gl.viewport(0, 0, gl.canvas.width, gl.canvas.height); // reset internals
+
+ enabledCapabilities = {};
+ currentTextureSlot = null;
+ currentBoundTextures = {};
+ xrFramebuffer = null;
+ currentBoundFramebuffers = {};
+ currentProgram = null;
+ currentBlendingEnabled = false;
+ currentBlending = null;
+ currentBlendEquation = null;
+ currentBlendSrc = null;
+ currentBlendDst = null;
+ currentBlendEquationAlpha = null;
+ currentBlendSrcAlpha = null;
+ currentBlendDstAlpha = null;
+ currentPremultipledAlpha = false;
+ currentFlipSided = null;
+ currentCullFace = null;
+ currentLineWidth = null;
+ currentPolygonOffsetFactor = null;
+ currentPolygonOffsetUnits = null;
+ currentScissor.set(0, 0, gl.canvas.width, gl.canvas.height);
+ currentViewport.set(0, 0, gl.canvas.width, gl.canvas.height);
+ colorBuffer.reset();
+ depthBuffer.reset();
+ stencilBuffer.reset();
+ }
- if (renderTarget.depthTexture) {
- renderTarget.depthTexture.dispose();
+ return {
+ buffers: {
+ color: colorBuffer,
+ depth: depthBuffer,
+ stencil: stencilBuffer
+ },
+ enable: enable,
+ disable: disable,
+ bindFramebuffer: bindFramebuffer,
+ bindXRFramebuffer: bindXRFramebuffer,
+ useProgram: useProgram,
+ setBlending: setBlending,
+ setMaterial: setMaterial,
+ setFlipSided: setFlipSided,
+ setCullFace: setCullFace,
+ setLineWidth: setLineWidth,
+ setPolygonOffset: setPolygonOffset,
+ setScissorTest: setScissorTest,
+ activeTexture: activeTexture,
+ bindTexture: bindTexture,
+ unbindTexture: unbindTexture,
+ compressedTexImage2D: compressedTexImage2D,
+ texImage2D: texImage2D,
+ texImage3D: texImage3D,
+ scissor: scissor,
+ viewport: viewport,
+ reset: reset
+ };
}
- if (renderTarget.isWebGLCubeRenderTarget) {
- for (let i = 0; i < 6; i++) {
- _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer[i]);
-
- if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer[i]);
- }
- } else {
- _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer);
+ function WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info) {
+ const isWebGL2 = capabilities.isWebGL2;
+ const maxTextures = capabilities.maxTextures;
+ const maxCubemapSize = capabilities.maxCubemapSize;
+ const maxTextureSize = capabilities.maxTextureSize;
+ const maxSamples = capabilities.maxSamples;
- if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer);
- if (renderTargetProperties.__webglMultisampledFramebuffer) _gl.deleteFramebuffer(renderTargetProperties.__webglMultisampledFramebuffer);
- if (renderTargetProperties.__webglColorRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglColorRenderbuffer);
- if (renderTargetProperties.__webglDepthRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthRenderbuffer);
- }
+ const _videoTextures = new WeakMap();
- if (renderTarget.isWebGLMultipleRenderTargets) {
- for (let i = 0, il = texture.length; i < il; i++) {
- const attachmentProperties = properties.get(texture[i]);
+ let _canvas; // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas,
+ // also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")!
+ // Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d).
- if (attachmentProperties.__webglTexture) {
- _gl.deleteTexture(attachmentProperties.__webglTexture);
- info.memory.textures--;
- }
+ let useOffscreenCanvas = false;
- properties.remove(texture[i]);
+ try {
+ useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' && new OffscreenCanvas(1, 1).getContext('2d') !== null;
+ } catch (err) {// Ignore any errors
}
- }
-
- properties.remove(texture);
- properties.remove(renderTarget);
- } //
+ function createCanvas(width, height) {
+ // Use OffscreenCanvas when available. Specially needed in web workers
+ return useOffscreenCanvas ? new OffscreenCanvas(width, height) : document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas');
+ }
- let textureUnits = 0;
+ function resizeImage(image, needsPowerOfTwo, needsNewCanvas, maxSize) {
+ let scale = 1; // handle case if texture exceeds max size
- function resetTextureUnits() {
- textureUnits = 0;
- }
+ if (image.width > maxSize || image.height > maxSize) {
+ scale = maxSize / Math.max(image.width, image.height);
+ } // only perform resize if necessary
- function allocateTextureUnit() {
- const textureUnit = textureUnits;
- if (textureUnit >= maxTextures) {
- console.warn('THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures);
- }
+ if (scale < 1 || needsPowerOfTwo === true) {
+ // only perform resize for certain image types
+ if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) {
+ const floor = needsPowerOfTwo ? floorPowerOfTwo : Math.floor;
+ const width = floor(scale * image.width);
+ const height = floor(scale * image.height);
+ if (_canvas === undefined) _canvas = createCanvas(width, height); // cube textures can't reuse the same canvas
- textureUnits += 1;
- return textureUnit;
- } //
+ const canvas = needsNewCanvas ? createCanvas(width, height) : _canvas;
+ canvas.width = width;
+ canvas.height = height;
+ const context = canvas.getContext('2d');
+ context.drawImage(image, 0, 0, width, height);
+ console.warn('THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').');
+ return canvas;
+ } else {
+ if ('data' in image) {
+ console.warn('THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').');
+ }
+ return image;
+ }
+ }
- function setTexture2D(texture, slot) {
- const textureProperties = properties.get(texture);
- if (texture.isVideoTexture) updateVideoTexture(texture);
+ return image;
+ }
- if (texture.version > 0 && textureProperties.__version !== texture.version) {
- const image = texture.image;
+ function isPowerOfTwo$1(image) {
+ return isPowerOfTwo(image.width) && isPowerOfTwo(image.height);
+ }
- if (image === undefined) {
- console.warn('THREE.WebGLRenderer: Texture marked for update but image is undefined');
- } else if (image.complete === false) {
- console.warn('THREE.WebGLRenderer: Texture marked for update but image is incomplete');
- } else {
- uploadTexture(textureProperties, texture, slot);
- return;
+ function textureNeedsPowerOfTwo(texture) {
+ if (isWebGL2) return false;
+ return texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping || texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
}
- }
- state.activeTexture(_gl.TEXTURE0 + slot);
- state.bindTexture(_gl.TEXTURE_2D, textureProperties.__webglTexture);
- }
+ function textureNeedsGenerateMipmaps(texture, supportsMips) {
+ return texture.generateMipmaps && supportsMips && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
+ }
- function setTexture2DArray(texture, slot) {
- const textureProperties = properties.get(texture);
+ function generateMipmap(target, texture, width, height, depth = 1) {
+ _gl.generateMipmap(target);
- if (texture.version > 0 && textureProperties.__version !== texture.version) {
- uploadTexture(textureProperties, texture, slot);
- return;
- }
+ const textureProperties = properties.get(texture);
+ textureProperties.__maxMipLevel = Math.log2(Math.max(width, height, depth));
+ }
- state.activeTexture(_gl.TEXTURE0 + slot);
- state.bindTexture(_gl.TEXTURE_2D_ARRAY, textureProperties.__webglTexture);
- }
+ function getInternalFormat(internalFormatName, glFormat, glType) {
+ if (isWebGL2 === false) return glFormat;
- function setTexture3D(texture, slot) {
- const textureProperties = properties.get(texture);
+ if (internalFormatName !== null) {
+ if (_gl[internalFormatName] !== undefined) return _gl[internalFormatName];
+ console.warn('THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'');
+ }
- if (texture.version > 0 && textureProperties.__version !== texture.version) {
- uploadTexture(textureProperties, texture, slot);
- return;
- }
+ let internalFormat = glFormat;
- state.activeTexture(_gl.TEXTURE0 + slot);
- state.bindTexture(_gl.TEXTURE_3D, textureProperties.__webglTexture);
- }
+ if (glFormat === _gl.RED) {
+ if (glType === _gl.FLOAT) internalFormat = _gl.R32F;
+ if (glType === _gl.HALF_FLOAT) internalFormat = _gl.R16F;
+ if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.R8;
+ }
- function setTextureCube(texture, slot) {
- const textureProperties = properties.get(texture);
+ if (glFormat === _gl.RGB) {
+ if (glType === _gl.FLOAT) internalFormat = _gl.RGB32F;
+ if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGB16F;
+ if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RGB8;
+ }
- if (texture.version > 0 && textureProperties.__version !== texture.version) {
- uploadCubeTexture(textureProperties, texture, slot);
- return;
- }
+ if (glFormat === _gl.RGBA) {
+ if (glType === _gl.FLOAT) internalFormat = _gl.RGBA32F;
+ if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGBA16F;
+ if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RGBA8;
+ }
- state.activeTexture(_gl.TEXTURE0 + slot);
- state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);
- }
+ if (internalFormat === _gl.R16F || internalFormat === _gl.R32F || internalFormat === _gl.RGBA16F || internalFormat === _gl.RGBA32F) {
+ extensions.get('EXT_color_buffer_float');
+ }
- const wrappingToGL = {
- [RepeatWrapping]: _gl.REPEAT,
- [ClampToEdgeWrapping]: _gl.CLAMP_TO_EDGE,
- [MirroredRepeatWrapping]: _gl.MIRRORED_REPEAT
- };
- const filterToGL = {
- [NearestFilter]: _gl.NEAREST,
- [NearestMipmapNearestFilter]: _gl.NEAREST_MIPMAP_NEAREST,
- [NearestMipmapLinearFilter]: _gl.NEAREST_MIPMAP_LINEAR,
- [LinearFilter]: _gl.LINEAR,
- [LinearMipmapNearestFilter]: _gl.LINEAR_MIPMAP_NEAREST,
- [LinearMipmapLinearFilter]: _gl.LINEAR_MIPMAP_LINEAR
- };
+ return internalFormat;
+ } // Fallback filters for non-power-of-2 textures
- function setTextureParameters(textureType, texture, supportsMips) {
- if (supportsMips) {
- _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, wrappingToGL[texture.wrapS]);
- _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, wrappingToGL[texture.wrapT]);
+ function filterFallback(f) {
+ if (f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter) {
+ return _gl.NEAREST;
+ }
- if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) {
- _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, wrappingToGL[texture.wrapR]);
- }
+ return _gl.LINEAR;
+ } //
- _gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterToGL[texture.magFilter]);
- _gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterToGL[texture.minFilter]);
- } else {
- _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE);
+ function onTextureDispose(event) {
+ const texture = event.target;
+ texture.removeEventListener('dispose', onTextureDispose);
+ deallocateTexture(texture);
- _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE);
+ if (texture.isVideoTexture) {
+ _videoTextures.delete(texture);
+ }
- if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) {
- _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, _gl.CLAMP_TO_EDGE);
+ info.memory.textures--;
}
- if (texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping) {
- console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.');
- }
+ function onRenderTargetDispose(event) {
+ const renderTarget = event.target;
+ renderTarget.removeEventListener('dispose', onRenderTargetDispose);
+ deallocateRenderTarget(renderTarget);
+ } //
+
- _gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterFallback(texture.magFilter));
+ function deallocateTexture(texture) {
+ const textureProperties = properties.get(texture);
+ if (textureProperties.__webglInit === undefined) return;
- _gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterFallback(texture.minFilter));
+ _gl.deleteTexture(textureProperties.__webglTexture);
- if (texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter) {
- console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.');
+ properties.remove(texture);
}
- }
- if (extensions.has('EXT_texture_filter_anisotropic') === true) {
- const extension = extensions.get('EXT_texture_filter_anisotropic');
- if (texture.type === FloatType && extensions.has('OES_texture_float_linear') === false) return; // verify extension for WebGL 1 and WebGL 2
+ function deallocateRenderTarget(renderTarget) {
+ const texture = renderTarget.texture;
+ const renderTargetProperties = properties.get(renderTarget);
+ const textureProperties = properties.get(texture);
+ if (!renderTarget) return;
- if (isWebGL2 === false && texture.type === HalfFloatType && extensions.has('OES_texture_half_float_linear') === false) return; // verify extension for WebGL 1 only
+ if (textureProperties.__webglTexture !== undefined) {
+ _gl.deleteTexture(textureProperties.__webglTexture);
- if (texture.anisotropy > 1 || properties.get(texture).__currentAnisotropy) {
- _gl.texParameterf(textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min(texture.anisotropy, capabilities.getMaxAnisotropy()));
+ info.memory.textures--;
+ }
- properties.get(texture).__currentAnisotropy = texture.anisotropy;
- }
- }
- }
+ if (renderTarget.depthTexture) {
+ renderTarget.depthTexture.dispose();
+ }
- function initTexture(textureProperties, texture) {
- if (textureProperties.__webglInit === undefined) {
- textureProperties.__webglInit = true;
- texture.addEventListener('dispose', onTextureDispose);
- textureProperties.__webglTexture = _gl.createTexture();
- info.memory.textures++;
- }
- }
+ if (renderTarget.isWebGLCubeRenderTarget) {
+ for (let i = 0; i < 6; i++) {
+ _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer[i]);
- function uploadTexture(textureProperties, texture, slot) {
- let textureType = _gl.TEXTURE_2D;
- if (texture.isDataTexture2DArray) textureType = _gl.TEXTURE_2D_ARRAY;
- if (texture.isDataTexture3D) textureType = _gl.TEXTURE_3D;
- initTexture(textureProperties, texture);
- state.activeTexture(_gl.TEXTURE0 + slot);
- state.bindTexture(textureType, textureProperties.__webglTexture);
+ if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer[i]);
+ }
+ } else {
+ _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer);
- _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY);
+ if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer);
+ if (renderTargetProperties.__webglMultisampledFramebuffer) _gl.deleteFramebuffer(renderTargetProperties.__webglMultisampledFramebuffer);
+ if (renderTargetProperties.__webglColorRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglColorRenderbuffer);
+ if (renderTargetProperties.__webglDepthRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthRenderbuffer);
+ }
- _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha);
+ if (renderTarget.isWebGLMultipleRenderTargets) {
+ for (let i = 0, il = texture.length; i < il; i++) {
+ const attachmentProperties = properties.get(texture[i]);
- _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment);
+ if (attachmentProperties.__webglTexture) {
+ _gl.deleteTexture(attachmentProperties.__webglTexture);
- _gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE);
+ info.memory.textures--;
+ }
- const needsPowerOfTwo = textureNeedsPowerOfTwo(texture) && isPowerOfTwo$1(texture.image) === false;
- const image = resizeImage(texture.image, needsPowerOfTwo, false, maxTextureSize);
- const supportsMips = isPowerOfTwo$1(image) || isWebGL2,
- glFormat = utils.convert(texture.format);
- let glType = utils.convert(texture.type),
- glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
- setTextureParameters(textureType, texture, supportsMips);
- let mipmap;
- const mipmaps = texture.mipmaps;
+ properties.remove(texture[i]);
+ }
+ }
- if (texture.isDepthTexture) {
- // populate depth texture with dummy data
- glInternalFormat = _gl.DEPTH_COMPONENT;
+ properties.remove(texture);
+ properties.remove(renderTarget);
+ } //
- if (isWebGL2) {
- if (texture.type === FloatType) {
- glInternalFormat = _gl.DEPTH_COMPONENT32F;
- } else if (texture.type === UnsignedIntType) {
- glInternalFormat = _gl.DEPTH_COMPONENT24;
- } else if (texture.type === UnsignedInt248Type) {
- glInternalFormat = _gl.DEPTH24_STENCIL8;
- } else {
- glInternalFormat = _gl.DEPTH_COMPONENT16; // WebGL2 requires sized internalformat for glTexImage2D
- }
- } else {
- if (texture.type === FloatType) {
- console.error('WebGLRenderer: Floating point depth texture requires WebGL2.');
- }
- } // validation checks for WebGL 1
+ let textureUnits = 0;
- if (texture.format === DepthFormat && glInternalFormat === _gl.DEPTH_COMPONENT) {
- // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
- // DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT
- // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
- if (texture.type !== UnsignedShortType && texture.type !== UnsignedIntType) {
- console.warn('THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.');
- texture.type = UnsignedShortType;
- glType = utils.convert(texture.type);
- }
+ function resetTextureUnits() {
+ textureUnits = 0;
}
- if (texture.format === DepthStencilFormat && glInternalFormat === _gl.DEPTH_COMPONENT) {
- // Depth stencil textures need the DEPTH_STENCIL internal format
- // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
- glInternalFormat = _gl.DEPTH_STENCIL; // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
- // DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL.
- // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
+ function allocateTextureUnit() {
+ const textureUnit = textureUnits;
- if (texture.type !== UnsignedInt248Type) {
- console.warn('THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.');
- texture.type = UnsignedInt248Type;
- glType = utils.convert(texture.type);
+ if (textureUnit >= maxTextures) {
+ console.warn('THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures);
}
+
+ textureUnits += 1;
+ return textureUnit;
} //
- state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null);
- } else if (texture.isDataTexture) {
- // use manually created mipmaps if available
- // if there are no manual mipmaps
- // set 0 level mipmap and then use GL to generate other mipmap levels
- if (mipmaps.length > 0 && supportsMips) {
- for (let i = 0, il = mipmaps.length; i < il; i++) {
- mipmap = mipmaps[i];
- state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
- }
+ function setTexture2D(texture, slot) {
+ const textureProperties = properties.get(texture);
+ if (texture.isVideoTexture) updateVideoTexture(texture);
- texture.generateMipmaps = false;
- textureProperties.__maxMipLevel = mipmaps.length - 1;
- } else {
- state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data);
- textureProperties.__maxMipLevel = 0;
- }
- } else if (texture.isCompressedTexture) {
- for (let i = 0, il = mipmaps.length; i < il; i++) {
- mipmap = mipmaps[i];
+ if (texture.version > 0 && textureProperties.__version !== texture.version) {
+ const image = texture.image;
- if (texture.format !== RGBAFormat && texture.format !== RGBFormat) {
- if (glFormat !== null) {
- state.compressedTexImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data);
+ if (image === undefined) {
+ console.warn('THREE.WebGLRenderer: Texture marked for update but image is undefined');
+ } else if (image.complete === false) {
+ console.warn('THREE.WebGLRenderer: Texture marked for update but image is incomplete');
} else {
- console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()');
+ uploadTexture(textureProperties, texture, slot);
+ return;
}
- } else {
- state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
}
- }
- textureProperties.__maxMipLevel = mipmaps.length - 1;
- } else if (texture.isDataTexture2DArray) {
- state.texImage3D(_gl.TEXTURE_2D_ARRAY, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data);
- textureProperties.__maxMipLevel = 0;
- } else if (texture.isDataTexture3D) {
- state.texImage3D(_gl.TEXTURE_3D, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data);
- textureProperties.__maxMipLevel = 0;
- } else {
- // regular Texture (image, video, canvas)
- // use manually created mipmaps if available
- // if there are no manual mipmaps
- // set 0 level mipmap and then use GL to generate other mipmap levels
- if (mipmaps.length > 0 && supportsMips) {
- for (let i = 0, il = mipmaps.length; i < il; i++) {
- mipmap = mipmaps[i];
- state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, glFormat, glType, mipmap);
- }
-
- texture.generateMipmaps = false;
- textureProperties.__maxMipLevel = mipmaps.length - 1;
- } else {
- state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, glFormat, glType, image);
- textureProperties.__maxMipLevel = 0;
+ state.activeTexture(_gl.TEXTURE0 + slot);
+ state.bindTexture(_gl.TEXTURE_2D, textureProperties.__webglTexture);
}
- }
-
- if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
- generateMipmap(textureType, texture, image.width, image.height);
- }
-
- textureProperties.__version = texture.version;
- if (texture.onUpdate) texture.onUpdate(texture);
- }
-
- function uploadCubeTexture(textureProperties, texture, slot) {
- if (texture.image.length !== 6) return;
- initTexture(textureProperties, texture);
- state.activeTexture(_gl.TEXTURE0 + slot);
- state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);
- _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY);
+ function setTexture2DArray(texture, slot) {
+ const textureProperties = properties.get(texture);
- _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha);
+ if (texture.version > 0 && textureProperties.__version !== texture.version) {
+ uploadTexture(textureProperties, texture, slot);
+ return;
+ }
- _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment);
+ state.activeTexture(_gl.TEXTURE0 + slot);
+ state.bindTexture(_gl.TEXTURE_2D_ARRAY, textureProperties.__webglTexture);
+ }
- _gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE);
+ function setTexture3D(texture, slot) {
+ const textureProperties = properties.get(texture);
- const isCompressed = texture && (texture.isCompressedTexture || texture.image[0].isCompressedTexture);
- const isDataTexture = texture.image[0] && texture.image[0].isDataTexture;
- const cubeImage = [];
+ if (texture.version > 0 && textureProperties.__version !== texture.version) {
+ uploadTexture(textureProperties, texture, slot);
+ return;
+ }
- for (let i = 0; i < 6; i++) {
- if (!isCompressed && !isDataTexture) {
- cubeImage[i] = resizeImage(texture.image[i], false, true, maxCubemapSize);
- } else {
- cubeImage[i] = isDataTexture ? texture.image[i].image : texture.image[i];
+ state.activeTexture(_gl.TEXTURE0 + slot);
+ state.bindTexture(_gl.TEXTURE_3D, textureProperties.__webglTexture);
}
- }
-
- const image = cubeImage[0],
- supportsMips = isPowerOfTwo$1(image) || isWebGL2,
- glFormat = utils.convert(texture.format),
- glType = utils.convert(texture.type),
- glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
- setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips);
- let mipmaps;
- if (isCompressed) {
- for (let i = 0; i < 6; i++) {
- mipmaps = cubeImage[i].mipmaps;
+ function setTextureCube(texture, slot) {
+ const textureProperties = properties.get(texture);
- for (let j = 0; j < mipmaps.length; j++) {
- const mipmap = mipmaps[j];
-
- if (texture.format !== RGBAFormat && texture.format !== RGBFormat) {
- if (glFormat !== null) {
- state.compressedTexImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data);
- } else {
- console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()');
- }
- } else {
- state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
- }
+ if (texture.version > 0 && textureProperties.__version !== texture.version) {
+ uploadCubeTexture(textureProperties, texture, slot);
+ return;
}
+
+ state.activeTexture(_gl.TEXTURE0 + slot);
+ state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);
}
- textureProperties.__maxMipLevel = mipmaps.length - 1;
- } else {
- mipmaps = texture.mipmaps;
+ const wrappingToGL = {
+ [RepeatWrapping]: _gl.REPEAT,
+ [ClampToEdgeWrapping]: _gl.CLAMP_TO_EDGE,
+ [MirroredRepeatWrapping]: _gl.MIRRORED_REPEAT
+ };
+ const filterToGL = {
+ [NearestFilter]: _gl.NEAREST,
+ [NearestMipmapNearestFilter]: _gl.NEAREST_MIPMAP_NEAREST,
+ [NearestMipmapLinearFilter]: _gl.NEAREST_MIPMAP_LINEAR,
+ [LinearFilter]: _gl.LINEAR,
+ [LinearMipmapNearestFilter]: _gl.LINEAR_MIPMAP_NEAREST,
+ [LinearMipmapLinearFilter]: _gl.LINEAR_MIPMAP_LINEAR
+ };
- for (let i = 0; i < 6; i++) {
- if (isDataTexture) {
- state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, cubeImage[i].width, cubeImage[i].height, 0, glFormat, glType, cubeImage[i].data);
+ function setTextureParameters(textureType, texture, supportsMips) {
+ if (supportsMips) {
+ _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, wrappingToGL[texture.wrapS]);
- for (let j = 0; j < mipmaps.length; j++) {
- const mipmap = mipmaps[j];
- const mipmapImage = mipmap.image[i].image;
- state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data);
- }
- } else {
- state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, glFormat, glType, cubeImage[i]);
+ _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, wrappingToGL[texture.wrapT]);
- for (let j = 0; j < mipmaps.length; j++) {
- const mipmap = mipmaps[j];
- state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[i]);
+ if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) {
+ _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, wrappingToGL[texture.wrapR]);
}
- }
- }
-
- textureProperties.__maxMipLevel = mipmaps.length;
- }
- if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
- // We assume images for cube map have the same size.
- generateMipmap(_gl.TEXTURE_CUBE_MAP, texture, image.width, image.height);
- }
-
- textureProperties.__version = texture.version;
- if (texture.onUpdate) texture.onUpdate(texture);
- } // Render targets
- // Setup storage for target texture and bind it to correct framebuffer
+ _gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterToGL[texture.magFilter]);
+ _gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterToGL[texture.minFilter]);
+ } else {
+ _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE);
- function setupFrameBufferTexture(framebuffer, renderTarget, texture, attachment, textureTarget) {
- const glFormat = utils.convert(texture.format);
- const glType = utils.convert(texture.type);
- const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
+ _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE);
- if (textureTarget === _gl.TEXTURE_3D || textureTarget === _gl.TEXTURE_2D_ARRAY) {
- state.texImage3D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, renderTarget.depth, 0, glFormat, glType, null);
- } else {
- state.texImage2D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null);
- }
+ if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) {
+ _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, _gl.CLAMP_TO_EDGE);
+ }
- state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
+ if (texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping) {
+ console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.');
+ }
- _gl.framebufferTexture2D(_gl.FRAMEBUFFER, attachment, textureTarget, properties.get(texture).__webglTexture, 0);
+ _gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterFallback(texture.magFilter));
- state.bindFramebuffer(_gl.FRAMEBUFFER, null);
- } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer
+ _gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterFallback(texture.minFilter));
+ if (texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter) {
+ console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.');
+ }
+ }
- function setupRenderBufferStorage(renderbuffer, renderTarget, isMultisample) {
- _gl.bindRenderbuffer(_gl.RENDERBUFFER, renderbuffer);
+ if (extensions.has('EXT_texture_filter_anisotropic') === true) {
+ const extension = extensions.get('EXT_texture_filter_anisotropic');
+ if (texture.type === FloatType && extensions.has('OES_texture_float_linear') === false) return; // verify extension for WebGL 1 and WebGL 2
- if (renderTarget.depthBuffer && !renderTarget.stencilBuffer) {
- let glInternalFormat = _gl.DEPTH_COMPONENT16;
+ if (isWebGL2 === false && texture.type === HalfFloatType && extensions.has('OES_texture_half_float_linear') === false) return; // verify extension for WebGL 1 only
- if (isMultisample) {
- const depthTexture = renderTarget.depthTexture;
+ if (texture.anisotropy > 1 || properties.get(texture).__currentAnisotropy) {
+ _gl.texParameterf(textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min(texture.anisotropy, capabilities.getMaxAnisotropy()));
- if (depthTexture && depthTexture.isDepthTexture) {
- if (depthTexture.type === FloatType) {
- glInternalFormat = _gl.DEPTH_COMPONENT32F;
- } else if (depthTexture.type === UnsignedIntType) {
- glInternalFormat = _gl.DEPTH_COMPONENT24;
+ properties.get(texture).__currentAnisotropy = texture.anisotropy;
}
}
-
- const samples = getRenderTargetSamples(renderTarget);
-
- _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);
- } else {
- _gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height);
}
- _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer);
- } else if (renderTarget.depthBuffer && renderTarget.stencilBuffer) {
- if (isMultisample) {
- const samples = getRenderTargetSamples(renderTarget);
-
- _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, _gl.DEPTH24_STENCIL8, renderTarget.width, renderTarget.height);
- } else {
- _gl.renderbufferStorage(_gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height);
+ function initTexture(textureProperties, texture) {
+ if (textureProperties.__webglInit === undefined) {
+ textureProperties.__webglInit = true;
+ texture.addEventListener('dispose', onTextureDispose);
+ textureProperties.__webglTexture = _gl.createTexture();
+ info.memory.textures++;
+ }
}
- _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer);
- } else {
- // Use the first texture for MRT so far
- const texture = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture[0] : renderTarget.texture;
- const glFormat = utils.convert(texture.format);
- const glType = utils.convert(texture.type);
- const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
-
- if (isMultisample) {
- const samples = getRenderTargetSamples(renderTarget);
-
- _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);
- } else {
- _gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height);
- }
- }
+ function uploadTexture(textureProperties, texture, slot) {
+ let textureType = _gl.TEXTURE_2D;
+ if (texture.isDataTexture2DArray) textureType = _gl.TEXTURE_2D_ARRAY;
+ if (texture.isDataTexture3D) textureType = _gl.TEXTURE_3D;
+ initTexture(textureProperties, texture);
+ state.activeTexture(_gl.TEXTURE0 + slot);
+ state.bindTexture(textureType, textureProperties.__webglTexture);
- _gl.bindRenderbuffer(_gl.RENDERBUFFER, null);
- } // Setup resources for a Depth Texture for a FBO (needs an extension)
+ _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY);
+ _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha);
- function setupDepthTexture(framebuffer, renderTarget) {
- const isCube = renderTarget && renderTarget.isWebGLCubeRenderTarget;
- if (isCube) throw new Error('Depth Texture with cube render targets is not supported');
- state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
+ _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment);
- if (!(renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture)) {
- throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture');
- } // upload an empty depth texture with framebuffer size
+ _gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE);
+ const needsPowerOfTwo = textureNeedsPowerOfTwo(texture) && isPowerOfTwo$1(texture.image) === false;
+ const image = resizeImage(texture.image, needsPowerOfTwo, false, maxTextureSize);
+ const supportsMips = isPowerOfTwo$1(image) || isWebGL2,
+ glFormat = utils.convert(texture.format);
+ let glType = utils.convert(texture.type),
+ glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
+ setTextureParameters(textureType, texture, supportsMips);
+ let mipmap;
+ const mipmaps = texture.mipmaps;
+
+ if (texture.isDepthTexture) {
+ // populate depth texture with dummy data
+ glInternalFormat = _gl.DEPTH_COMPONENT;
+
+ if (isWebGL2) {
+ if (texture.type === FloatType) {
+ glInternalFormat = _gl.DEPTH_COMPONENT32F;
+ } else if (texture.type === UnsignedIntType) {
+ glInternalFormat = _gl.DEPTH_COMPONENT24;
+ } else if (texture.type === UnsignedInt248Type) {
+ glInternalFormat = _gl.DEPTH24_STENCIL8;
+ } else {
+ glInternalFormat = _gl.DEPTH_COMPONENT16; // WebGL2 requires sized internalformat for glTexImage2D
+ }
+ } else {
+ if (texture.type === FloatType) {
+ console.error('WebGLRenderer: Floating point depth texture requires WebGL2.');
+ }
+ } // validation checks for WebGL 1
- if (!properties.get(renderTarget.depthTexture).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height) {
- renderTarget.depthTexture.image.width = renderTarget.width;
- renderTarget.depthTexture.image.height = renderTarget.height;
- renderTarget.depthTexture.needsUpdate = true;
- }
- setTexture2D(renderTarget.depthTexture, 0);
+ if (texture.format === DepthFormat && glInternalFormat === _gl.DEPTH_COMPONENT) {
+ // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
+ // DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT
+ // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
+ if (texture.type !== UnsignedShortType && texture.type !== UnsignedIntType) {
+ console.warn('THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.');
+ texture.type = UnsignedShortType;
+ glType = utils.convert(texture.type);
+ }
+ }
- const webglDepthTexture = properties.get(renderTarget.depthTexture).__webglTexture;
+ if (texture.format === DepthStencilFormat && glInternalFormat === _gl.DEPTH_COMPONENT) {
+ // Depth stencil textures need the DEPTH_STENCIL internal format
+ // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
+ glInternalFormat = _gl.DEPTH_STENCIL; // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
+ // DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL.
+ // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
+
+ if (texture.type !== UnsignedInt248Type) {
+ console.warn('THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.');
+ texture.type = UnsignedInt248Type;
+ glType = utils.convert(texture.type);
+ }
+ } //
+
+
+ state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null);
+ } else if (texture.isDataTexture) {
+ // use manually created mipmaps if available
+ // if there are no manual mipmaps
+ // set 0 level mipmap and then use GL to generate other mipmap levels
+ if (mipmaps.length > 0 && supportsMips) {
+ for (let i = 0, il = mipmaps.length; i < il; i++) {
+ mipmap = mipmaps[i];
+ state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
+ }
- if (renderTarget.depthTexture.format === DepthFormat) {
- _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0);
- } else if (renderTarget.depthTexture.format === DepthStencilFormat) {
- _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0);
- } else {
- throw new Error('Unknown depthTexture format');
- }
- } // Setup GL resources for a non-texture depth buffer
+ texture.generateMipmaps = false;
+ textureProperties.__maxMipLevel = mipmaps.length - 1;
+ } else {
+ state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data);
+ textureProperties.__maxMipLevel = 0;
+ }
+ } else if (texture.isCompressedTexture) {
+ for (let i = 0, il = mipmaps.length; i < il; i++) {
+ mipmap = mipmaps[i];
+ if (texture.format !== RGBAFormat && texture.format !== RGBFormat) {
+ if (glFormat !== null) {
+ state.compressedTexImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data);
+ } else {
+ console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()');
+ }
+ } else {
+ state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
+ }
+ }
- function setupDepthRenderbuffer(renderTarget) {
- const renderTargetProperties = properties.get(renderTarget);
- const isCube = renderTarget.isWebGLCubeRenderTarget === true;
+ textureProperties.__maxMipLevel = mipmaps.length - 1;
+ } else if (texture.isDataTexture2DArray) {
+ state.texImage3D(_gl.TEXTURE_2D_ARRAY, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data);
+ textureProperties.__maxMipLevel = 0;
+ } else if (texture.isDataTexture3D) {
+ state.texImage3D(_gl.TEXTURE_3D, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data);
+ textureProperties.__maxMipLevel = 0;
+ } else {
+ // regular Texture (image, video, canvas)
+ // use manually created mipmaps if available
+ // if there are no manual mipmaps
+ // set 0 level mipmap and then use GL to generate other mipmap levels
+ if (mipmaps.length > 0 && supportsMips) {
+ for (let i = 0, il = mipmaps.length; i < il; i++) {
+ mipmap = mipmaps[i];
+ state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, glFormat, glType, mipmap);
+ }
- if (renderTarget.depthTexture) {
- if (isCube) throw new Error('target.depthTexture not supported in Cube render targets');
- setupDepthTexture(renderTargetProperties.__webglFramebuffer, renderTarget);
- } else {
- if (isCube) {
- renderTargetProperties.__webglDepthbuffer = [];
+ texture.generateMipmaps = false;
+ textureProperties.__maxMipLevel = mipmaps.length - 1;
+ } else {
+ state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, glFormat, glType, image);
+ textureProperties.__maxMipLevel = 0;
+ }
+ }
- for (let i = 0; i < 6; i++) {
- state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[i]);
- renderTargetProperties.__webglDepthbuffer[i] = _gl.createRenderbuffer();
- setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer[i], renderTarget, false);
+ if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
+ generateMipmap(textureType, texture, image.width, image.height);
}
- } else {
- state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer);
- renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer();
- setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer, renderTarget, false);
+
+ textureProperties.__version = texture.version;
+ if (texture.onUpdate) texture.onUpdate(texture);
}
- }
- state.bindFramebuffer(_gl.FRAMEBUFFER, null);
- } // Set up GL resources for the render target
+ function uploadCubeTexture(textureProperties, texture, slot) {
+ if (texture.image.length !== 6) return;
+ initTexture(textureProperties, texture);
+ state.activeTexture(_gl.TEXTURE0 + slot);
+ state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);
+ _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY);
- function setupRenderTarget(renderTarget) {
- const texture = renderTarget.texture;
- const renderTargetProperties = properties.get(renderTarget);
- const textureProperties = properties.get(texture);
- renderTarget.addEventListener('dispose', onRenderTargetDispose);
+ _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha);
- if (renderTarget.isWebGLMultipleRenderTargets !== true) {
- textureProperties.__webglTexture = _gl.createTexture();
- textureProperties.__version = texture.version;
- info.memory.textures++;
- }
+ _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment);
- const isCube = renderTarget.isWebGLCubeRenderTarget === true;
- const isMultipleRenderTargets = renderTarget.isWebGLMultipleRenderTargets === true;
- const isMultisample = renderTarget.isWebGLMultisampleRenderTarget === true;
- const isRenderTarget3D = texture.isDataTexture3D || texture.isDataTexture2DArray;
- const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2; // Handles WebGL2 RGBFormat fallback - #18858
+ _gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE);
- if (isWebGL2 && texture.format === RGBFormat && (texture.type === FloatType || texture.type === HalfFloatType)) {
- texture.format = RGBAFormat;
- console.warn('THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.');
- } // Setup framebuffer
+ const isCompressed = texture && (texture.isCompressedTexture || texture.image[0].isCompressedTexture);
+ const isDataTexture = texture.image[0] && texture.image[0].isDataTexture;
+ const cubeImage = [];
+ for (let i = 0; i < 6; i++) {
+ if (!isCompressed && !isDataTexture) {
+ cubeImage[i] = resizeImage(texture.image[i], false, true, maxCubemapSize);
+ } else {
+ cubeImage[i] = isDataTexture ? texture.image[i].image : texture.image[i];
+ }
+ }
- if (isCube) {
- renderTargetProperties.__webglFramebuffer = [];
+ const image = cubeImage[0],
+ supportsMips = isPowerOfTwo$1(image) || isWebGL2,
+ glFormat = utils.convert(texture.format),
+ glType = utils.convert(texture.type),
+ glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
+ setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips);
+ let mipmaps;
+
+ if (isCompressed) {
+ for (let i = 0; i < 6; i++) {
+ mipmaps = cubeImage[i].mipmaps;
+
+ for (let j = 0; j < mipmaps.length; j++) {
+ const mipmap = mipmaps[j];
+
+ if (texture.format !== RGBAFormat && texture.format !== RGBFormat) {
+ if (glFormat !== null) {
+ state.compressedTexImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data);
+ } else {
+ console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()');
+ }
+ } else {
+ state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
+ }
+ }
+ }
- for (let i = 0; i < 6; i++) {
- renderTargetProperties.__webglFramebuffer[i] = _gl.createFramebuffer();
- }
- } else {
- renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();
+ textureProperties.__maxMipLevel = mipmaps.length - 1;
+ } else {
+ mipmaps = texture.mipmaps;
- if (isMultipleRenderTargets) {
- if (capabilities.drawBuffers) {
- const textures = renderTarget.texture;
+ for (let i = 0; i < 6; i++) {
+ if (isDataTexture) {
+ state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, cubeImage[i].width, cubeImage[i].height, 0, glFormat, glType, cubeImage[i].data);
- for (let i = 0, il = textures.length; i < il; i++) {
- const attachmentProperties = properties.get(textures[i]);
+ for (let j = 0; j < mipmaps.length; j++) {
+ const mipmap = mipmaps[j];
+ const mipmapImage = mipmap.image[i].image;
+ state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data);
+ }
+ } else {
+ state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, glFormat, glType, cubeImage[i]);
- if (attachmentProperties.__webglTexture === undefined) {
- attachmentProperties.__webglTexture = _gl.createTexture();
- info.memory.textures++;
+ for (let j = 0; j < mipmaps.length; j++) {
+ const mipmap = mipmaps[j];
+ state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[i]);
+ }
}
}
- } else {
- console.warn('THREE.WebGLRenderer: WebGLMultipleRenderTargets can only be used with WebGL2 or WEBGL_draw_buffers extension.');
+
+ textureProperties.__maxMipLevel = mipmaps.length;
}
- } else if (isMultisample) {
- if (isWebGL2) {
- renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer();
- renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer();
- _gl.bindRenderbuffer(_gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer);
+ if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
+ // We assume images for cube map have the same size.
+ generateMipmap(_gl.TEXTURE_CUBE_MAP, texture, image.width, image.height);
+ }
- const glFormat = utils.convert(texture.format);
- const glType = utils.convert(texture.type);
- const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
- const samples = getRenderTargetSamples(renderTarget);
+ textureProperties.__version = texture.version;
+ if (texture.onUpdate) texture.onUpdate(texture);
+ } // Render targets
+ // Setup storage for target texture and bind it to correct framebuffer
- _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);
- state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);
+ function setupFrameBufferTexture(framebuffer, renderTarget, texture, attachment, textureTarget) {
+ const glFormat = utils.convert(texture.format);
+ const glType = utils.convert(texture.type);
+ const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
- _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer);
+ if (textureTarget === _gl.TEXTURE_3D || textureTarget === _gl.TEXTURE_2D_ARRAY) {
+ state.texImage3D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, renderTarget.depth, 0, glFormat, glType, null);
+ } else {
+ state.texImage2D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null);
+ }
- _gl.bindRenderbuffer(_gl.RENDERBUFFER, null);
+ state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
- if (renderTarget.depthBuffer) {
- renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer();
- setupRenderBufferStorage(renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true);
- }
+ _gl.framebufferTexture2D(_gl.FRAMEBUFFER, attachment, textureTarget, properties.get(texture).__webglTexture, 0);
- state.bindFramebuffer(_gl.FRAMEBUFFER, null);
- } else {
- console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.');
- }
- }
- } // Setup color buffer
+ state.bindFramebuffer(_gl.FRAMEBUFFER, null);
+ } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer
- if (isCube) {
- state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);
- setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips);
+ function setupRenderBufferStorage(renderbuffer, renderTarget, isMultisample) {
+ _gl.bindRenderbuffer(_gl.RENDERBUFFER, renderbuffer);
- for (let i = 0; i < 6; i++) {
- setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer[i], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i);
- }
+ if (renderTarget.depthBuffer && !renderTarget.stencilBuffer) {
+ let glInternalFormat = _gl.DEPTH_COMPONENT16;
- if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
- generateMipmap(_gl.TEXTURE_CUBE_MAP, texture, renderTarget.width, renderTarget.height);
- }
+ if (isMultisample) {
+ const depthTexture = renderTarget.depthTexture;
- state.unbindTexture();
- } else if (isMultipleRenderTargets) {
- const textures = renderTarget.texture;
+ if (depthTexture && depthTexture.isDepthTexture) {
+ if (depthTexture.type === FloatType) {
+ glInternalFormat = _gl.DEPTH_COMPONENT32F;
+ } else if (depthTexture.type === UnsignedIntType) {
+ glInternalFormat = _gl.DEPTH_COMPONENT24;
+ }
+ }
- for (let i = 0, il = textures.length; i < il; i++) {
- const attachment = textures[i];
- const attachmentProperties = properties.get(attachment);
- state.bindTexture(_gl.TEXTURE_2D, attachmentProperties.__webglTexture);
- setTextureParameters(_gl.TEXTURE_2D, attachment, supportsMips);
- setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, attachment, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D);
+ const samples = getRenderTargetSamples(renderTarget);
- if (textureNeedsGenerateMipmaps(attachment, supportsMips)) {
- generateMipmap(_gl.TEXTURE_2D, attachment, renderTarget.width, renderTarget.height);
- }
- }
+ _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);
+ } else {
+ _gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height);
+ }
- state.unbindTexture();
- } else {
- let glTextureType = _gl.TEXTURE_2D;
+ _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer);
+ } else if (renderTarget.depthBuffer && renderTarget.stencilBuffer) {
+ if (isMultisample) {
+ const samples = getRenderTargetSamples(renderTarget);
- if (isRenderTarget3D) {
- // Render targets containing layers, i.e: Texture 3D and 2d arrays
- if (isWebGL2) {
- const isTexture3D = texture.isDataTexture3D;
- glTextureType = isTexture3D ? _gl.TEXTURE_3D : _gl.TEXTURE_2D_ARRAY;
+ _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, _gl.DEPTH24_STENCIL8, renderTarget.width, renderTarget.height);
+ } else {
+ _gl.renderbufferStorage(_gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height);
+ }
+
+ _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer);
} else {
- console.warn('THREE.DataTexture3D and THREE.DataTexture2DArray only supported with WebGL2.');
+ // Use the first texture for MRT so far
+ const texture = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture[0] : renderTarget.texture;
+ const glFormat = utils.convert(texture.format);
+ const glType = utils.convert(texture.type);
+ const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
+
+ if (isMultisample) {
+ const samples = getRenderTargetSamples(renderTarget);
+
+ _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);
+ } else {
+ _gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height);
+ }
}
- }
- state.bindTexture(glTextureType, textureProperties.__webglTexture);
- setTextureParameters(glTextureType, texture, supportsMips);
- setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType);
+ _gl.bindRenderbuffer(_gl.RENDERBUFFER, null);
+ } // Setup resources for a Depth Texture for a FBO (needs an extension)
- if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
- generateMipmap(glTextureType, texture, renderTarget.width, renderTarget.height, renderTarget.depth);
- }
- state.unbindTexture();
- } // Setup depth and stencil buffers
+ function setupDepthTexture(framebuffer, renderTarget) {
+ const isCube = renderTarget && renderTarget.isWebGLCubeRenderTarget;
+ if (isCube) throw new Error('Depth Texture with cube render targets is not supported');
+ state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
+ if (!(renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture)) {
+ throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture');
+ } // upload an empty depth texture with framebuffer size
- if (renderTarget.depthBuffer) {
- setupDepthRenderbuffer(renderTarget);
- }
- }
- function updateRenderTargetMipmap(renderTarget) {
- const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2;
- const textures = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture : [renderTarget.texture];
+ if (!properties.get(renderTarget.depthTexture).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height) {
+ renderTarget.depthTexture.image.width = renderTarget.width;
+ renderTarget.depthTexture.image.height = renderTarget.height;
+ renderTarget.depthTexture.needsUpdate = true;
+ }
- for (let i = 0, il = textures.length; i < il; i++) {
- const texture = textures[i];
+ setTexture2D(renderTarget.depthTexture, 0);
- if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
- const target = renderTarget.isWebGLCubeRenderTarget ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D;
+ const webglDepthTexture = properties.get(renderTarget.depthTexture).__webglTexture;
- const webglTexture = properties.get(texture).__webglTexture;
+ if (renderTarget.depthTexture.format === DepthFormat) {
+ _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0);
+ } else if (renderTarget.depthTexture.format === DepthStencilFormat) {
+ _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0);
+ } else {
+ throw new Error('Unknown depthTexture format');
+ }
+ } // Setup GL resources for a non-texture depth buffer
- state.bindTexture(target, webglTexture);
- generateMipmap(target, texture, renderTarget.width, renderTarget.height);
- state.unbindTexture();
- }
- }
- }
- function updateMultisampleRenderTarget(renderTarget) {
- if (renderTarget.isWebGLMultisampleRenderTarget) {
- if (isWebGL2) {
- const width = renderTarget.width;
- const height = renderTarget.height;
- let mask = _gl.COLOR_BUFFER_BIT;
- if (renderTarget.depthBuffer) mask |= _gl.DEPTH_BUFFER_BIT;
- if (renderTarget.stencilBuffer) mask |= _gl.STENCIL_BUFFER_BIT;
+ function setupDepthRenderbuffer(renderTarget) {
const renderTargetProperties = properties.get(renderTarget);
- state.bindFramebuffer(_gl.READ_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);
- state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglFramebuffer);
+ const isCube = renderTarget.isWebGLCubeRenderTarget === true;
- _gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, mask, _gl.NEAREST);
-
- state.bindFramebuffer(_gl.READ_FRAMEBUFFER, null);
- state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);
- } else {
- console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.');
- }
- }
- }
+ if (renderTarget.depthTexture) {
+ if (isCube) throw new Error('target.depthTexture not supported in Cube render targets');
+ setupDepthTexture(renderTargetProperties.__webglFramebuffer, renderTarget);
+ } else {
+ if (isCube) {
+ renderTargetProperties.__webglDepthbuffer = [];
- function getRenderTargetSamples(renderTarget) {
- return isWebGL2 && renderTarget.isWebGLMultisampleRenderTarget ? Math.min(maxSamples, renderTarget.samples) : 0;
- }
+ for (let i = 0; i < 6; i++) {
+ state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[i]);
+ renderTargetProperties.__webglDepthbuffer[i] = _gl.createRenderbuffer();
+ setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer[i], renderTarget, false);
+ }
+ } else {
+ state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer);
+ renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer();
+ setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer, renderTarget, false);
+ }
+ }
- function updateVideoTexture(texture) {
- const frame = info.render.frame; // Check the last frame we updated the VideoTexture
+ state.bindFramebuffer(_gl.FRAMEBUFFER, null);
+ } // Set up GL resources for the render target
- if (_videoTextures.get(texture) !== frame) {
- _videoTextures.set(texture, frame);
- texture.update();
- }
- } // backwards compatibility
+ function setupRenderTarget(renderTarget) {
+ const texture = renderTarget.texture;
+ const renderTargetProperties = properties.get(renderTarget);
+ const textureProperties = properties.get(texture);
+ renderTarget.addEventListener('dispose', onRenderTargetDispose);
+ if (renderTarget.isWebGLMultipleRenderTargets !== true) {
+ textureProperties.__webglTexture = _gl.createTexture();
+ textureProperties.__version = texture.version;
+ info.memory.textures++;
+ }
- let warnedTexture2D = false;
- let warnedTextureCube = false;
+ const isCube = renderTarget.isWebGLCubeRenderTarget === true;
+ const isMultipleRenderTargets = renderTarget.isWebGLMultipleRenderTargets === true;
+ const isMultisample = renderTarget.isWebGLMultisampleRenderTarget === true;
+ const isRenderTarget3D = texture.isDataTexture3D || texture.isDataTexture2DArray;
+ const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2; // Handles WebGL2 RGBFormat fallback - #18858
- function safeSetTexture2D(texture, slot) {
- if (texture && texture.isWebGLRenderTarget) {
- if (warnedTexture2D === false) {
- console.warn('THREE.WebGLTextures.safeSetTexture2D: don\'t use render targets as textures. Use their .texture property instead.');
- warnedTexture2D = true;
- }
+ if (isWebGL2 && texture.format === RGBFormat && (texture.type === FloatType || texture.type === HalfFloatType)) {
+ texture.format = RGBAFormat;
+ console.warn('THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.');
+ } // Setup framebuffer
- texture = texture.texture;
- }
- setTexture2D(texture, slot);
- }
+ if (isCube) {
+ renderTargetProperties.__webglFramebuffer = [];
- function safeSetTextureCube(texture, slot) {
- if (texture && texture.isWebGLCubeRenderTarget) {
- if (warnedTextureCube === false) {
- console.warn('THREE.WebGLTextures.safeSetTextureCube: don\'t use cube render targets as textures. Use their .texture property instead.');
- warnedTextureCube = true;
- }
+ for (let i = 0; i < 6; i++) {
+ renderTargetProperties.__webglFramebuffer[i] = _gl.createFramebuffer();
+ }
+ } else {
+ renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();
- texture = texture.texture;
- }
+ if (isMultipleRenderTargets) {
+ if (capabilities.drawBuffers) {
+ const textures = renderTarget.texture;
- setTextureCube(texture, slot);
- } //
+ for (let i = 0, il = textures.length; i < il; i++) {
+ const attachmentProperties = properties.get(textures[i]);
+ if (attachmentProperties.__webglTexture === undefined) {
+ attachmentProperties.__webglTexture = _gl.createTexture();
+ info.memory.textures++;
+ }
+ }
+ } else {
+ console.warn('THREE.WebGLRenderer: WebGLMultipleRenderTargets can only be used with WebGL2 or WEBGL_draw_buffers extension.');
+ }
+ } else if (isMultisample) {
+ if (isWebGL2) {
+ renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer();
+ renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer();
- this.allocateTextureUnit = allocateTextureUnit;
- this.resetTextureUnits = resetTextureUnits;
- this.setTexture2D = setTexture2D;
- this.setTexture2DArray = setTexture2DArray;
- this.setTexture3D = setTexture3D;
- this.setTextureCube = setTextureCube;
- this.setupRenderTarget = setupRenderTarget;
- this.updateRenderTargetMipmap = updateRenderTargetMipmap;
- this.updateMultisampleRenderTarget = updateMultisampleRenderTarget;
- this.safeSetTexture2D = safeSetTexture2D;
- this.safeSetTextureCube = safeSetTextureCube;
- }
+ _gl.bindRenderbuffer(_gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer);
- function WebGLUtils(gl, extensions, capabilities) {
- const isWebGL2 = capabilities.isWebGL2;
-
- function convert(p) {
- let extension;
- if (p === UnsignedByteType) return gl.UNSIGNED_BYTE;
- if (p === UnsignedShort4444Type) return gl.UNSIGNED_SHORT_4_4_4_4;
- if (p === UnsignedShort5551Type) return gl.UNSIGNED_SHORT_5_5_5_1;
- if (p === UnsignedShort565Type) return gl.UNSIGNED_SHORT_5_6_5;
- if (p === ByteType) return gl.BYTE;
- if (p === ShortType) return gl.SHORT;
- if (p === UnsignedShortType) return gl.UNSIGNED_SHORT;
- if (p === IntType) return gl.INT;
- if (p === UnsignedIntType) return gl.UNSIGNED_INT;
- if (p === FloatType) return gl.FLOAT;
-
- if (p === HalfFloatType) {
- if (isWebGL2) return gl.HALF_FLOAT;
- extension = extensions.get('OES_texture_half_float');
-
- if (extension !== null) {
- return extension.HALF_FLOAT_OES;
- } else {
- return null;
- }
- }
+ const glFormat = utils.convert(texture.format);
+ const glType = utils.convert(texture.type);
+ const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
+ const samples = getRenderTargetSamples(renderTarget);
- if (p === AlphaFormat) return gl.ALPHA;
- if (p === RGBFormat) return gl.RGB;
- if (p === RGBAFormat) return gl.RGBA;
- if (p === LuminanceFormat) return gl.LUMINANCE;
- if (p === LuminanceAlphaFormat) return gl.LUMINANCE_ALPHA;
- if (p === DepthFormat) return gl.DEPTH_COMPONENT;
- if (p === DepthStencilFormat) return gl.DEPTH_STENCIL;
- if (p === RedFormat) return gl.RED; // WebGL2 formats.
+ _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);
- if (p === RedIntegerFormat) return gl.RED_INTEGER;
- if (p === RGFormat) return gl.RG;
- if (p === RGIntegerFormat) return gl.RG_INTEGER;
- if (p === RGBIntegerFormat) return gl.RGB_INTEGER;
- if (p === RGBAIntegerFormat) return gl.RGBA_INTEGER;
+ state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);
- if (p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format) {
- extension = extensions.get('WEBGL_compressed_texture_s3tc');
+ _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer);
- if (extension !== null) {
- if (p === RGB_S3TC_DXT1_Format) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT;
- if (p === RGBA_S3TC_DXT1_Format) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT;
- if (p === RGBA_S3TC_DXT3_Format) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT;
- if (p === RGBA_S3TC_DXT5_Format) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT;
- } else {
- return null;
- }
- }
+ _gl.bindRenderbuffer(_gl.RENDERBUFFER, null);
- if (p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format) {
- extension = extensions.get('WEBGL_compressed_texture_pvrtc');
+ if (renderTarget.depthBuffer) {
+ renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer();
+ setupRenderBufferStorage(renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true);
+ }
- if (extension !== null) {
- if (p === RGB_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
- if (p === RGB_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
- if (p === RGBA_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
- if (p === RGBA_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
- } else {
- return null;
- }
- }
+ state.bindFramebuffer(_gl.FRAMEBUFFER, null);
+ } else {
+ console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.');
+ }
+ }
+ } // Setup color buffer
- if (p === RGB_ETC1_Format) {
- extension = extensions.get('WEBGL_compressed_texture_etc1');
- if (extension !== null) {
- return extension.COMPRESSED_RGB_ETC1_WEBGL;
- } else {
- return null;
- }
- }
+ if (isCube) {
+ state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);
+ setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips);
- if (p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format) {
- extension = extensions.get('WEBGL_compressed_texture_etc');
+ for (let i = 0; i < 6; i++) {
+ setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer[i], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i);
+ }
- if (extension !== null) {
- if (p === RGB_ETC2_Format) return extension.COMPRESSED_RGB8_ETC2;
- if (p === RGBA_ETC2_EAC_Format) return extension.COMPRESSED_RGBA8_ETC2_EAC;
- }
- }
+ if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
+ generateMipmap(_gl.TEXTURE_CUBE_MAP, texture, renderTarget.width, renderTarget.height);
+ }
- if (p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format || p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format || p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format || p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format || p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format || p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format) {
- extension = extensions.get('WEBGL_compressed_texture_astc');
+ state.unbindTexture();
+ } else if (isMultipleRenderTargets) {
+ const textures = renderTarget.texture;
- if (extension !== null) {
- // TODO Complete?
- return p;
- } else {
- return null;
- }
- }
+ for (let i = 0, il = textures.length; i < il; i++) {
+ const attachment = textures[i];
+ const attachmentProperties = properties.get(attachment);
+ state.bindTexture(_gl.TEXTURE_2D, attachmentProperties.__webglTexture);
+ setTextureParameters(_gl.TEXTURE_2D, attachment, supportsMips);
+ setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, attachment, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D);
+
+ if (textureNeedsGenerateMipmaps(attachment, supportsMips)) {
+ generateMipmap(_gl.TEXTURE_2D, attachment, renderTarget.width, renderTarget.height);
+ }
+ }
- if (p === RGBA_BPTC_Format) {
- extension = extensions.get('EXT_texture_compression_bptc');
+ state.unbindTexture();
+ } else {
+ let glTextureType = _gl.TEXTURE_2D;
- if (extension !== null) {
- // TODO Complete?
- return p;
- } else {
- return null;
- }
- }
+ if (isRenderTarget3D) {
+ // Render targets containing layers, i.e: Texture 3D and 2d arrays
+ if (isWebGL2) {
+ const isTexture3D = texture.isDataTexture3D;
+ glTextureType = isTexture3D ? _gl.TEXTURE_3D : _gl.TEXTURE_2D_ARRAY;
+ } else {
+ console.warn('THREE.DataTexture3D and THREE.DataTexture2DArray only supported with WebGL2.');
+ }
+ }
- if (p === UnsignedInt248Type) {
- if (isWebGL2) return gl.UNSIGNED_INT_24_8;
- extension = extensions.get('WEBGL_depth_texture');
+ state.bindTexture(glTextureType, textureProperties.__webglTexture);
+ setTextureParameters(glTextureType, texture, supportsMips);
+ setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType);
- if (extension !== null) {
- return extension.UNSIGNED_INT_24_8_WEBGL;
- } else {
- return null;
- }
- }
- }
+ if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
+ generateMipmap(glTextureType, texture, renderTarget.width, renderTarget.height, renderTarget.depth);
+ }
- return {
- convert: convert
- };
- }
+ state.unbindTexture();
+ } // Setup depth and stencil buffers
- class ArrayCamera extends PerspectiveCamera {
- constructor(array = []) {
- super();
- this.cameras = array;
- }
- }
+ if (renderTarget.depthBuffer) {
+ setupDepthRenderbuffer(renderTarget);
+ }
+ }
- ArrayCamera.prototype.isArrayCamera = true;
+ function updateRenderTargetMipmap(renderTarget) {
+ const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2;
+ const textures = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture : [renderTarget.texture];
- class Group extends Object3D {
- constructor() {
- super();
- this.type = 'Group';
- }
+ for (let i = 0, il = textures.length; i < il; i++) {
+ const texture = textures[i];
- }
+ if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
+ const target = renderTarget.isWebGLCubeRenderTarget ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D;
- Group.prototype.isGroup = true;
+ const webglTexture = properties.get(texture).__webglTexture;
- const _moveEvent = {
- type: 'move'
- };
+ state.bindTexture(target, webglTexture);
+ generateMipmap(target, texture, renderTarget.width, renderTarget.height);
+ state.unbindTexture();
+ }
+ }
+ }
- class WebXRController {
- constructor() {
- this._targetRay = null;
- this._grip = null;
- this._hand = null;
- }
+ function updateMultisampleRenderTarget(renderTarget) {
+ if (renderTarget.isWebGLMultisampleRenderTarget) {
+ if (isWebGL2) {
+ const width = renderTarget.width;
+ const height = renderTarget.height;
+ let mask = _gl.COLOR_BUFFER_BIT;
+ if (renderTarget.depthBuffer) mask |= _gl.DEPTH_BUFFER_BIT;
+ if (renderTarget.stencilBuffer) mask |= _gl.STENCIL_BUFFER_BIT;
+ const renderTargetProperties = properties.get(renderTarget);
+ state.bindFramebuffer(_gl.READ_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);
+ state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglFramebuffer);
- getHandSpace() {
- if (this._hand === null) {
- this._hand = new Group();
- this._hand.matrixAutoUpdate = false;
- this._hand.visible = false;
- this._hand.joints = {};
- this._hand.inputState = {
- pinching: false
- };
- }
+ _gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, mask, _gl.NEAREST);
- return this._hand;
- }
+ state.bindFramebuffer(_gl.READ_FRAMEBUFFER, null);
+ state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);
+ } else {
+ console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.');
+ }
+ }
+ }
- getTargetRaySpace() {
- if (this._targetRay === null) {
- this._targetRay = new Group();
- this._targetRay.matrixAutoUpdate = false;
- this._targetRay.visible = false;
- this._targetRay.hasLinearVelocity = false;
- this._targetRay.linearVelocity = new Vector3();
- this._targetRay.hasAngularVelocity = false;
- this._targetRay.angularVelocity = new Vector3();
- }
+ function getRenderTargetSamples(renderTarget) {
+ return isWebGL2 && renderTarget.isWebGLMultisampleRenderTarget ? Math.min(maxSamples, renderTarget.samples) : 0;
+ }
- return this._targetRay;
- }
+ function updateVideoTexture(texture) {
+ const frame = info.render.frame; // Check the last frame we updated the VideoTexture
- getGripSpace() {
- if (this._grip === null) {
- this._grip = new Group();
- this._grip.matrixAutoUpdate = false;
- this._grip.visible = false;
- this._grip.hasLinearVelocity = false;
- this._grip.linearVelocity = new Vector3();
- this._grip.hasAngularVelocity = false;
- this._grip.angularVelocity = new Vector3();
- }
+ if (_videoTextures.get(texture) !== frame) {
+ _videoTextures.set(texture, frame);
- return this._grip;
- }
+ texture.update();
+ }
+ } // backwards compatibility
- dispatchEvent(event) {
- if (this._targetRay !== null) {
- this._targetRay.dispatchEvent(event);
- }
- if (this._grip !== null) {
- this._grip.dispatchEvent(event);
- }
+ let warnedTexture2D = false;
+ let warnedTextureCube = false;
- if (this._hand !== null) {
- this._hand.dispatchEvent(event);
- }
+ function safeSetTexture2D(texture, slot) {
+ if (texture && texture.isWebGLRenderTarget) {
+ if (warnedTexture2D === false) {
+ console.warn('THREE.WebGLTextures.safeSetTexture2D: don\'t use render targets as textures. Use their .texture property instead.');
+ warnedTexture2D = true;
+ }
- return this;
- }
+ texture = texture.texture;
+ }
- disconnect(inputSource) {
- this.dispatchEvent({
- type: 'disconnected',
- data: inputSource
- });
+ setTexture2D(texture, slot);
+ }
- if (this._targetRay !== null) {
- this._targetRay.visible = false;
- }
+ function safeSetTextureCube(texture, slot) {
+ if (texture && texture.isWebGLCubeRenderTarget) {
+ if (warnedTextureCube === false) {
+ console.warn('THREE.WebGLTextures.safeSetTextureCube: don\'t use cube render targets as textures. Use their .texture property instead.');
+ warnedTextureCube = true;
+ }
- if (this._grip !== null) {
- this._grip.visible = false;
- }
+ texture = texture.texture;
+ }
- if (this._hand !== null) {
- this._hand.visible = false;
- }
+ setTextureCube(texture, slot);
+ } //
- return this;
- }
- update(inputSource, frame, referenceSpace) {
- let inputPose = null;
- let gripPose = null;
- let handPose = null;
- const targetRay = this._targetRay;
- const grip = this._grip;
- const hand = this._hand;
-
- if (inputSource && frame.session.visibilityState !== 'visible-blurred') {
- if (targetRay !== null) {
- inputPose = frame.getPose(inputSource.targetRaySpace, referenceSpace);
-
- if (inputPose !== null) {
- targetRay.matrix.fromArray(inputPose.transform.matrix);
- targetRay.matrix.decompose(targetRay.position, targetRay.rotation, targetRay.scale);
-
- if (inputPose.linearVelocity) {
- targetRay.hasLinearVelocity = true;
- targetRay.linearVelocity.copy(inputPose.linearVelocity);
+ this.allocateTextureUnit = allocateTextureUnit;
+ this.resetTextureUnits = resetTextureUnits;
+ this.setTexture2D = setTexture2D;
+ this.setTexture2DArray = setTexture2DArray;
+ this.setTexture3D = setTexture3D;
+ this.setTextureCube = setTextureCube;
+ this.setupRenderTarget = setupRenderTarget;
+ this.updateRenderTargetMipmap = updateRenderTargetMipmap;
+ this.updateMultisampleRenderTarget = updateMultisampleRenderTarget;
+ this.safeSetTexture2D = safeSetTexture2D;
+ this.safeSetTextureCube = safeSetTextureCube;
+ }
+
+ function WebGLUtils(gl, extensions, capabilities) {
+ const isWebGL2 = capabilities.isWebGL2;
+
+ function convert(p) {
+ let extension;
+ if (p === UnsignedByteType) return gl.UNSIGNED_BYTE;
+ if (p === UnsignedShort4444Type) return gl.UNSIGNED_SHORT_4_4_4_4;
+ if (p === UnsignedShort5551Type) return gl.UNSIGNED_SHORT_5_5_5_1;
+ if (p === UnsignedShort565Type) return gl.UNSIGNED_SHORT_5_6_5;
+ if (p === ByteType) return gl.BYTE;
+ if (p === ShortType) return gl.SHORT;
+ if (p === UnsignedShortType) return gl.UNSIGNED_SHORT;
+ if (p === IntType) return gl.INT;
+ if (p === UnsignedIntType) return gl.UNSIGNED_INT;
+ if (p === FloatType) return gl.FLOAT;
+
+ if (p === HalfFloatType) {
+ if (isWebGL2) return gl.HALF_FLOAT;
+ extension = extensions.get('OES_texture_half_float');
+
+ if (extension !== null) {
+ return extension.HALF_FLOAT_OES;
} else {
- targetRay.hasLinearVelocity = false;
+ return null;
}
+ }
- if (inputPose.angularVelocity) {
- targetRay.hasAngularVelocity = true;
- targetRay.angularVelocity.copy(inputPose.angularVelocity);
+ if (p === AlphaFormat) return gl.ALPHA;
+ if (p === RGBFormat) return gl.RGB;
+ if (p === RGBAFormat) return gl.RGBA;
+ if (p === LuminanceFormat) return gl.LUMINANCE;
+ if (p === LuminanceAlphaFormat) return gl.LUMINANCE_ALPHA;
+ if (p === DepthFormat) return gl.DEPTH_COMPONENT;
+ if (p === DepthStencilFormat) return gl.DEPTH_STENCIL;
+ if (p === RedFormat) return gl.RED; // WebGL2 formats.
+
+ if (p === RedIntegerFormat) return gl.RED_INTEGER;
+ if (p === RGFormat) return gl.RG;
+ if (p === RGIntegerFormat) return gl.RG_INTEGER;
+ if (p === RGBIntegerFormat) return gl.RGB_INTEGER;
+ if (p === RGBAIntegerFormat) return gl.RGBA_INTEGER;
+
+ if (p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format) {
+ extension = extensions.get('WEBGL_compressed_texture_s3tc');
+
+ if (extension !== null) {
+ if (p === RGB_S3TC_DXT1_Format) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT;
+ if (p === RGBA_S3TC_DXT1_Format) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT;
+ if (p === RGBA_S3TC_DXT3_Format) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT;
+ if (p === RGBA_S3TC_DXT5_Format) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT;
} else {
- targetRay.hasAngularVelocity = false;
+ return null;
}
-
- this.dispatchEvent(_moveEvent);
}
- }
- if (hand && inputSource.hand) {
- handPose = true;
+ if (p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format) {
+ extension = extensions.get('WEBGL_compressed_texture_pvrtc');
- for (const inputjoint of inputSource.hand.values()) {
- // Update the joints groups with the XRJoint poses
- const jointPose = frame.getJointPose(inputjoint, referenceSpace);
+ if (extension !== null) {
+ if (p === RGB_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
+ if (p === RGB_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
+ if (p === RGBA_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
+ if (p === RGBA_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
+ } else {
+ return null;
+ }
+ }
- if (hand.joints[inputjoint.jointName] === undefined) {
- // The transform of this joint will be updated with the joint pose on each frame
- const joint = new Group();
- joint.matrixAutoUpdate = false;
- joint.visible = false;
- hand.joints[inputjoint.jointName] = joint; // ??
+ if (p === RGB_ETC1_Format) {
+ extension = extensions.get('WEBGL_compressed_texture_etc1');
- hand.add(joint);
+ if (extension !== null) {
+ return extension.COMPRESSED_RGB_ETC1_WEBGL;
+ } else {
+ return null;
}
+ }
- const joint = hand.joints[inputjoint.jointName];
+ if (p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format) {
+ extension = extensions.get('WEBGL_compressed_texture_etc');
- if (jointPose !== null) {
- joint.matrix.fromArray(jointPose.transform.matrix);
- joint.matrix.decompose(joint.position, joint.rotation, joint.scale);
- joint.jointRadius = jointPose.radius;
+ if (extension !== null) {
+ if (p === RGB_ETC2_Format) return extension.COMPRESSED_RGB8_ETC2;
+ if (p === RGBA_ETC2_EAC_Format) return extension.COMPRESSED_RGBA8_ETC2_EAC;
}
+ }
- joint.visible = jointPose !== null;
- } // Custom events
- // Check pinchz
+ if (p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format || p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format || p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format || p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format || p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format || p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format) {
+ extension = extensions.get('WEBGL_compressed_texture_astc');
+ if (extension !== null) {
+ // TODO Complete?
+ return p;
+ } else {
+ return null;
+ }
+ }
- const indexTip = hand.joints['index-finger-tip'];
- const thumbTip = hand.joints['thumb-tip'];
- const distance = indexTip.position.distanceTo(thumbTip.position);
- const distanceToPinch = 0.02;
- const threshold = 0.005;
+ if (p === RGBA_BPTC_Format) {
+ extension = extensions.get('EXT_texture_compression_bptc');
- if (hand.inputState.pinching && distance > distanceToPinch + threshold) {
- hand.inputState.pinching = false;
- this.dispatchEvent({
- type: 'pinchend',
- handedness: inputSource.handedness,
- target: this
- });
- } else if (!hand.inputState.pinching && distance <= distanceToPinch - threshold) {
- hand.inputState.pinching = true;
- this.dispatchEvent({
- type: 'pinchstart',
- handedness: inputSource.handedness,
- target: this
- });
+ if (extension !== null) {
+ // TODO Complete?
+ return p;
+ } else {
+ return null;
+ }
}
- } else {
- if (grip !== null && inputSource.gripSpace) {
- gripPose = frame.getPose(inputSource.gripSpace, referenceSpace);
- if (gripPose !== null) {
- grip.matrix.fromArray(gripPose.transform.matrix);
- grip.matrix.decompose(grip.position, grip.rotation, grip.scale);
+ if (p === UnsignedInt248Type) {
+ if (isWebGL2) return gl.UNSIGNED_INT_24_8;
+ extension = extensions.get('WEBGL_depth_texture');
- if (gripPose.linearVelocity) {
- grip.hasLinearVelocity = true;
- grip.linearVelocity.copy(gripPose.linearVelocity);
- } else {
- grip.hasLinearVelocity = false;
- }
-
- if (gripPose.angularVelocity) {
- grip.hasAngularVelocity = true;
- grip.angularVelocity.copy(gripPose.angularVelocity);
- } else {
- grip.hasAngularVelocity = false;
- }
+ if (extension !== null) {
+ return extension.UNSIGNED_INT_24_8_WEBGL;
+ } else {
+ return null;
}
}
}
- }
- if (targetRay !== null) {
- targetRay.visible = inputPose !== null;
+ return {
+ convert: convert
+ };
}
- if (grip !== null) {
- grip.visible = gripPose !== null;
- }
+ class ArrayCamera extends PerspectiveCamera {
+ constructor(array = []) {
+ super();
+ this.cameras = array;
+ }
- if (hand !== null) {
- hand.visible = handPose !== null;
}
- return this;
- }
+ ArrayCamera.prototype.isArrayCamera = true;
- }
+ class Group extends Object3D {
+ constructor() {
+ super();
+ this.type = 'Group';
+ }
+
+ }
+
+ Group.prototype.isGroup = true;
- class WebXRManager extends EventDispatcher {
- constructor(renderer, gl) {
- super();
- const scope = this;
- const state = renderer.state;
- let session = null;
- let framebufferScaleFactor = 1.0;
- let referenceSpace = null;
- let referenceSpaceType = 'local-floor';
- let pose = null;
- let glBinding = null;
- let glFramebuffer = null;
- let glProjLayer = null;
- let glBaseLayer = null;
- let isMultisample = false;
- let glMultisampledFramebuffer = null;
- let glColorRenderbuffer = null;
- let glDepthRenderbuffer = null;
- let xrFrame = null;
- let depthStyle = null;
- let clearStyle = null;
- const controllers = [];
- const inputSourcesMap = new Map(); //
-
- const cameraL = new PerspectiveCamera();
- cameraL.layers.enable(1);
- cameraL.viewport = new Vector4();
- const cameraR = new PerspectiveCamera();
- cameraR.layers.enable(2);
- cameraR.viewport = new Vector4();
- const cameras = [cameraL, cameraR];
- const cameraVR = new ArrayCamera();
- cameraVR.layers.enable(1);
- cameraVR.layers.enable(2);
- let _currentDepthNear = null;
- let _currentDepthFar = null; //
-
- this.cameraAutoUpdate = true;
- this.enabled = false;
- this.isPresenting = false;
-
- this.getController = function (index) {
- let controller = controllers[index];
-
- if (controller === undefined) {
- controller = new WebXRController();
- controllers[index] = controller;
- }
-
- return controller.getTargetRaySpace();
+ const _moveEvent = {
+ type: 'move'
};
- this.getControllerGrip = function (index) {
- let controller = controllers[index];
+ class WebXRController {
+ constructor() {
+ this._targetRay = null;
+ this._grip = null;
+ this._hand = null;
+ }
+
+ getHandSpace() {
+ if (this._hand === null) {
+ this._hand = new Group();
+ this._hand.matrixAutoUpdate = false;
+ this._hand.visible = false;
+ this._hand.joints = {};
+ this._hand.inputState = {
+ pinching: false
+ };
+ }
- if (controller === undefined) {
- controller = new WebXRController();
- controllers[index] = controller;
+ return this._hand;
}
- return controller.getGripSpace();
- };
+ getTargetRaySpace() {
+ if (this._targetRay === null) {
+ this._targetRay = new Group();
+ this._targetRay.matrixAutoUpdate = false;
+ this._targetRay.visible = false;
+ this._targetRay.hasLinearVelocity = false;
+ this._targetRay.linearVelocity = new Vector3();
+ this._targetRay.hasAngularVelocity = false;
+ this._targetRay.angularVelocity = new Vector3();
+ }
+
+ return this._targetRay;
+ }
- this.getHand = function (index) {
- let controller = controllers[index];
+ getGripSpace() {
+ if (this._grip === null) {
+ this._grip = new Group();
+ this._grip.matrixAutoUpdate = false;
+ this._grip.visible = false;
+ this._grip.hasLinearVelocity = false;
+ this._grip.linearVelocity = new Vector3();
+ this._grip.hasAngularVelocity = false;
+ this._grip.angularVelocity = new Vector3();
+ }
- if (controller === undefined) {
- controller = new WebXRController();
- controllers[index] = controller;
+ return this._grip;
}
- return controller.getHandSpace();
- }; //
+ dispatchEvent(event) {
+ if (this._targetRay !== null) {
+ this._targetRay.dispatchEvent(event);
+ }
+ if (this._grip !== null) {
+ this._grip.dispatchEvent(event);
+ }
- function onSessionEvent(event) {
- const controller = inputSourcesMap.get(event.inputSource);
+ if (this._hand !== null) {
+ this._hand.dispatchEvent(event);
+ }
- if (controller) {
- controller.dispatchEvent({
- type: event.type,
- data: event.inputSource
- });
+ return this;
}
- }
- function onSessionEnd() {
- inputSourcesMap.forEach(function (controller, inputSource) {
- controller.disconnect(inputSource);
- });
- inputSourcesMap.clear();
- _currentDepthNear = null;
- _currentDepthFar = null; // restore framebuffer/rendering state
-
- state.bindXRFramebuffer(null);
- renderer.setRenderTarget(renderer.getRenderTarget());
- if (glFramebuffer) gl.deleteFramebuffer(glFramebuffer);
- if (glMultisampledFramebuffer) gl.deleteFramebuffer(glMultisampledFramebuffer);
- if (glColorRenderbuffer) gl.deleteRenderbuffer(glColorRenderbuffer);
- if (glDepthRenderbuffer) gl.deleteRenderbuffer(glDepthRenderbuffer);
- glFramebuffer = null;
- glMultisampledFramebuffer = null;
- glColorRenderbuffer = null;
- glDepthRenderbuffer = null;
- glBaseLayer = null;
- glProjLayer = null;
- glBinding = null;
- session = null; //
-
- animation.stop();
- scope.isPresenting = false;
- scope.dispatchEvent({
- type: 'sessionend'
- });
- }
+ disconnect(inputSource) {
+ this.dispatchEvent({
+ type: 'disconnected',
+ data: inputSource
+ });
- this.setFramebufferScaleFactor = function (value) {
- framebufferScaleFactor = value;
+ if (this._targetRay !== null) {
+ this._targetRay.visible = false;
+ }
- if (scope.isPresenting === true) {
- console.warn('THREE.WebXRManager: Cannot change framebuffer scale while presenting.');
- }
- };
+ if (this._grip !== null) {
+ this._grip.visible = false;
+ }
- this.setReferenceSpaceType = function (value) {
- referenceSpaceType = value;
+ if (this._hand !== null) {
+ this._hand.visible = false;
+ }
- if (scope.isPresenting === true) {
- console.warn('THREE.WebXRManager: Cannot change reference space type while presenting.');
+ return this;
}
- };
- this.getReferenceSpace = function () {
- return referenceSpace;
- };
+ update(inputSource, frame, referenceSpace) {
+ let inputPose = null;
+ let gripPose = null;
+ let handPose = null;
+ const targetRay = this._targetRay;
+ const grip = this._grip;
+ const hand = this._hand;
- this.getBaseLayer = function () {
- return glProjLayer !== null ? glProjLayer : glBaseLayer;
- };
+ if (inputSource && frame.session.visibilityState !== 'visible-blurred') {
+ if (targetRay !== null) {
+ inputPose = frame.getPose(inputSource.targetRaySpace, referenceSpace);
- this.getBinding = function () {
- return glBinding;
- };
+ if (inputPose !== null) {
+ targetRay.matrix.fromArray(inputPose.transform.matrix);
+ targetRay.matrix.decompose(targetRay.position, targetRay.rotation, targetRay.scale);
- this.getFrame = function () {
- return xrFrame;
- };
+ if (inputPose.linearVelocity) {
+ targetRay.hasLinearVelocity = true;
+ targetRay.linearVelocity.copy(inputPose.linearVelocity);
+ } else {
+ targetRay.hasLinearVelocity = false;
+ }
- this.getSession = function () {
- return session;
- };
+ if (inputPose.angularVelocity) {
+ targetRay.hasAngularVelocity = true;
+ targetRay.angularVelocity.copy(inputPose.angularVelocity);
+ } else {
+ targetRay.hasAngularVelocity = false;
+ }
- this.setSession = async function (value) {
- session = value;
-
- if (session !== null) {
- session.addEventListener('select', onSessionEvent);
- session.addEventListener('selectstart', onSessionEvent);
- session.addEventListener('selectend', onSessionEvent);
- session.addEventListener('squeeze', onSessionEvent);
- session.addEventListener('squeezestart', onSessionEvent);
- session.addEventListener('squeezeend', onSessionEvent);
- session.addEventListener('end', onSessionEnd);
- session.addEventListener('inputsourceschange', onInputSourcesChange);
- const attributes = gl.getContextAttributes();
-
- if (attributes.xrCompatible !== true) {
- await gl.makeXRCompatible();
- }
-
- if (session.renderState.layers === undefined) {
- const layerInit = {
- antialias: attributes.antialias,
- alpha: attributes.alpha,
- depth: attributes.depth,
- stencil: attributes.stencil,
- framebufferScaleFactor: framebufferScaleFactor
- };
- glBaseLayer = new XRWebGLLayer(session, gl, layerInit);
- session.updateRenderState({
- baseLayer: glBaseLayer
- });
- } else if (gl instanceof WebGLRenderingContext) {
- // Use old style webgl layer because we can't use MSAA
- // WebGL2 support.
- const layerInit = {
- antialias: true,
- alpha: attributes.alpha,
- depth: attributes.depth,
- stencil: attributes.stencil,
- framebufferScaleFactor: framebufferScaleFactor
- };
- glBaseLayer = new XRWebGLLayer(session, gl, layerInit);
- session.updateRenderState({
- layers: [glBaseLayer]
- });
- } else {
- isMultisample = attributes.antialias;
- let depthFormat = null;
-
- if (attributes.depth) {
- clearStyle = gl.DEPTH_BUFFER_BIT;
- if (attributes.stencil) clearStyle |= gl.STENCIL_BUFFER_BIT;
- depthStyle = attributes.stencil ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT;
- depthFormat = attributes.stencil ? gl.DEPTH24_STENCIL8 : gl.DEPTH_COMPONENT24;
+ this.dispatchEvent(_moveEvent);
+ }
}
- const projectionlayerInit = {
- colorFormat: attributes.alpha ? gl.RGBA8 : gl.RGB8,
- depthFormat: depthFormat,
- scaleFactor: framebufferScaleFactor
- };
- glBinding = new XRWebGLBinding(session, gl);
- glProjLayer = glBinding.createProjectionLayer(projectionlayerInit);
- glFramebuffer = gl.createFramebuffer();
- session.updateRenderState({
- layers: [glProjLayer]
- });
-
- if (isMultisample) {
- glMultisampledFramebuffer = gl.createFramebuffer();
- glColorRenderbuffer = gl.createRenderbuffer();
- gl.bindRenderbuffer(gl.RENDERBUFFER, glColorRenderbuffer);
- gl.renderbufferStorageMultisample(gl.RENDERBUFFER, 4, gl.RGBA8, glProjLayer.textureWidth, glProjLayer.textureHeight);
- state.bindFramebuffer(gl.FRAMEBUFFER, glMultisampledFramebuffer);
- gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.RENDERBUFFER, glColorRenderbuffer);
- gl.bindRenderbuffer(gl.RENDERBUFFER, null);
-
- if (depthFormat !== null) {
- glDepthRenderbuffer = gl.createRenderbuffer();
- gl.bindRenderbuffer(gl.RENDERBUFFER, glDepthRenderbuffer);
- gl.renderbufferStorageMultisample(gl.RENDERBUFFER, 4, depthFormat, glProjLayer.textureWidth, glProjLayer.textureHeight);
- gl.framebufferRenderbuffer(gl.FRAMEBUFFER, depthStyle, gl.RENDERBUFFER, glDepthRenderbuffer);
- gl.bindRenderbuffer(gl.RENDERBUFFER, null);
- }
+ if (hand && inputSource.hand) {
+ handPose = true;
- state.bindFramebuffer(gl.FRAMEBUFFER, null);
- }
- }
+ for (const inputjoint of inputSource.hand.values()) {
+ // Update the joints groups with the XRJoint poses
+ const jointPose = frame.getJointPose(inputjoint, referenceSpace);
- referenceSpace = await session.requestReferenceSpace(referenceSpaceType);
- animation.setContext(session);
- animation.start();
- scope.isPresenting = true;
- scope.dispatchEvent({
- type: 'sessionstart'
- });
- }
- };
+ if (hand.joints[inputjoint.jointName] === undefined) {
+ // The transform of this joint will be updated with the joint pose on each frame
+ const joint = new Group();
+ joint.matrixAutoUpdate = false;
+ joint.visible = false;
+ hand.joints[inputjoint.jointName] = joint; // ??
- function onInputSourcesChange(event) {
- const inputSources = session.inputSources; // Assign inputSources to available controllers
+ hand.add(joint);
+ }
- for (let i = 0; i < controllers.length; i++) {
- inputSourcesMap.set(inputSources[i], controllers[i]);
- } // Notify disconnected
+ const joint = hand.joints[inputjoint.jointName];
+ if (jointPose !== null) {
+ joint.matrix.fromArray(jointPose.transform.matrix);
+ joint.matrix.decompose(joint.position, joint.rotation, joint.scale);
+ joint.jointRadius = jointPose.radius;
+ }
- for (let i = 0; i < event.removed.length; i++) {
- const inputSource = event.removed[i];
- const controller = inputSourcesMap.get(inputSource);
+ joint.visible = jointPose !== null;
+ } // Custom events
+ // Check pinchz
- if (controller) {
- controller.dispatchEvent({
- type: 'disconnected',
- data: inputSource
- });
- inputSourcesMap.delete(inputSource);
- }
- } // Notify connected
+ const indexTip = hand.joints['index-finger-tip'];
+ const thumbTip = hand.joints['thumb-tip'];
+ const distance = indexTip.position.distanceTo(thumbTip.position);
+ const distanceToPinch = 0.02;
+ const threshold = 0.005;
- for (let i = 0; i < event.added.length; i++) {
- const inputSource = event.added[i];
- const controller = inputSourcesMap.get(inputSource);
+ if (hand.inputState.pinching && distance > distanceToPinch + threshold) {
+ hand.inputState.pinching = false;
+ this.dispatchEvent({
+ type: 'pinchend',
+ handedness: inputSource.handedness,
+ target: this
+ });
+ } else if (!hand.inputState.pinching && distance <= distanceToPinch - threshold) {
+ hand.inputState.pinching = true;
+ this.dispatchEvent({
+ type: 'pinchstart',
+ handedness: inputSource.handedness,
+ target: this
+ });
+ }
+ } else {
+ if (grip !== null && inputSource.gripSpace) {
+ gripPose = frame.getPose(inputSource.gripSpace, referenceSpace);
+
+ if (gripPose !== null) {
+ grip.matrix.fromArray(gripPose.transform.matrix);
+ grip.matrix.decompose(grip.position, grip.rotation, grip.scale);
+
+ if (gripPose.linearVelocity) {
+ grip.hasLinearVelocity = true;
+ grip.linearVelocity.copy(gripPose.linearVelocity);
+ } else {
+ grip.hasLinearVelocity = false;
+ }
+
+ if (gripPose.angularVelocity) {
+ grip.hasAngularVelocity = true;
+ grip.angularVelocity.copy(gripPose.angularVelocity);
+ } else {
+ grip.hasAngularVelocity = false;
+ }
+ }
+ }
+ }
+ }
- if (controller) {
- controller.dispatchEvent({
- type: 'connected',
- data: inputSource
- });
+ if (targetRay !== null) {
+ targetRay.visible = inputPose !== null;
}
- }
- } //
+ if (grip !== null) {
+ grip.visible = gripPose !== null;
+ }
- const cameraLPos = new Vector3();
- const cameraRPos = new Vector3();
- /**
- * Assumes 2 cameras that are parallel and share an X-axis, and that
- * the cameras' projection and world matrices have already been set.
- * And that near and far planes are identical for both cameras.
- * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765
- */
+ if (hand !== null) {
+ hand.visible = handPose !== null;
+ }
- function setProjectionFromUnion(camera, cameraL, cameraR) {
- cameraLPos.setFromMatrixPosition(cameraL.matrixWorld);
- cameraRPos.setFromMatrixPosition(cameraR.matrixWorld);
- const ipd = cameraLPos.distanceTo(cameraRPos);
- const projL = cameraL.projectionMatrix.elements;
- const projR = cameraR.projectionMatrix.elements; // VR systems will have identical far and near planes, and
- // most likely identical top and bottom frustum extents.
- // Use the left camera for these values.
-
- const near = projL[14] / (projL[10] - 1);
- const far = projL[14] / (projL[10] + 1);
- const topFov = (projL[9] + 1) / projL[5];
- const bottomFov = (projL[9] - 1) / projL[5];
- const leftFov = (projL[8] - 1) / projL[0];
- const rightFov = (projR[8] + 1) / projR[0];
- const left = near * leftFov;
- const right = near * rightFov; // Calculate the new camera's position offset from the
- // left camera. xOffset should be roughly half `ipd`.
-
- const zOffset = ipd / (-leftFov + rightFov);
- const xOffset = zOffset * -leftFov; // TODO: Better way to apply this offset?
-
- cameraL.matrixWorld.decompose(camera.position, camera.quaternion, camera.scale);
- camera.translateX(xOffset);
- camera.translateZ(zOffset);
- camera.matrixWorld.compose(camera.position, camera.quaternion, camera.scale);
- camera.matrixWorldInverse.copy(camera.matrixWorld).invert(); // Find the union of the frustum values of the cameras and scale
- // the values so that the near plane's position does not change in world space,
- // although must now be relative to the new union camera.
-
- const near2 = near + zOffset;
- const far2 = far + zOffset;
- const left2 = left - xOffset;
- const right2 = right + (ipd - xOffset);
- const top2 = topFov * far / far2 * near2;
- const bottom2 = bottomFov * far / far2 * near2;
- camera.projectionMatrix.makePerspective(left2, right2, top2, bottom2, near2, far2);
- }
-
- function updateCamera(camera, parent) {
- if (parent === null) {
- camera.matrixWorld.copy(camera.matrix);
- } else {
- camera.matrixWorld.multiplyMatrices(parent.matrixWorld, camera.matrix);
+ return this;
}
- camera.matrixWorldInverse.copy(camera.matrixWorld).invert();
}
- this.updateCamera = function (camera) {
- if (session === null) return;
- cameraVR.near = cameraR.near = cameraL.near = camera.near;
- cameraVR.far = cameraR.far = cameraL.far = camera.far;
+ class WebXRManager extends EventDispatcher {
+ constructor(renderer, gl) {
+ super();
+ const scope = this;
+ const state = renderer.state;
+ let session = null;
+ let framebufferScaleFactor = 1.0;
+ let referenceSpace = null;
+ let referenceSpaceType = 'local-floor';
+ let pose = null;
+ let glBinding = null;
+ let glFramebuffer = null;
+ let glProjLayer = null;
+ let glBaseLayer = null;
+ let isMultisample = false;
+ let glMultisampledFramebuffer = null;
+ let glColorRenderbuffer = null;
+ let glDepthRenderbuffer = null;
+ let xrFrame = null;
+ let depthStyle = null;
+ let clearStyle = null;
+ const controllers = [];
+ const inputSourcesMap = new Map(); //
+
+ const cameraL = new PerspectiveCamera();
+ cameraL.layers.enable(1);
+ cameraL.viewport = new Vector4();
+ const cameraR = new PerspectiveCamera();
+ cameraR.layers.enable(2);
+ cameraR.viewport = new Vector4();
+ const cameras = [cameraL, cameraR];
+ const cameraVR = new ArrayCamera();
+ cameraVR.layers.enable(1);
+ cameraVR.layers.enable(2);
+ let _currentDepthNear = null;
+ let _currentDepthFar = null; //
+
+ this.cameraAutoUpdate = true;
+ this.enabled = false;
+ this.isPresenting = false;
+
+ this.getController = function (index) {
+ let controller = controllers[index];
+
+ if (controller === undefined) {
+ controller = new WebXRController();
+ controllers[index] = controller;
+ }
- if (_currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far) {
- // Note that the new renderState won't apply until the next frame. See #18320
- session.updateRenderState({
- depthNear: cameraVR.near,
- depthFar: cameraVR.far
- });
- _currentDepthNear = cameraVR.near;
- _currentDepthFar = cameraVR.far;
- }
+ return controller.getTargetRaySpace();
+ };
- const parent = camera.parent;
- const cameras = cameraVR.cameras;
- updateCamera(cameraVR, parent);
+ this.getControllerGrip = function (index) {
+ let controller = controllers[index];
- for (let i = 0; i < cameras.length; i++) {
- updateCamera(cameras[i], parent);
- }
+ if (controller === undefined) {
+ controller = new WebXRController();
+ controllers[index] = controller;
+ }
- cameraVR.matrixWorld.decompose(cameraVR.position, cameraVR.quaternion, cameraVR.scale); // update user camera and its children
+ return controller.getGripSpace();
+ };
- camera.position.copy(cameraVR.position);
- camera.quaternion.copy(cameraVR.quaternion);
- camera.scale.copy(cameraVR.scale);
- camera.matrix.copy(cameraVR.matrix);
- camera.matrixWorld.copy(cameraVR.matrixWorld);
- const children = camera.children;
+ this.getHand = function (index) {
+ let controller = controllers[index];
- for (let i = 0, l = children.length; i < l; i++) {
- children[i].updateMatrixWorld(true);
- } // update projection matrix for proper view frustum culling
+ if (controller === undefined) {
+ controller = new WebXRController();
+ controllers[index] = controller;
+ }
+ return controller.getHandSpace();
+ }; //
- if (cameras.length === 2) {
- setProjectionFromUnion(cameraVR, cameraL, cameraR);
- } else {
- // assume single camera setup (AR)
- cameraVR.projectionMatrix.copy(cameraL.projectionMatrix);
- }
- };
- this.getCamera = function () {
- return cameraVR;
- };
+ function onSessionEvent(event) {
+ const controller = inputSourcesMap.get(event.inputSource);
- this.getFoveation = function () {
- if (glProjLayer !== null) {
- return glProjLayer.fixedFoveation;
- }
+ if (controller) {
+ controller.dispatchEvent({
+ type: event.type,
+ data: event.inputSource
+ });
+ }
+ }
- if (glBaseLayer !== null) {
- return glBaseLayer.fixedFoveation;
- }
+ function onSessionEnd() {
+ inputSourcesMap.forEach(function (controller, inputSource) {
+ controller.disconnect(inputSource);
+ });
+ inputSourcesMap.clear();
+ _currentDepthNear = null;
+ _currentDepthFar = null; // restore framebuffer/rendering state
+
+ state.bindXRFramebuffer(null);
+ renderer.setRenderTarget(renderer.getRenderTarget());
+ if (glFramebuffer) gl.deleteFramebuffer(glFramebuffer);
+ if (glMultisampledFramebuffer) gl.deleteFramebuffer(glMultisampledFramebuffer);
+ if (glColorRenderbuffer) gl.deleteRenderbuffer(glColorRenderbuffer);
+ if (glDepthRenderbuffer) gl.deleteRenderbuffer(glDepthRenderbuffer);
+ glFramebuffer = null;
+ glMultisampledFramebuffer = null;
+ glColorRenderbuffer = null;
+ glDepthRenderbuffer = null;
+ glBaseLayer = null;
+ glProjLayer = null;
+ glBinding = null;
+ session = null; //
+
+ animation.stop();
+ scope.isPresenting = false;
+ scope.dispatchEvent({
+ type: 'sessionend'
+ });
+ }
- return undefined;
- };
+ this.setFramebufferScaleFactor = function (value) {
+ framebufferScaleFactor = value;
- this.setFoveation = function (foveation) {
- // 0 = no foveation = full resolution
- // 1 = maximum foveation = the edges render at lower resolution
- if (glProjLayer !== null) {
- glProjLayer.fixedFoveation = foveation;
- }
+ if (scope.isPresenting === true) {
+ console.warn('THREE.WebXRManager: Cannot change framebuffer scale while presenting.');
+ }
+ };
- if (glBaseLayer !== null && glBaseLayer.fixedFoveation !== undefined) {
- glBaseLayer.fixedFoveation = foveation;
- }
- }; // Animation Loop
+ this.setReferenceSpaceType = function (value) {
+ referenceSpaceType = value;
+ if (scope.isPresenting === true) {
+ console.warn('THREE.WebXRManager: Cannot change reference space type while presenting.');
+ }
+ };
- let onAnimationFrameCallback = null;
+ this.getReferenceSpace = function () {
+ return referenceSpace;
+ };
- function onAnimationFrame(time, frame) {
- pose = frame.getViewerPose(referenceSpace);
- xrFrame = frame;
+ this.getBaseLayer = function () {
+ return glProjLayer !== null ? glProjLayer : glBaseLayer;
+ };
- if (pose !== null) {
- const views = pose.views;
+ this.getBinding = function () {
+ return glBinding;
+ };
- if (glBaseLayer !== null) {
- state.bindXRFramebuffer(glBaseLayer.framebuffer);
- }
+ this.getFrame = function () {
+ return xrFrame;
+ };
- let cameraVRNeedsUpdate = false; // check if it's necessary to rebuild cameraVR's camera list
+ this.getSession = function () {
+ return session;
+ };
- if (views.length !== cameraVR.cameras.length) {
- cameraVR.cameras.length = 0;
- cameraVRNeedsUpdate = true;
- }
+ this.setSession = async function (value) {
+ session = value;
+
+ if (session !== null) {
+ session.addEventListener('select', onSessionEvent);
+ session.addEventListener('selectstart', onSessionEvent);
+ session.addEventListener('selectend', onSessionEvent);
+ session.addEventListener('squeeze', onSessionEvent);
+ session.addEventListener('squeezestart', onSessionEvent);
+ session.addEventListener('squeezeend', onSessionEvent);
+ session.addEventListener('end', onSessionEnd);
+ session.addEventListener('inputsourceschange', onInputSourcesChange);
+ const attributes = gl.getContextAttributes();
+
+ if (attributes.xrCompatible !== true) {
+ await gl.makeXRCompatible();
+ }
- for (let i = 0; i < views.length; i++) {
- const view = views[i];
- let viewport = null;
+ if (session.renderState.layers === undefined) {
+ const layerInit = {
+ antialias: attributes.antialias,
+ alpha: attributes.alpha,
+ depth: attributes.depth,
+ stencil: attributes.stencil,
+ framebufferScaleFactor: framebufferScaleFactor
+ };
+ glBaseLayer = new XRWebGLLayer(session, gl, layerInit);
+ session.updateRenderState({
+ baseLayer: glBaseLayer
+ });
+ } else if (gl instanceof WebGLRenderingContext) {
+ // Use old style webgl layer because we can't use MSAA
+ // WebGL2 support.
+ const layerInit = {
+ antialias: true,
+ alpha: attributes.alpha,
+ depth: attributes.depth,
+ stencil: attributes.stencil,
+ framebufferScaleFactor: framebufferScaleFactor
+ };
+ glBaseLayer = new XRWebGLLayer(session, gl, layerInit);
+ session.updateRenderState({
+ layers: [glBaseLayer]
+ });
+ } else {
+ isMultisample = attributes.antialias;
+ let depthFormat = null;
+
+ if (attributes.depth) {
+ clearStyle = gl.DEPTH_BUFFER_BIT;
+ if (attributes.stencil) clearStyle |= gl.STENCIL_BUFFER_BIT;
+ depthStyle = attributes.stencil ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT;
+ depthFormat = attributes.stencil ? gl.DEPTH24_STENCIL8 : gl.DEPTH_COMPONENT24;
+ }
- if (glBaseLayer !== null) {
- viewport = glBaseLayer.getViewport(view);
- } else {
- const glSubImage = glBinding.getViewSubImage(glProjLayer, view);
- state.bindXRFramebuffer(glFramebuffer);
+ const projectionlayerInit = {
+ colorFormat: attributes.alpha ? gl.RGBA8 : gl.RGB8,
+ depthFormat: depthFormat,
+ scaleFactor: framebufferScaleFactor
+ };
+ glBinding = new XRWebGLBinding(session, gl);
+ glProjLayer = glBinding.createProjectionLayer(projectionlayerInit);
+ glFramebuffer = gl.createFramebuffer();
+ session.updateRenderState({
+ layers: [glProjLayer]
+ });
- if (glSubImage.depthStencilTexture !== undefined) {
- gl.framebufferTexture2D(gl.FRAMEBUFFER, depthStyle, gl.TEXTURE_2D, glSubImage.depthStencilTexture, 0);
+ if (isMultisample) {
+ glMultisampledFramebuffer = gl.createFramebuffer();
+ glColorRenderbuffer = gl.createRenderbuffer();
+ gl.bindRenderbuffer(gl.RENDERBUFFER, glColorRenderbuffer);
+ gl.renderbufferStorageMultisample(gl.RENDERBUFFER, 4, gl.RGBA8, glProjLayer.textureWidth, glProjLayer.textureHeight);
+ state.bindFramebuffer(gl.FRAMEBUFFER, glMultisampledFramebuffer);
+ gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.RENDERBUFFER, glColorRenderbuffer);
+ gl.bindRenderbuffer(gl.RENDERBUFFER, null);
+
+ if (depthFormat !== null) {
+ glDepthRenderbuffer = gl.createRenderbuffer();
+ gl.bindRenderbuffer(gl.RENDERBUFFER, glDepthRenderbuffer);
+ gl.renderbufferStorageMultisample(gl.RENDERBUFFER, 4, depthFormat, glProjLayer.textureWidth, glProjLayer.textureHeight);
+ gl.framebufferRenderbuffer(gl.FRAMEBUFFER, depthStyle, gl.RENDERBUFFER, glDepthRenderbuffer);
+ gl.bindRenderbuffer(gl.RENDERBUFFER, null);
+ }
+
+ state.bindFramebuffer(gl.FRAMEBUFFER, null);
+ }
}
- gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, glSubImage.colorTexture, 0);
- viewport = glSubImage.viewport;
+ referenceSpace = await session.requestReferenceSpace(referenceSpaceType);
+ animation.setContext(session);
+ animation.start();
+ scope.isPresenting = true;
+ scope.dispatchEvent({
+ type: 'sessionstart'
+ });
}
+ };
- const camera = cameras[i];
- camera.matrix.fromArray(view.transform.matrix);
- camera.projectionMatrix.fromArray(view.projectionMatrix);
- camera.viewport.set(viewport.x, viewport.y, viewport.width, viewport.height);
+ function onInputSourcesChange(event) {
+ const inputSources = session.inputSources; // Assign inputSources to available controllers
- if (i === 0) {
- cameraVR.matrix.copy(camera.matrix);
- }
+ for (let i = 0; i < controllers.length; i++) {
+ inputSourcesMap.set(inputSources[i], controllers[i]);
+ } // Notify disconnected
- if (cameraVRNeedsUpdate === true) {
- cameraVR.cameras.push(camera);
+
+ for (let i = 0; i < event.removed.length; i++) {
+ const inputSource = event.removed[i];
+ const controller = inputSourcesMap.get(inputSource);
+
+ if (controller) {
+ controller.dispatchEvent({
+ type: 'disconnected',
+ data: inputSource
+ });
+ inputSourcesMap.delete(inputSource);
+ }
+ } // Notify connected
+
+
+ for (let i = 0; i < event.added.length; i++) {
+ const inputSource = event.added[i];
+ const controller = inputSourcesMap.get(inputSource);
+
+ if (controller) {
+ controller.dispatchEvent({
+ type: 'connected',
+ data: inputSource
+ });
+ }
}
+ } //
+
+
+ const cameraLPos = new Vector3();
+ const cameraRPos = new Vector3();
+
+ /**
+ * Assumes 2 cameras that are parallel and share an X-axis, and that
+ * the cameras' projection and world matrices have already been set.
+ * And that near and far planes are identical for both cameras.
+ * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765
+ */
+
+ function setProjectionFromUnion(camera, cameraL, cameraR) {
+ cameraLPos.setFromMatrixPosition(cameraL.matrixWorld);
+ cameraRPos.setFromMatrixPosition(cameraR.matrixWorld);
+ const ipd = cameraLPos.distanceTo(cameraRPos);
+ const projL = cameraL.projectionMatrix.elements;
+ const projR = cameraR.projectionMatrix.elements; // VR systems will have identical far and near planes, and
+ // most likely identical top and bottom frustum extents.
+ // Use the left camera for these values.
+
+ const near = projL[14] / (projL[10] - 1);
+ const far = projL[14] / (projL[10] + 1);
+ const topFov = (projL[9] + 1) / projL[5];
+ const bottomFov = (projL[9] - 1) / projL[5];
+ const leftFov = (projL[8] - 1) / projL[0];
+ const rightFov = (projR[8] + 1) / projR[0];
+ const left = near * leftFov;
+ const right = near * rightFov; // Calculate the new camera's position offset from the
+ // left camera. xOffset should be roughly half `ipd`.
+
+ const zOffset = ipd / (-leftFov + rightFov);
+ const xOffset = zOffset * -leftFov; // TODO: Better way to apply this offset?
+
+ cameraL.matrixWorld.decompose(camera.position, camera.quaternion, camera.scale);
+ camera.translateX(xOffset);
+ camera.translateZ(zOffset);
+ camera.matrixWorld.compose(camera.position, camera.quaternion, camera.scale);
+ camera.matrixWorldInverse.copy(camera.matrixWorld).invert(); // Find the union of the frustum values of the cameras and scale
+ // the values so that the near plane's position does not change in world space,
+ // although must now be relative to the new union camera.
+
+ const near2 = near + zOffset;
+ const far2 = far + zOffset;
+ const left2 = left - xOffset;
+ const right2 = right + (ipd - xOffset);
+ const top2 = topFov * far / far2 * near2;
+ const bottom2 = bottomFov * far / far2 * near2;
+ camera.projectionMatrix.makePerspective(left2, right2, top2, bottom2, near2, far2);
}
- if (isMultisample) {
- state.bindXRFramebuffer(glMultisampledFramebuffer);
- if (clearStyle !== null) gl.clear(clearStyle);
+ function updateCamera(camera, parent) {
+ if (parent === null) {
+ camera.matrixWorld.copy(camera.matrix);
+ } else {
+ camera.matrixWorld.multiplyMatrices(parent.matrixWorld, camera.matrix);
+ }
+
+ camera.matrixWorldInverse.copy(camera.matrixWorld).invert();
}
- } //
+ this.updateCamera = function (camera) {
+ if (session === null) return;
+ cameraVR.near = cameraR.near = cameraL.near = camera.near;
+ cameraVR.far = cameraR.far = cameraL.far = camera.far;
+
+ if (_currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far) {
+ // Note that the new renderState won't apply until the next frame. See #18320
+ session.updateRenderState({
+ depthNear: cameraVR.near,
+ depthFar: cameraVR.far
+ });
+ _currentDepthNear = cameraVR.near;
+ _currentDepthFar = cameraVR.far;
+ }
- const inputSources = session.inputSources;
+ const parent = camera.parent;
+ const cameras = cameraVR.cameras;
+ updateCamera(cameraVR, parent);
- for (let i = 0; i < controllers.length; i++) {
- const controller = controllers[i];
- const inputSource = inputSources[i];
- controller.update(inputSource, frame, referenceSpace);
- }
+ for (let i = 0; i < cameras.length; i++) {
+ updateCamera(cameras[i], parent);
+ }
- if (onAnimationFrameCallback) onAnimationFrameCallback(time, frame);
+ cameraVR.matrixWorld.decompose(cameraVR.position, cameraVR.quaternion, cameraVR.scale); // update user camera and its children
- if (isMultisample) {
- const width = glProjLayer.textureWidth;
- const height = glProjLayer.textureHeight;
- state.bindFramebuffer(gl.READ_FRAMEBUFFER, glMultisampledFramebuffer);
- state.bindFramebuffer(gl.DRAW_FRAMEBUFFER, glFramebuffer); // Invalidate the depth here to avoid flush of the depth data to main memory.
+ camera.position.copy(cameraVR.position);
+ camera.quaternion.copy(cameraVR.quaternion);
+ camera.scale.copy(cameraVR.scale);
+ camera.matrix.copy(cameraVR.matrix);
+ camera.matrixWorld.copy(cameraVR.matrixWorld);
+ const children = camera.children;
- gl.invalidateFramebuffer(gl.READ_FRAMEBUFFER, [depthStyle]);
- gl.invalidateFramebuffer(gl.DRAW_FRAMEBUFFER, [depthStyle]);
- gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, gl.COLOR_BUFFER_BIT, gl.NEAREST); // Invalidate the MSAA buffer because it's not needed anymore.
+ for (let i = 0, l = children.length; i < l; i++) {
+ children[i].updateMatrixWorld(true);
+ } // update projection matrix for proper view frustum culling
- gl.invalidateFramebuffer(gl.READ_FRAMEBUFFER, [gl.COLOR_ATTACHMENT0]);
- state.bindFramebuffer(gl.READ_FRAMEBUFFER, null);
- state.bindFramebuffer(gl.DRAW_FRAMEBUFFER, null);
- state.bindFramebuffer(gl.FRAMEBUFFER, glMultisampledFramebuffer);
- }
- xrFrame = null;
- }
+ if (cameras.length === 2) {
+ setProjectionFromUnion(cameraVR, cameraL, cameraR);
+ } else {
+ // assume single camera setup (AR)
+ cameraVR.projectionMatrix.copy(cameraL.projectionMatrix);
+ }
+ };
- const animation = new WebGLAnimation();
- animation.setAnimationLoop(onAnimationFrame);
+ this.getCamera = function () {
+ return cameraVR;
+ };
- this.setAnimationLoop = function (callback) {
- onAnimationFrameCallback = callback;
- };
+ this.getFoveation = function () {
+ if (glProjLayer !== null) {
+ return glProjLayer.fixedFoveation;
+ }
- this.dispose = function () {};
- }
+ if (glBaseLayer !== null) {
+ return glBaseLayer.fixedFoveation;
+ }
- }
+ return undefined;
+ };
- function WebGLMaterials(properties) {
- function refreshFogUniforms(uniforms, fog) {
- uniforms.fogColor.value.copy(fog.color);
+ this.setFoveation = function (foveation) {
+ // 0 = no foveation = full resolution
+ // 1 = maximum foveation = the edges render at lower resolution
+ if (glProjLayer !== null) {
+ glProjLayer.fixedFoveation = foveation;
+ }
- if (fog.isFog) {
- uniforms.fogNear.value = fog.near;
- uniforms.fogFar.value = fog.far;
- } else if (fog.isFogExp2) {
- uniforms.fogDensity.value = fog.density;
- }
- }
+ if (glBaseLayer !== null && glBaseLayer.fixedFoveation !== undefined) {
+ glBaseLayer.fixedFoveation = foveation;
+ }
+ }; // Animation Loop
- function refreshMaterialUniforms(uniforms, material, pixelRatio, height, transmissionRenderTarget) {
- if (material.isMeshBasicMaterial) {
- refreshUniformsCommon(uniforms, material);
- } else if (material.isMeshLambertMaterial) {
- refreshUniformsCommon(uniforms, material);
- refreshUniformsLambert(uniforms, material);
- } else if (material.isMeshToonMaterial) {
- refreshUniformsCommon(uniforms, material);
- refreshUniformsToon(uniforms, material);
- } else if (material.isMeshPhongMaterial) {
- refreshUniformsCommon(uniforms, material);
- refreshUniformsPhong(uniforms, material);
- } else if (material.isMeshStandardMaterial) {
- refreshUniformsCommon(uniforms, material);
-
- if (material.isMeshPhysicalMaterial) {
- refreshUniformsPhysical(uniforms, material, transmissionRenderTarget);
- } else {
- refreshUniformsStandard(uniforms, material);
- }
- } else if (material.isMeshMatcapMaterial) {
- refreshUniformsCommon(uniforms, material);
- refreshUniformsMatcap(uniforms, material);
- } else if (material.isMeshDepthMaterial) {
- refreshUniformsCommon(uniforms, material);
- refreshUniformsDepth(uniforms, material);
- } else if (material.isMeshDistanceMaterial) {
- refreshUniformsCommon(uniforms, material);
- refreshUniformsDistance(uniforms, material);
- } else if (material.isMeshNormalMaterial) {
- refreshUniformsCommon(uniforms, material);
- refreshUniformsNormal(uniforms, material);
- } else if (material.isLineBasicMaterial) {
- refreshUniformsLine(uniforms, material);
-
- if (material.isLineDashedMaterial) {
- refreshUniformsDash(uniforms, material);
- }
- } else if (material.isPointsMaterial) {
- refreshUniformsPoints(uniforms, material, pixelRatio, height);
- } else if (material.isSpriteMaterial) {
- refreshUniformsSprites(uniforms, material);
- } else if (material.isShadowMaterial) {
- uniforms.color.value.copy(material.color);
- uniforms.opacity.value = material.opacity;
- } else if (material.isShaderMaterial) {
- material.uniformsNeedUpdate = false; // #15581
- }
- }
- function refreshUniformsCommon(uniforms, material) {
- uniforms.opacity.value = material.opacity;
-
- if (material.color) {
- uniforms.diffuse.value.copy(material.color);
- }
+ let onAnimationFrameCallback = null;
- if (material.emissive) {
- uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity);
- }
+ function onAnimationFrame(time, frame) {
+ pose = frame.getViewerPose(referenceSpace);
+ xrFrame = frame;
- if (material.map) {
- uniforms.map.value = material.map;
- }
+ if (pose !== null) {
+ const views = pose.views;
- if (material.alphaMap) {
- uniforms.alphaMap.value = material.alphaMap;
- }
+ if (glBaseLayer !== null) {
+ state.bindXRFramebuffer(glBaseLayer.framebuffer);
+ }
- if (material.specularMap) {
- uniforms.specularMap.value = material.specularMap;
- }
+ let cameraVRNeedsUpdate = false; // check if it's necessary to rebuild cameraVR's camera list
- if (material.alphaTest > 0) {
- uniforms.alphaTest.value = material.alphaTest;
- }
+ if (views.length !== cameraVR.cameras.length) {
+ cameraVR.cameras.length = 0;
+ cameraVRNeedsUpdate = true;
+ }
- const envMap = properties.get(material).envMap;
+ for (let i = 0; i < views.length; i++) {
+ const view = views[i];
+ let viewport = null;
- if (envMap) {
- uniforms.envMap.value = envMap;
- uniforms.flipEnvMap.value = envMap.isCubeTexture && envMap.isRenderTargetTexture === false ? -1 : 1;
- uniforms.reflectivity.value = material.reflectivity;
- uniforms.ior.value = material.ior;
- uniforms.refractionRatio.value = material.refractionRatio;
+ if (glBaseLayer !== null) {
+ viewport = glBaseLayer.getViewport(view);
+ } else {
+ const glSubImage = glBinding.getViewSubImage(glProjLayer, view);
+ state.bindXRFramebuffer(glFramebuffer);
- const maxMipLevel = properties.get(envMap).__maxMipLevel;
+ if (glSubImage.depthStencilTexture !== undefined) {
+ gl.framebufferTexture2D(gl.FRAMEBUFFER, depthStyle, gl.TEXTURE_2D, glSubImage.depthStencilTexture, 0);
+ }
- if (maxMipLevel !== undefined) {
- uniforms.maxMipLevel.value = maxMipLevel;
- }
- }
+ gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, glSubImage.colorTexture, 0);
+ viewport = glSubImage.viewport;
+ }
- if (material.lightMap) {
- uniforms.lightMap.value = material.lightMap;
- uniforms.lightMapIntensity.value = material.lightMapIntensity;
- }
+ const camera = cameras[i];
+ camera.matrix.fromArray(view.transform.matrix);
+ camera.projectionMatrix.fromArray(view.projectionMatrix);
+ camera.viewport.set(viewport.x, viewport.y, viewport.width, viewport.height);
- if (material.aoMap) {
- uniforms.aoMap.value = material.aoMap;
- uniforms.aoMapIntensity.value = material.aoMapIntensity;
- } // uv repeat and offset setting priorities
- // 1. color map
- // 2. specular map
- // 3. displacementMap map
- // 4. normal map
- // 5. bump map
- // 6. roughnessMap map
- // 7. metalnessMap map
- // 8. alphaMap map
- // 9. emissiveMap map
- // 10. clearcoat map
- // 11. clearcoat normal map
- // 12. clearcoat roughnessMap map
- // 13. specular intensity map
- // 14. specular tint map
- // 15. transmission map
- // 16. thickness map
+ if (i === 0) {
+ cameraVR.matrix.copy(camera.matrix);
+ }
+ if (cameraVRNeedsUpdate === true) {
+ cameraVR.cameras.push(camera);
+ }
+ }
- let uvScaleMap;
+ if (isMultisample) {
+ state.bindXRFramebuffer(glMultisampledFramebuffer);
+ if (clearStyle !== null) gl.clear(clearStyle);
+ }
+ } //
- if (material.map) {
- uvScaleMap = material.map;
- } else if (material.specularMap) {
- uvScaleMap = material.specularMap;
- } else if (material.displacementMap) {
- uvScaleMap = material.displacementMap;
- } else if (material.normalMap) {
- uvScaleMap = material.normalMap;
- } else if (material.bumpMap) {
- uvScaleMap = material.bumpMap;
- } else if (material.roughnessMap) {
- uvScaleMap = material.roughnessMap;
- } else if (material.metalnessMap) {
- uvScaleMap = material.metalnessMap;
- } else if (material.alphaMap) {
- uvScaleMap = material.alphaMap;
- } else if (material.emissiveMap) {
- uvScaleMap = material.emissiveMap;
- } else if (material.clearcoatMap) {
- uvScaleMap = material.clearcoatMap;
- } else if (material.clearcoatNormalMap) {
- uvScaleMap = material.clearcoatNormalMap;
- } else if (material.clearcoatRoughnessMap) {
- uvScaleMap = material.clearcoatRoughnessMap;
- } else if (material.specularIntensityMap) {
- uvScaleMap = material.specularIntensityMap;
- } else if (material.specularTintMap) {
- uvScaleMap = material.specularTintMap;
- } else if (material.transmissionMap) {
- uvScaleMap = material.transmissionMap;
- } else if (material.thicknessMap) {
- uvScaleMap = material.thicknessMap;
- }
- if (uvScaleMap !== undefined) {
- // backwards compatibility
- if (uvScaleMap.isWebGLRenderTarget) {
- uvScaleMap = uvScaleMap.texture;
- }
+ const inputSources = session.inputSources;
- if (uvScaleMap.matrixAutoUpdate === true) {
- uvScaleMap.updateMatrix();
- }
+ for (let i = 0; i < controllers.length; i++) {
+ const controller = controllers[i];
+ const inputSource = inputSources[i];
+ controller.update(inputSource, frame, referenceSpace);
+ }
+
+ if (onAnimationFrameCallback) onAnimationFrameCallback(time, frame);
+
+ if (isMultisample) {
+ const width = glProjLayer.textureWidth;
+ const height = glProjLayer.textureHeight;
+ state.bindFramebuffer(gl.READ_FRAMEBUFFER, glMultisampledFramebuffer);
+ state.bindFramebuffer(gl.DRAW_FRAMEBUFFER, glFramebuffer); // Invalidate the depth here to avoid flush of the depth data to main memory.
+
+ gl.invalidateFramebuffer(gl.READ_FRAMEBUFFER, [depthStyle]);
+ gl.invalidateFramebuffer(gl.DRAW_FRAMEBUFFER, [depthStyle]);
+ gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, gl.COLOR_BUFFER_BIT, gl.NEAREST); // Invalidate the MSAA buffer because it's not needed anymore.
+
+ gl.invalidateFramebuffer(gl.READ_FRAMEBUFFER, [gl.COLOR_ATTACHMENT0]);
+ state.bindFramebuffer(gl.READ_FRAMEBUFFER, null);
+ state.bindFramebuffer(gl.DRAW_FRAMEBUFFER, null);
+ state.bindFramebuffer(gl.FRAMEBUFFER, glMultisampledFramebuffer);
+ }
- uniforms.uvTransform.value.copy(uvScaleMap.matrix);
- } // uv repeat and offset setting priorities for uv2
- // 1. ao map
- // 2. light map
+ xrFrame = null;
+ }
+ const animation = new WebGLAnimation();
+ animation.setAnimationLoop(onAnimationFrame);
- let uv2ScaleMap;
+ this.setAnimationLoop = function (callback) {
+ onAnimationFrameCallback = callback;
+ };
- if (material.aoMap) {
- uv2ScaleMap = material.aoMap;
- } else if (material.lightMap) {
- uv2ScaleMap = material.lightMap;
- }
-
- if (uv2ScaleMap !== undefined) {
- // backwards compatibility
- if (uv2ScaleMap.isWebGLRenderTarget) {
- uv2ScaleMap = uv2ScaleMap.texture;
- }
+ this.dispose = function () {
+ };
+ }
- if (uv2ScaleMap.matrixAutoUpdate === true) {
- uv2ScaleMap.updateMatrix();
- }
-
- uniforms.uv2Transform.value.copy(uv2ScaleMap.matrix);
}
- }
- function refreshUniformsLine(uniforms, material) {
- uniforms.diffuse.value.copy(material.color);
- uniforms.opacity.value = material.opacity;
- }
+ function WebGLMaterials(properties) {
+ function refreshFogUniforms(uniforms, fog) {
+ uniforms.fogColor.value.copy(fog.color);
- function refreshUniformsDash(uniforms, material) {
- uniforms.dashSize.value = material.dashSize;
- uniforms.totalSize.value = material.dashSize + material.gapSize;
- uniforms.scale.value = material.scale;
- }
+ if (fog.isFog) {
+ uniforms.fogNear.value = fog.near;
+ uniforms.fogFar.value = fog.far;
+ } else if (fog.isFogExp2) {
+ uniforms.fogDensity.value = fog.density;
+ }
+ }
- function refreshUniformsPoints(uniforms, material, pixelRatio, height) {
- uniforms.diffuse.value.copy(material.color);
- uniforms.opacity.value = material.opacity;
- uniforms.size.value = material.size * pixelRatio;
- uniforms.scale.value = height * 0.5;
+ function refreshMaterialUniforms(uniforms, material, pixelRatio, height, transmissionRenderTarget) {
+ if (material.isMeshBasicMaterial) {
+ refreshUniformsCommon(uniforms, material);
+ } else if (material.isMeshLambertMaterial) {
+ refreshUniformsCommon(uniforms, material);
+ refreshUniformsLambert(uniforms, material);
+ } else if (material.isMeshToonMaterial) {
+ refreshUniformsCommon(uniforms, material);
+ refreshUniformsToon(uniforms, material);
+ } else if (material.isMeshPhongMaterial) {
+ refreshUniformsCommon(uniforms, material);
+ refreshUniformsPhong(uniforms, material);
+ } else if (material.isMeshStandardMaterial) {
+ refreshUniformsCommon(uniforms, material);
+
+ if (material.isMeshPhysicalMaterial) {
+ refreshUniformsPhysical(uniforms, material, transmissionRenderTarget);
+ } else {
+ refreshUniformsStandard(uniforms, material);
+ }
+ } else if (material.isMeshMatcapMaterial) {
+ refreshUniformsCommon(uniforms, material);
+ refreshUniformsMatcap(uniforms, material);
+ } else if (material.isMeshDepthMaterial) {
+ refreshUniformsCommon(uniforms, material);
+ refreshUniformsDepth(uniforms, material);
+ } else if (material.isMeshDistanceMaterial) {
+ refreshUniformsCommon(uniforms, material);
+ refreshUniformsDistance(uniforms, material);
+ } else if (material.isMeshNormalMaterial) {
+ refreshUniformsCommon(uniforms, material);
+ refreshUniformsNormal(uniforms, material);
+ } else if (material.isLineBasicMaterial) {
+ refreshUniformsLine(uniforms, material);
+
+ if (material.isLineDashedMaterial) {
+ refreshUniformsDash(uniforms, material);
+ }
+ } else if (material.isPointsMaterial) {
+ refreshUniformsPoints(uniforms, material, pixelRatio, height);
+ } else if (material.isSpriteMaterial) {
+ refreshUniformsSprites(uniforms, material);
+ } else if (material.isShadowMaterial) {
+ uniforms.color.value.copy(material.color);
+ uniforms.opacity.value = material.opacity;
+ } else if (material.isShaderMaterial) {
+ material.uniformsNeedUpdate = false; // #15581
+ }
+ }
- if (material.map) {
- uniforms.map.value = material.map;
- }
+ function refreshUniformsCommon(uniforms, material) {
+ uniforms.opacity.value = material.opacity;
- if (material.alphaMap) {
- uniforms.alphaMap.value = material.alphaMap;
- }
+ if (material.color) {
+ uniforms.diffuse.value.copy(material.color);
+ }
- if (material.alphaTest > 0) {
- uniforms.alphaTest.value = material.alphaTest;
- } // uv repeat and offset setting priorities
- // 1. color map
- // 2. alpha map
+ if (material.emissive) {
+ uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity);
+ }
+ if (material.map) {
+ uniforms.map.value = material.map;
+ }
- let uvScaleMap;
+ if (material.alphaMap) {
+ uniforms.alphaMap.value = material.alphaMap;
+ }
- if (material.map) {
- uvScaleMap = material.map;
- } else if (material.alphaMap) {
- uvScaleMap = material.alphaMap;
- }
+ if (material.specularMap) {
+ uniforms.specularMap.value = material.specularMap;
+ }
- if (uvScaleMap !== undefined) {
- if (uvScaleMap.matrixAutoUpdate === true) {
- uvScaleMap.updateMatrix();
- }
+ if (material.alphaTest > 0) {
+ uniforms.alphaTest.value = material.alphaTest;
+ }
- uniforms.uvTransform.value.copy(uvScaleMap.matrix);
- }
- }
+ const envMap = properties.get(material).envMap;
- function refreshUniformsSprites(uniforms, material) {
- uniforms.diffuse.value.copy(material.color);
- uniforms.opacity.value = material.opacity;
- uniforms.rotation.value = material.rotation;
+ if (envMap) {
+ uniforms.envMap.value = envMap;
+ uniforms.flipEnvMap.value = envMap.isCubeTexture && envMap.isRenderTargetTexture === false ? -1 : 1;
+ uniforms.reflectivity.value = material.reflectivity;
+ uniforms.ior.value = material.ior;
+ uniforms.refractionRatio.value = material.refractionRatio;
- if (material.map) {
- uniforms.map.value = material.map;
- }
+ const maxMipLevel = properties.get(envMap).__maxMipLevel;
- if (material.alphaMap) {
- uniforms.alphaMap.value = material.alphaMap;
- }
+ if (maxMipLevel !== undefined) {
+ uniforms.maxMipLevel.value = maxMipLevel;
+ }
+ }
- if (material.alphaTest > 0) {
- uniforms.alphaTest.value = material.alphaTest;
- } // uv repeat and offset setting priorities
- // 1. color map
- // 2. alpha map
+ if (material.lightMap) {
+ uniforms.lightMap.value = material.lightMap;
+ uniforms.lightMapIntensity.value = material.lightMapIntensity;
+ }
+ if (material.aoMap) {
+ uniforms.aoMap.value = material.aoMap;
+ uniforms.aoMapIntensity.value = material.aoMapIntensity;
+ } // uv repeat and offset setting priorities
+ // 1. color map
+ // 2. specular map
+ // 3. displacementMap map
+ // 4. normal map
+ // 5. bump map
+ // 6. roughnessMap map
+ // 7. metalnessMap map
+ // 8. alphaMap map
+ // 9. emissiveMap map
+ // 10. clearcoat map
+ // 11. clearcoat normal map
+ // 12. clearcoat roughnessMap map
+ // 13. specular intensity map
+ // 14. specular tint map
+ // 15. transmission map
+ // 16. thickness map
+
+
+ let uvScaleMap;
+
+ if (material.map) {
+ uvScaleMap = material.map;
+ } else if (material.specularMap) {
+ uvScaleMap = material.specularMap;
+ } else if (material.displacementMap) {
+ uvScaleMap = material.displacementMap;
+ } else if (material.normalMap) {
+ uvScaleMap = material.normalMap;
+ } else if (material.bumpMap) {
+ uvScaleMap = material.bumpMap;
+ } else if (material.roughnessMap) {
+ uvScaleMap = material.roughnessMap;
+ } else if (material.metalnessMap) {
+ uvScaleMap = material.metalnessMap;
+ } else if (material.alphaMap) {
+ uvScaleMap = material.alphaMap;
+ } else if (material.emissiveMap) {
+ uvScaleMap = material.emissiveMap;
+ } else if (material.clearcoatMap) {
+ uvScaleMap = material.clearcoatMap;
+ } else if (material.clearcoatNormalMap) {
+ uvScaleMap = material.clearcoatNormalMap;
+ } else if (material.clearcoatRoughnessMap) {
+ uvScaleMap = material.clearcoatRoughnessMap;
+ } else if (material.specularIntensityMap) {
+ uvScaleMap = material.specularIntensityMap;
+ } else if (material.specularTintMap) {
+ uvScaleMap = material.specularTintMap;
+ } else if (material.transmissionMap) {
+ uvScaleMap = material.transmissionMap;
+ } else if (material.thicknessMap) {
+ uvScaleMap = material.thicknessMap;
+ }
- let uvScaleMap;
+ if (uvScaleMap !== undefined) {
+ // backwards compatibility
+ if (uvScaleMap.isWebGLRenderTarget) {
+ uvScaleMap = uvScaleMap.texture;
+ }
- if (material.map) {
- uvScaleMap = material.map;
- } else if (material.alphaMap) {
- uvScaleMap = material.alphaMap;
- }
+ if (uvScaleMap.matrixAutoUpdate === true) {
+ uvScaleMap.updateMatrix();
+ }
- if (uvScaleMap !== undefined) {
- if (uvScaleMap.matrixAutoUpdate === true) {
- uvScaleMap.updateMatrix();
- }
+ uniforms.uvTransform.value.copy(uvScaleMap.matrix);
+ } // uv repeat and offset setting priorities for uv2
+ // 1. ao map
+ // 2. light map
- uniforms.uvTransform.value.copy(uvScaleMap.matrix);
- }
- }
- function refreshUniformsLambert(uniforms, material) {
- if (material.emissiveMap) {
- uniforms.emissiveMap.value = material.emissiveMap;
- }
- }
+ let uv2ScaleMap;
- function refreshUniformsPhong(uniforms, material) {
- uniforms.specular.value.copy(material.specular);
- uniforms.shininess.value = Math.max(material.shininess, 1e-4); // to prevent pow( 0.0, 0.0 )
+ if (material.aoMap) {
+ uv2ScaleMap = material.aoMap;
+ } else if (material.lightMap) {
+ uv2ScaleMap = material.lightMap;
+ }
- if (material.emissiveMap) {
- uniforms.emissiveMap.value = material.emissiveMap;
- }
+ if (uv2ScaleMap !== undefined) {
+ // backwards compatibility
+ if (uv2ScaleMap.isWebGLRenderTarget) {
+ uv2ScaleMap = uv2ScaleMap.texture;
+ }
- if (material.bumpMap) {
- uniforms.bumpMap.value = material.bumpMap;
- uniforms.bumpScale.value = material.bumpScale;
- if (material.side === BackSide) uniforms.bumpScale.value *= -1;
- }
+ if (uv2ScaleMap.matrixAutoUpdate === true) {
+ uv2ScaleMap.updateMatrix();
+ }
- if (material.normalMap) {
- uniforms.normalMap.value = material.normalMap;
- uniforms.normalScale.value.copy(material.normalScale);
- if (material.side === BackSide) uniforms.normalScale.value.negate();
- }
+ uniforms.uv2Transform.value.copy(uv2ScaleMap.matrix);
+ }
+ }
- if (material.displacementMap) {
- uniforms.displacementMap.value = material.displacementMap;
- uniforms.displacementScale.value = material.displacementScale;
- uniforms.displacementBias.value = material.displacementBias;
- }
- }
+ function refreshUniformsLine(uniforms, material) {
+ uniforms.diffuse.value.copy(material.color);
+ uniforms.opacity.value = material.opacity;
+ }
- function refreshUniformsToon(uniforms, material) {
- if (material.gradientMap) {
- uniforms.gradientMap.value = material.gradientMap;
- }
+ function refreshUniformsDash(uniforms, material) {
+ uniforms.dashSize.value = material.dashSize;
+ uniforms.totalSize.value = material.dashSize + material.gapSize;
+ uniforms.scale.value = material.scale;
+ }
- if (material.emissiveMap) {
- uniforms.emissiveMap.value = material.emissiveMap;
- }
+ function refreshUniformsPoints(uniforms, material, pixelRatio, height) {
+ uniforms.diffuse.value.copy(material.color);
+ uniforms.opacity.value = material.opacity;
+ uniforms.size.value = material.size * pixelRatio;
+ uniforms.scale.value = height * 0.5;
- if (material.bumpMap) {
- uniforms.bumpMap.value = material.bumpMap;
- uniforms.bumpScale.value = material.bumpScale;
- if (material.side === BackSide) uniforms.bumpScale.value *= -1;
- }
+ if (material.map) {
+ uniforms.map.value = material.map;
+ }
- if (material.normalMap) {
- uniforms.normalMap.value = material.normalMap;
- uniforms.normalScale.value.copy(material.normalScale);
- if (material.side === BackSide) uniforms.normalScale.value.negate();
- }
+ if (material.alphaMap) {
+ uniforms.alphaMap.value = material.alphaMap;
+ }
- if (material.displacementMap) {
- uniforms.displacementMap.value = material.displacementMap;
- uniforms.displacementScale.value = material.displacementScale;
- uniforms.displacementBias.value = material.displacementBias;
- }
- }
+ if (material.alphaTest > 0) {
+ uniforms.alphaTest.value = material.alphaTest;
+ } // uv repeat and offset setting priorities
+ // 1. color map
+ // 2. alpha map
- function refreshUniformsStandard(uniforms, material) {
- uniforms.roughness.value = material.roughness;
- uniforms.metalness.value = material.metalness;
- if (material.roughnessMap) {
- uniforms.roughnessMap.value = material.roughnessMap;
- }
+ let uvScaleMap;
- if (material.metalnessMap) {
- uniforms.metalnessMap.value = material.metalnessMap;
- }
+ if (material.map) {
+ uvScaleMap = material.map;
+ } else if (material.alphaMap) {
+ uvScaleMap = material.alphaMap;
+ }
- if (material.emissiveMap) {
- uniforms.emissiveMap.value = material.emissiveMap;
- }
+ if (uvScaleMap !== undefined) {
+ if (uvScaleMap.matrixAutoUpdate === true) {
+ uvScaleMap.updateMatrix();
+ }
- if (material.bumpMap) {
- uniforms.bumpMap.value = material.bumpMap;
- uniforms.bumpScale.value = material.bumpScale;
- if (material.side === BackSide) uniforms.bumpScale.value *= -1;
- }
+ uniforms.uvTransform.value.copy(uvScaleMap.matrix);
+ }
+ }
- if (material.normalMap) {
- uniforms.normalMap.value = material.normalMap;
- uniforms.normalScale.value.copy(material.normalScale);
- if (material.side === BackSide) uniforms.normalScale.value.negate();
- }
+ function refreshUniformsSprites(uniforms, material) {
+ uniforms.diffuse.value.copy(material.color);
+ uniforms.opacity.value = material.opacity;
+ uniforms.rotation.value = material.rotation;
- if (material.displacementMap) {
- uniforms.displacementMap.value = material.displacementMap;
- uniforms.displacementScale.value = material.displacementScale;
- uniforms.displacementBias.value = material.displacementBias;
- }
+ if (material.map) {
+ uniforms.map.value = material.map;
+ }
- const envMap = properties.get(material).envMap;
+ if (material.alphaMap) {
+ uniforms.alphaMap.value = material.alphaMap;
+ }
- if (envMap) {
- //uniforms.envMap.value = material.envMap; // part of uniforms common
- uniforms.envMapIntensity.value = material.envMapIntensity;
- }
- }
+ if (material.alphaTest > 0) {
+ uniforms.alphaTest.value = material.alphaTest;
+ } // uv repeat and offset setting priorities
+ // 1. color map
+ // 2. alpha map
- function refreshUniformsPhysical(uniforms, material, transmissionRenderTarget) {
- refreshUniformsStandard(uniforms, material);
- uniforms.ior.value = material.ior; // also part of uniforms common
- if (material.sheenTint) uniforms.sheenTint.value.copy(material.sheenTint);
+ let uvScaleMap;
- if (material.clearcoat > 0) {
- uniforms.clearcoat.value = material.clearcoat;
- uniforms.clearcoatRoughness.value = material.clearcoatRoughness;
+ if (material.map) {
+ uvScaleMap = material.map;
+ } else if (material.alphaMap) {
+ uvScaleMap = material.alphaMap;
+ }
- if (material.clearcoatMap) {
- uniforms.clearcoatMap.value = material.clearcoatMap;
- }
+ if (uvScaleMap !== undefined) {
+ if (uvScaleMap.matrixAutoUpdate === true) {
+ uvScaleMap.updateMatrix();
+ }
- if (material.clearcoatRoughnessMap) {
- uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap;
+ uniforms.uvTransform.value.copy(uvScaleMap.matrix);
+ }
}
- if (material.clearcoatNormalMap) {
- uniforms.clearcoatNormalScale.value.copy(material.clearcoatNormalScale);
- uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap;
-
- if (material.side === BackSide) {
- uniforms.clearcoatNormalScale.value.negate();
+ function refreshUniformsLambert(uniforms, material) {
+ if (material.emissiveMap) {
+ uniforms.emissiveMap.value = material.emissiveMap;
}
}
- }
- if (material.transmission > 0) {
- uniforms.transmission.value = material.transmission;
- uniforms.transmissionSamplerMap.value = transmissionRenderTarget.texture;
- uniforms.transmissionSamplerSize.value.set(transmissionRenderTarget.width, transmissionRenderTarget.height);
+ function refreshUniformsPhong(uniforms, material) {
+ uniforms.specular.value.copy(material.specular);
+ uniforms.shininess.value = Math.max(material.shininess, 1e-4); // to prevent pow( 0.0, 0.0 )
- if (material.transmissionMap) {
- uniforms.transmissionMap.value = material.transmissionMap;
- }
+ if (material.emissiveMap) {
+ uniforms.emissiveMap.value = material.emissiveMap;
+ }
+
+ if (material.bumpMap) {
+ uniforms.bumpMap.value = material.bumpMap;
+ uniforms.bumpScale.value = material.bumpScale;
+ if (material.side === BackSide) uniforms.bumpScale.value *= -1;
+ }
- uniforms.thickness.value = material.thickness;
+ if (material.normalMap) {
+ uniforms.normalMap.value = material.normalMap;
+ uniforms.normalScale.value.copy(material.normalScale);
+ if (material.side === BackSide) uniforms.normalScale.value.negate();
+ }
- if (material.thicknessMap) {
- uniforms.thicknessMap.value = material.thicknessMap;
+ if (material.displacementMap) {
+ uniforms.displacementMap.value = material.displacementMap;
+ uniforms.displacementScale.value = material.displacementScale;
+ uniforms.displacementBias.value = material.displacementBias;
+ }
}
- uniforms.attenuationDistance.value = material.attenuationDistance;
- uniforms.attenuationTint.value.copy(material.attenuationTint);
- }
+ function refreshUniformsToon(uniforms, material) {
+ if (material.gradientMap) {
+ uniforms.gradientMap.value = material.gradientMap;
+ }
- uniforms.specularIntensity.value = material.specularIntensity;
- uniforms.specularTint.value.copy(material.specularTint);
+ if (material.emissiveMap) {
+ uniforms.emissiveMap.value = material.emissiveMap;
+ }
- if (material.specularIntensityMap) {
- uniforms.specularIntensityMap.value = material.specularIntensityMap;
- }
+ if (material.bumpMap) {
+ uniforms.bumpMap.value = material.bumpMap;
+ uniforms.bumpScale.value = material.bumpScale;
+ if (material.side === BackSide) uniforms.bumpScale.value *= -1;
+ }
- if (material.specularTintMap) {
- uniforms.specularTintMap.value = material.specularTintMap;
- }
- }
+ if (material.normalMap) {
+ uniforms.normalMap.value = material.normalMap;
+ uniforms.normalScale.value.copy(material.normalScale);
+ if (material.side === BackSide) uniforms.normalScale.value.negate();
+ }
- function refreshUniformsMatcap(uniforms, material) {
- if (material.matcap) {
- uniforms.matcap.value = material.matcap;
- }
+ if (material.displacementMap) {
+ uniforms.displacementMap.value = material.displacementMap;
+ uniforms.displacementScale.value = material.displacementScale;
+ uniforms.displacementBias.value = material.displacementBias;
+ }
+ }
- if (material.bumpMap) {
- uniforms.bumpMap.value = material.bumpMap;
- uniforms.bumpScale.value = material.bumpScale;
- if (material.side === BackSide) uniforms.bumpScale.value *= -1;
- }
+ function refreshUniformsStandard(uniforms, material) {
+ uniforms.roughness.value = material.roughness;
+ uniforms.metalness.value = material.metalness;
- if (material.normalMap) {
- uniforms.normalMap.value = material.normalMap;
- uniforms.normalScale.value.copy(material.normalScale);
- if (material.side === BackSide) uniforms.normalScale.value.negate();
- }
+ if (material.roughnessMap) {
+ uniforms.roughnessMap.value = material.roughnessMap;
+ }
- if (material.displacementMap) {
- uniforms.displacementMap.value = material.displacementMap;
- uniforms.displacementScale.value = material.displacementScale;
- uniforms.displacementBias.value = material.displacementBias;
- }
- }
+ if (material.metalnessMap) {
+ uniforms.metalnessMap.value = material.metalnessMap;
+ }
- function refreshUniformsDepth(uniforms, material) {
- if (material.displacementMap) {
- uniforms.displacementMap.value = material.displacementMap;
- uniforms.displacementScale.value = material.displacementScale;
- uniforms.displacementBias.value = material.displacementBias;
- }
- }
+ if (material.emissiveMap) {
+ uniforms.emissiveMap.value = material.emissiveMap;
+ }
- function refreshUniformsDistance(uniforms, material) {
- if (material.displacementMap) {
- uniforms.displacementMap.value = material.displacementMap;
- uniforms.displacementScale.value = material.displacementScale;
- uniforms.displacementBias.value = material.displacementBias;
- }
+ if (material.bumpMap) {
+ uniforms.bumpMap.value = material.bumpMap;
+ uniforms.bumpScale.value = material.bumpScale;
+ if (material.side === BackSide) uniforms.bumpScale.value *= -1;
+ }
- uniforms.referencePosition.value.copy(material.referencePosition);
- uniforms.nearDistance.value = material.nearDistance;
- uniforms.farDistance.value = material.farDistance;
- }
+ if (material.normalMap) {
+ uniforms.normalMap.value = material.normalMap;
+ uniforms.normalScale.value.copy(material.normalScale);
+ if (material.side === BackSide) uniforms.normalScale.value.negate();
+ }
- function refreshUniformsNormal(uniforms, material) {
- if (material.bumpMap) {
- uniforms.bumpMap.value = material.bumpMap;
- uniforms.bumpScale.value = material.bumpScale;
- if (material.side === BackSide) uniforms.bumpScale.value *= -1;
- }
+ if (material.displacementMap) {
+ uniforms.displacementMap.value = material.displacementMap;
+ uniforms.displacementScale.value = material.displacementScale;
+ uniforms.displacementBias.value = material.displacementBias;
+ }
- if (material.normalMap) {
- uniforms.normalMap.value = material.normalMap;
- uniforms.normalScale.value.copy(material.normalScale);
- if (material.side === BackSide) uniforms.normalScale.value.negate();
- }
+ const envMap = properties.get(material).envMap;
- if (material.displacementMap) {
- uniforms.displacementMap.value = material.displacementMap;
- uniforms.displacementScale.value = material.displacementScale;
- uniforms.displacementBias.value = material.displacementBias;
- }
- }
+ if (envMap) {
+ //uniforms.envMap.value = material.envMap; // part of uniforms common
+ uniforms.envMapIntensity.value = material.envMapIntensity;
+ }
+ }
- return {
- refreshFogUniforms: refreshFogUniforms,
- refreshMaterialUniforms: refreshMaterialUniforms
- };
- }
+ function refreshUniformsPhysical(uniforms, material, transmissionRenderTarget) {
+ refreshUniformsStandard(uniforms, material);
+ uniforms.ior.value = material.ior; // also part of uniforms common
- function createCanvasElement() {
- const canvas = document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas');
- canvas.style.display = 'block';
- return canvas;
- }
+ if (material.sheenTint) uniforms.sheenTint.value.copy(material.sheenTint);
- function WebGLRenderer(parameters = {}) {
- const _canvas = parameters.canvas !== undefined ? parameters.canvas : createCanvasElement(),
- _context = parameters.context !== undefined ? parameters.context : null,
- _alpha = parameters.alpha !== undefined ? parameters.alpha : false,
- _depth = parameters.depth !== undefined ? parameters.depth : true,
- _stencil = parameters.stencil !== undefined ? parameters.stencil : true,
- _antialias = parameters.antialias !== undefined ? parameters.antialias : false,
- _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,
- _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false,
- _powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default',
- _failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false;
+ if (material.clearcoat > 0) {
+ uniforms.clearcoat.value = material.clearcoat;
+ uniforms.clearcoatRoughness.value = material.clearcoatRoughness;
- let currentRenderList = null;
- let currentRenderState = null; // render() can be called from within a callback triggered by another render.
- // We track this so that the nested render call gets its list and state isolated from the parent render call.
+ if (material.clearcoatMap) {
+ uniforms.clearcoatMap.value = material.clearcoatMap;
+ }
- const renderListStack = [];
- const renderStateStack = []; // public properties
+ if (material.clearcoatRoughnessMap) {
+ uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap;
+ }
- this.domElement = _canvas; // Debug configuration container
+ if (material.clearcoatNormalMap) {
+ uniforms.clearcoatNormalScale.value.copy(material.clearcoatNormalScale);
+ uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap;
- this.debug = {
- /**
- * Enables error checking and reporting when shader programs are being compiled
- * @type {boolean}
- */
- checkShaderErrors: true
- }; // clearing
+ if (material.side === BackSide) {
+ uniforms.clearcoatNormalScale.value.negate();
+ }
+ }
+ }
- this.autoClear = true;
- this.autoClearColor = true;
- this.autoClearDepth = true;
- this.autoClearStencil = true; // scene graph
+ if (material.transmission > 0) {
+ uniforms.transmission.value = material.transmission;
+ uniforms.transmissionSamplerMap.value = transmissionRenderTarget.texture;
+ uniforms.transmissionSamplerSize.value.set(transmissionRenderTarget.width, transmissionRenderTarget.height);
- this.sortObjects = true; // user-defined clipping
+ if (material.transmissionMap) {
+ uniforms.transmissionMap.value = material.transmissionMap;
+ }
- this.clippingPlanes = [];
- this.localClippingEnabled = false; // physically based shading
+ uniforms.thickness.value = material.thickness;
- this.gammaFactor = 2.0; // for backwards compatibility
+ if (material.thicknessMap) {
+ uniforms.thicknessMap.value = material.thicknessMap;
+ }
- this.outputEncoding = LinearEncoding; // physical lights
+ uniforms.attenuationDistance.value = material.attenuationDistance;
+ uniforms.attenuationTint.value.copy(material.attenuationTint);
+ }
- this.physicallyCorrectLights = false; // tone mapping
+ uniforms.specularIntensity.value = material.specularIntensity;
+ uniforms.specularTint.value.copy(material.specularTint);
- this.toneMapping = NoToneMapping;
- this.toneMappingExposure = 1.0; // internal properties
+ if (material.specularIntensityMap) {
+ uniforms.specularIntensityMap.value = material.specularIntensityMap;
+ }
- const _this = this;
+ if (material.specularTintMap) {
+ uniforms.specularTintMap.value = material.specularTintMap;
+ }
+ }
- let _isContextLost = false; // internal state cache
+ function refreshUniformsMatcap(uniforms, material) {
+ if (material.matcap) {
+ uniforms.matcap.value = material.matcap;
+ }
- let _currentActiveCubeFace = 0;
- let _currentActiveMipmapLevel = 0;
- let _currentRenderTarget = null;
+ if (material.bumpMap) {
+ uniforms.bumpMap.value = material.bumpMap;
+ uniforms.bumpScale.value = material.bumpScale;
+ if (material.side === BackSide) uniforms.bumpScale.value *= -1;
+ }
- let _currentMaterialId = -1;
+ if (material.normalMap) {
+ uniforms.normalMap.value = material.normalMap;
+ uniforms.normalScale.value.copy(material.normalScale);
+ if (material.side === BackSide) uniforms.normalScale.value.negate();
+ }
- let _currentCamera = null;
+ if (material.displacementMap) {
+ uniforms.displacementMap.value = material.displacementMap;
+ uniforms.displacementScale.value = material.displacementScale;
+ uniforms.displacementBias.value = material.displacementBias;
+ }
+ }
- const _currentViewport = new Vector4();
+ function refreshUniformsDepth(uniforms, material) {
+ if (material.displacementMap) {
+ uniforms.displacementMap.value = material.displacementMap;
+ uniforms.displacementScale.value = material.displacementScale;
+ uniforms.displacementBias.value = material.displacementBias;
+ }
+ }
- const _currentScissor = new Vector4();
+ function refreshUniformsDistance(uniforms, material) {
+ if (material.displacementMap) {
+ uniforms.displacementMap.value = material.displacementMap;
+ uniforms.displacementScale.value = material.displacementScale;
+ uniforms.displacementBias.value = material.displacementBias;
+ }
- let _currentScissorTest = null; //
+ uniforms.referencePosition.value.copy(material.referencePosition);
+ uniforms.nearDistance.value = material.nearDistance;
+ uniforms.farDistance.value = material.farDistance;
+ }
- let _width = _canvas.width;
- let _height = _canvas.height;
- let _pixelRatio = 1;
- let _opaqueSort = null;
- let _transparentSort = null;
+ function refreshUniformsNormal(uniforms, material) {
+ if (material.bumpMap) {
+ uniforms.bumpMap.value = material.bumpMap;
+ uniforms.bumpScale.value = material.bumpScale;
+ if (material.side === BackSide) uniforms.bumpScale.value *= -1;
+ }
- const _viewport = new Vector4(0, 0, _width, _height);
+ if (material.normalMap) {
+ uniforms.normalMap.value = material.normalMap;
+ uniforms.normalScale.value.copy(material.normalScale);
+ if (material.side === BackSide) uniforms.normalScale.value.negate();
+ }
- const _scissor = new Vector4(0, 0, _width, _height);
+ if (material.displacementMap) {
+ uniforms.displacementMap.value = material.displacementMap;
+ uniforms.displacementScale.value = material.displacementScale;
+ uniforms.displacementBias.value = material.displacementBias;
+ }
+ }
- let _scissorTest = false; //
+ return {
+ refreshFogUniforms: refreshFogUniforms,
+ refreshMaterialUniforms: refreshMaterialUniforms
+ };
+ }
- const _currentDrawBuffers = []; // frustum
+ function createCanvasElement() {
+ const canvas = document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas');
+ canvas.style.display = 'block';
+ return canvas;
+ }
- const _frustum = new Frustum(); // clipping
+ function WebGLRenderer(parameters = {}) {
+ const _canvas = parameters.canvas !== undefined ? parameters.canvas : createCanvasElement(),
+ _context = parameters.context !== undefined ? parameters.context : null,
+ _alpha = parameters.alpha !== undefined ? parameters.alpha : false,
+ _depth = parameters.depth !== undefined ? parameters.depth : true,
+ _stencil = parameters.stencil !== undefined ? parameters.stencil : true,
+ _antialias = parameters.antialias !== undefined ? parameters.antialias : false,
+ _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,
+ _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false,
+ _powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default',
+ _failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false;
+ let currentRenderList = null;
+ let currentRenderState = null; // render() can be called from within a callback triggered by another render.
+ // We track this so that the nested render call gets its list and state isolated from the parent render call.
- let _clippingEnabled = false;
- let _localClippingEnabled = false; // transmission
+ const renderListStack = [];
+ const renderStateStack = []; // public properties
- let _transmissionRenderTarget = null; // camera matrices cache
+ this.domElement = _canvas; // Debug configuration container
- const _projScreenMatrix = new Matrix4();
+ this.debug = {
+ /**
+ * Enables error checking and reporting when shader programs are being compiled
+ * @type {boolean}
+ */
+ checkShaderErrors: true
+ }; // clearing
- const _vector3 = new Vector3();
+ this.autoClear = true;
+ this.autoClearColor = true;
+ this.autoClearDepth = true;
+ this.autoClearStencil = true; // scene graph
- const _emptyScene = {
- background: null,
- fog: null,
- environment: null,
- overrideMaterial: null,
- isScene: true
- };
+ this.sortObjects = true; // user-defined clipping
- function getTargetPixelRatio() {
- return _currentRenderTarget === null ? _pixelRatio : 1;
- } // initialize
+ this.clippingPlanes = [];
+ this.localClippingEnabled = false; // physically based shading
+ this.gammaFactor = 2.0; // for backwards compatibility
- let _gl = _context;
+ this.outputEncoding = LinearEncoding; // physical lights
- function getContext(contextNames, contextAttributes) {
- for (let i = 0; i < contextNames.length; i++) {
- const contextName = contextNames[i];
+ this.physicallyCorrectLights = false; // tone mapping
- const context = _canvas.getContext(contextName, contextAttributes);
+ this.toneMapping = NoToneMapping;
+ this.toneMappingExposure = 1.0; // internal properties
- if (context !== null) return context;
- }
+ const _this = this;
- return null;
- }
+ let _isContextLost = false; // internal state cache
- try {
- const contextAttributes = {
- alpha: _alpha,
- depth: _depth,
- stencil: _stencil,
- antialias: _antialias,
- premultipliedAlpha: _premultipliedAlpha,
- preserveDrawingBuffer: _preserveDrawingBuffer,
- powerPreference: _powerPreference,
- failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat
- }; // event listeners must be registered before WebGL context is created, see #12753
+ let _currentActiveCubeFace = 0;
+ let _currentActiveMipmapLevel = 0;
+ let _currentRenderTarget = null;
- _canvas.addEventListener('webglcontextlost', onContextLost, false);
+ let _currentMaterialId = -1;
- _canvas.addEventListener('webglcontextrestored', onContextRestore, false);
+ let _currentCamera = null;
- if (_gl === null) {
- const contextNames = ['webgl2', 'webgl', 'experimental-webgl'];
+ const _currentViewport = new Vector4();
- if (_this.isWebGL1Renderer === true) {
- contextNames.shift();
- }
+ const _currentScissor = new Vector4();
- _gl = getContext(contextNames, contextAttributes);
+ let _currentScissorTest = null; //
- if (_gl === null) {
- if (getContext(contextNames)) {
- throw new Error('Error creating WebGL context with your selected attributes.');
- } else {
- throw new Error('Error creating WebGL context.');
- }
- }
- } // Some experimental-webgl implementations do not have getShaderPrecisionFormat
+ let _width = _canvas.width;
+ let _height = _canvas.height;
+ let _pixelRatio = 1;
+ let _opaqueSort = null;
+ let _transparentSort = null;
+ const _viewport = new Vector4(0, 0, _width, _height);
- if (_gl.getShaderPrecisionFormat === undefined) {
- _gl.getShaderPrecisionFormat = function () {
- return {
- 'rangeMin': 1,
- 'rangeMax': 1,
- 'precision': 1
- };
- };
- }
- } catch (error) {
- console.error('THREE.WebGLRenderer: ' + error.message);
- throw error;
- }
+ const _scissor = new Vector4(0, 0, _width, _height);
- let extensions, capabilities, state, info;
- let properties, textures, cubemaps, cubeuvmaps, attributes, geometries, objects;
- let programCache, materials, renderLists, renderStates, clipping, shadowMap;
- let background, morphtargets, bufferRenderer, indexedBufferRenderer;
- let utils, bindingStates;
-
- function initGLContext() {
- extensions = new WebGLExtensions(_gl);
- capabilities = new WebGLCapabilities(_gl, extensions, parameters);
- extensions.init(capabilities);
- utils = new WebGLUtils(_gl, extensions, capabilities);
- state = new WebGLState(_gl, extensions, capabilities);
- _currentDrawBuffers[0] = _gl.BACK;
- info = new WebGLInfo(_gl);
- properties = new WebGLProperties();
- textures = new WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info);
- cubemaps = new WebGLCubeMaps(_this);
- cubeuvmaps = new WebGLCubeUVMaps(_this);
- attributes = new WebGLAttributes(_gl, capabilities);
- bindingStates = new WebGLBindingStates(_gl, extensions, attributes, capabilities);
- geometries = new WebGLGeometries(_gl, attributes, info, bindingStates);
- objects = new WebGLObjects(_gl, geometries, attributes, info);
- morphtargets = new WebGLMorphtargets(_gl);
- clipping = new WebGLClipping(properties);
- programCache = new WebGLPrograms(_this, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping);
- materials = new WebGLMaterials(properties);
- renderLists = new WebGLRenderLists(properties);
- renderStates = new WebGLRenderStates(extensions, capabilities);
- background = new WebGLBackground(_this, cubemaps, state, objects, _premultipliedAlpha);
- shadowMap = new WebGLShadowMap(_this, objects, capabilities);
- bufferRenderer = new WebGLBufferRenderer(_gl, extensions, info, capabilities);
- indexedBufferRenderer = new WebGLIndexedBufferRenderer(_gl, extensions, info, capabilities);
- info.programs = programCache.programs;
- _this.capabilities = capabilities;
- _this.extensions = extensions;
- _this.properties = properties;
- _this.renderLists = renderLists;
- _this.shadowMap = shadowMap;
- _this.state = state;
- _this.info = info;
- }
+ let _scissorTest = false; //
- initGLContext(); // xr
+ const _currentDrawBuffers = []; // frustum
- const xr = new WebXRManager(_this, _gl);
- this.xr = xr; // API
+ const _frustum = new Frustum(); // clipping
- this.getContext = function () {
- return _gl;
- };
- this.getContextAttributes = function () {
- return _gl.getContextAttributes();
- };
+ let _clippingEnabled = false;
+ let _localClippingEnabled = false; // transmission
- this.forceContextLoss = function () {
- const extension = extensions.get('WEBGL_lose_context');
- if (extension) extension.loseContext();
- };
+ let _transmissionRenderTarget = null; // camera matrices cache
- this.forceContextRestore = function () {
- const extension = extensions.get('WEBGL_lose_context');
- if (extension) extension.restoreContext();
- };
+ const _projScreenMatrix = new Matrix4();
- this.getPixelRatio = function () {
- return _pixelRatio;
- };
+ const _vector3 = new Vector3();
- this.setPixelRatio = function (value) {
- if (value === undefined) return;
- _pixelRatio = value;
- this.setSize(_width, _height, false);
- };
+ const _emptyScene = {
+ background: null,
+ fog: null,
+ environment: null,
+ overrideMaterial: null,
+ isScene: true
+ };
- this.getSize = function (target) {
- return target.set(_width, _height);
- };
+ function getTargetPixelRatio() {
+ return _currentRenderTarget === null ? _pixelRatio : 1;
+ } // initialize
- this.setSize = function (width, height, updateStyle) {
- if (xr.isPresenting) {
- console.warn('THREE.WebGLRenderer: Can\'t change size while VR device is presenting.');
- return;
- }
- _width = width;
- _height = height;
- _canvas.width = Math.floor(width * _pixelRatio);
- _canvas.height = Math.floor(height * _pixelRatio);
+ let _gl = _context;
- if (updateStyle !== false) {
- _canvas.style.width = width + 'px';
- _canvas.style.height = height + 'px';
- }
+ function getContext(contextNames, contextAttributes) {
+ for (let i = 0; i < contextNames.length; i++) {
+ const contextName = contextNames[i];
- this.setViewport(0, 0, width, height);
- };
+ const context = _canvas.getContext(contextName, contextAttributes);
- this.getDrawingBufferSize = function (target) {
- return target.set(_width * _pixelRatio, _height * _pixelRatio).floor();
- };
+ if (context !== null) return context;
+ }
- this.setDrawingBufferSize = function (width, height, pixelRatio) {
- _width = width;
- _height = height;
- _pixelRatio = pixelRatio;
- _canvas.width = Math.floor(width * pixelRatio);
- _canvas.height = Math.floor(height * pixelRatio);
- this.setViewport(0, 0, width, height);
- };
+ return null;
+ }
- this.getCurrentViewport = function (target) {
- return target.copy(_currentViewport);
- };
+ try {
+ const contextAttributes = {
+ alpha: _alpha,
+ depth: _depth,
+ stencil: _stencil,
+ antialias: _antialias,
+ premultipliedAlpha: _premultipliedAlpha,
+ preserveDrawingBuffer: _preserveDrawingBuffer,
+ powerPreference: _powerPreference,
+ failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat
+ }; // event listeners must be registered before WebGL context is created, see #12753
+
+ _canvas.addEventListener('webglcontextlost', onContextLost, false);
+
+ _canvas.addEventListener('webglcontextrestored', onContextRestore, false);
+
+ if (_gl === null) {
+ const contextNames = ['webgl2', 'webgl', 'experimental-webgl'];
+
+ if (_this.isWebGL1Renderer === true) {
+ contextNames.shift();
+ }
- this.getViewport = function (target) {
- return target.copy(_viewport);
- };
+ _gl = getContext(contextNames, contextAttributes);
- this.setViewport = function (x, y, width, height) {
- if (x.isVector4) {
- _viewport.set(x.x, x.y, x.z, x.w);
- } else {
- _viewport.set(x, y, width, height);
- }
+ if (_gl === null) {
+ if (getContext(contextNames)) {
+ throw new Error('Error creating WebGL context with your selected attributes.');
+ } else {
+ throw new Error('Error creating WebGL context.');
+ }
+ }
+ } // Some experimental-webgl implementations do not have getShaderPrecisionFormat
- state.viewport(_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor());
- };
- this.getScissor = function (target) {
- return target.copy(_scissor);
- };
+ if (_gl.getShaderPrecisionFormat === undefined) {
+ _gl.getShaderPrecisionFormat = function () {
+ return {
+ 'rangeMin': 1,
+ 'rangeMax': 1,
+ 'precision': 1
+ };
+ };
+ }
+ } catch (error) {
+ console.error('THREE.WebGLRenderer: ' + error.message);
+ throw error;
+ }
+
+ let extensions, capabilities, state, info;
+ let properties, textures, cubemaps, cubeuvmaps, attributes, geometries, objects;
+ let programCache, materials, renderLists, renderStates, clipping, shadowMap;
+ let background, morphtargets, bufferRenderer, indexedBufferRenderer;
+ let utils, bindingStates;
+
+ function initGLContext() {
+ extensions = new WebGLExtensions(_gl);
+ capabilities = new WebGLCapabilities(_gl, extensions, parameters);
+ extensions.init(capabilities);
+ utils = new WebGLUtils(_gl, extensions, capabilities);
+ state = new WebGLState(_gl, extensions, capabilities);
+ _currentDrawBuffers[0] = _gl.BACK;
+ info = new WebGLInfo(_gl);
+ properties = new WebGLProperties();
+ textures = new WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info);
+ cubemaps = new WebGLCubeMaps(_this);
+ cubeuvmaps = new WebGLCubeUVMaps(_this);
+ attributes = new WebGLAttributes(_gl, capabilities);
+ bindingStates = new WebGLBindingStates(_gl, extensions, attributes, capabilities);
+ geometries = new WebGLGeometries(_gl, attributes, info, bindingStates);
+ objects = new WebGLObjects(_gl, geometries, attributes, info);
+ morphtargets = new WebGLMorphtargets(_gl);
+ clipping = new WebGLClipping(properties);
+ programCache = new WebGLPrograms(_this, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping);
+ materials = new WebGLMaterials(properties);
+ renderLists = new WebGLRenderLists(properties);
+ renderStates = new WebGLRenderStates(extensions, capabilities);
+ background = new WebGLBackground(_this, cubemaps, state, objects, _premultipliedAlpha);
+ shadowMap = new WebGLShadowMap(_this, objects, capabilities);
+ bufferRenderer = new WebGLBufferRenderer(_gl, extensions, info, capabilities);
+ indexedBufferRenderer = new WebGLIndexedBufferRenderer(_gl, extensions, info, capabilities);
+ info.programs = programCache.programs;
+ _this.capabilities = capabilities;
+ _this.extensions = extensions;
+ _this.properties = properties;
+ _this.renderLists = renderLists;
+ _this.shadowMap = shadowMap;
+ _this.state = state;
+ _this.info = info;
+ }
+
+ initGLContext(); // xr
+
+ const xr = new WebXRManager(_this, _gl);
+ this.xr = xr; // API
+
+ this.getContext = function () {
+ return _gl;
+ };
- this.setScissor = function (x, y, width, height) {
- if (x.isVector4) {
- _scissor.set(x.x, x.y, x.z, x.w);
- } else {
- _scissor.set(x, y, width, height);
- }
+ this.getContextAttributes = function () {
+ return _gl.getContextAttributes();
+ };
- state.scissor(_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor());
- };
+ this.forceContextLoss = function () {
+ const extension = extensions.get('WEBGL_lose_context');
+ if (extension) extension.loseContext();
+ };
- this.getScissorTest = function () {
- return _scissorTest;
- };
+ this.forceContextRestore = function () {
+ const extension = extensions.get('WEBGL_lose_context');
+ if (extension) extension.restoreContext();
+ };
- this.setScissorTest = function (boolean) {
- state.setScissorTest(_scissorTest = boolean);
- };
+ this.getPixelRatio = function () {
+ return _pixelRatio;
+ };
- this.setOpaqueSort = function (method) {
- _opaqueSort = method;
- };
+ this.setPixelRatio = function (value) {
+ if (value === undefined) return;
+ _pixelRatio = value;
+ this.setSize(_width, _height, false);
+ };
- this.setTransparentSort = function (method) {
- _transparentSort = method;
- }; // Clearing
+ this.getSize = function (target) {
+ return target.set(_width, _height);
+ };
+ this.setSize = function (width, height, updateStyle) {
+ if (xr.isPresenting) {
+ console.warn('THREE.WebGLRenderer: Can\'t change size while VR device is presenting.');
+ return;
+ }
- this.getClearColor = function (target) {
- return target.copy(background.getClearColor());
- };
+ _width = width;
+ _height = height;
+ _canvas.width = Math.floor(width * _pixelRatio);
+ _canvas.height = Math.floor(height * _pixelRatio);
- this.setClearColor = function () {
- background.setClearColor.apply(background, arguments);
- };
+ if (updateStyle !== false) {
+ _canvas.style.width = width + 'px';
+ _canvas.style.height = height + 'px';
+ }
- this.getClearAlpha = function () {
- return background.getClearAlpha();
- };
+ this.setViewport(0, 0, width, height);
+ };
- this.setClearAlpha = function () {
- background.setClearAlpha.apply(background, arguments);
- };
+ this.getDrawingBufferSize = function (target) {
+ return target.set(_width * _pixelRatio, _height * _pixelRatio).floor();
+ };
- this.clear = function (color, depth, stencil) {
- let bits = 0;
- if (color === undefined || color) bits |= _gl.COLOR_BUFFER_BIT;
- if (depth === undefined || depth) bits |= _gl.DEPTH_BUFFER_BIT;
- if (stencil === undefined || stencil) bits |= _gl.STENCIL_BUFFER_BIT;
+ this.setDrawingBufferSize = function (width, height, pixelRatio) {
+ _width = width;
+ _height = height;
+ _pixelRatio = pixelRatio;
+ _canvas.width = Math.floor(width * pixelRatio);
+ _canvas.height = Math.floor(height * pixelRatio);
+ this.setViewport(0, 0, width, height);
+ };
- _gl.clear(bits);
- };
+ this.getCurrentViewport = function (target) {
+ return target.copy(_currentViewport);
+ };
- this.clearColor = function () {
- this.clear(true, false, false);
- };
+ this.getViewport = function (target) {
+ return target.copy(_viewport);
+ };
- this.clearDepth = function () {
- this.clear(false, true, false);
- };
+ this.setViewport = function (x, y, width, height) {
+ if (x.isVector4) {
+ _viewport.set(x.x, x.y, x.z, x.w);
+ } else {
+ _viewport.set(x, y, width, height);
+ }
- this.clearStencil = function () {
- this.clear(false, false, true);
- }; //
+ state.viewport(_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor());
+ };
+ this.getScissor = function (target) {
+ return target.copy(_scissor);
+ };
- this.dispose = function () {
- _canvas.removeEventListener('webglcontextlost', onContextLost, false);
+ this.setScissor = function (x, y, width, height) {
+ if (x.isVector4) {
+ _scissor.set(x.x, x.y, x.z, x.w);
+ } else {
+ _scissor.set(x, y, width, height);
+ }
- _canvas.removeEventListener('webglcontextrestored', onContextRestore, false);
+ state.scissor(_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor());
+ };
- renderLists.dispose();
- renderStates.dispose();
- properties.dispose();
- cubemaps.dispose();
- cubeuvmaps.dispose();
- objects.dispose();
- bindingStates.dispose();
- xr.dispose();
- xr.removeEventListener('sessionstart', onXRSessionStart);
- xr.removeEventListener('sessionend', onXRSessionEnd);
+ this.getScissorTest = function () {
+ return _scissorTest;
+ };
- if (_transmissionRenderTarget) {
- _transmissionRenderTarget.dispose();
+ this.setScissorTest = function (boolean) {
+ state.setScissorTest(_scissorTest = boolean);
+ };
- _transmissionRenderTarget = null;
- }
+ this.setOpaqueSort = function (method) {
+ _opaqueSort = method;
+ };
- animation.stop();
- }; // Events
+ this.setTransparentSort = function (method) {
+ _transparentSort = method;
+ }; // Clearing
- function onContextLost(event) {
- event.preventDefault();
- console.log('THREE.WebGLRenderer: Context Lost.');
- _isContextLost = true;
- }
+ this.getClearColor = function (target) {
+ return target.copy(background.getClearColor());
+ };
- function onContextRestore() {
- console.log('THREE.WebGLRenderer: Context Restored.');
- _isContextLost = false;
- const infoAutoReset = info.autoReset;
- const shadowMapEnabled = shadowMap.enabled;
- const shadowMapAutoUpdate = shadowMap.autoUpdate;
- const shadowMapNeedsUpdate = shadowMap.needsUpdate;
- const shadowMapType = shadowMap.type;
- initGLContext();
- info.autoReset = infoAutoReset;
- shadowMap.enabled = shadowMapEnabled;
- shadowMap.autoUpdate = shadowMapAutoUpdate;
- shadowMap.needsUpdate = shadowMapNeedsUpdate;
- shadowMap.type = shadowMapType;
- }
+ this.setClearColor = function () {
+ background.setClearColor.apply(background, arguments);
+ };
- function onMaterialDispose(event) {
- const material = event.target;
- material.removeEventListener('dispose', onMaterialDispose);
- deallocateMaterial(material);
- } // Buffer deallocation
+ this.getClearAlpha = function () {
+ return background.getClearAlpha();
+ };
+ this.setClearAlpha = function () {
+ background.setClearAlpha.apply(background, arguments);
+ };
- function deallocateMaterial(material) {
- releaseMaterialProgramReferences(material);
- properties.remove(material);
- }
+ this.clear = function (color, depth, stencil) {
+ let bits = 0;
+ if (color === undefined || color) bits |= _gl.COLOR_BUFFER_BIT;
+ if (depth === undefined || depth) bits |= _gl.DEPTH_BUFFER_BIT;
+ if (stencil === undefined || stencil) bits |= _gl.STENCIL_BUFFER_BIT;
- function releaseMaterialProgramReferences(material) {
- const programs = properties.get(material).programs;
+ _gl.clear(bits);
+ };
- if (programs !== undefined) {
- programs.forEach(function (program) {
- programCache.releaseProgram(program);
- });
- }
- } // Buffer rendering
+ this.clearColor = function () {
+ this.clear(true, false, false);
+ };
+ this.clearDepth = function () {
+ this.clear(false, true, false);
+ };
- function renderObjectImmediate(object, program) {
- object.render(function (object) {
- _this.renderBufferImmediate(object, program);
- });
- }
+ this.clearStencil = function () {
+ this.clear(false, false, true);
+ }; //
- this.renderBufferImmediate = function (object, program) {
- bindingStates.initAttributes();
- const buffers = properties.get(object);
- if (object.hasPositions && !buffers.position) buffers.position = _gl.createBuffer();
- if (object.hasNormals && !buffers.normal) buffers.normal = _gl.createBuffer();
- if (object.hasUvs && !buffers.uv) buffers.uv = _gl.createBuffer();
- if (object.hasColors && !buffers.color) buffers.color = _gl.createBuffer();
- const programAttributes = program.getAttributes();
- if (object.hasPositions) {
- _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.position);
+ this.dispose = function () {
+ _canvas.removeEventListener('webglcontextlost', onContextLost, false);
- _gl.bufferData(_gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW);
+ _canvas.removeEventListener('webglcontextrestored', onContextRestore, false);
- bindingStates.enableAttribute(programAttributes.position.location);
+ renderLists.dispose();
+ renderStates.dispose();
+ properties.dispose();
+ cubemaps.dispose();
+ cubeuvmaps.dispose();
+ objects.dispose();
+ bindingStates.dispose();
+ xr.dispose();
+ xr.removeEventListener('sessionstart', onXRSessionStart);
+ xr.removeEventListener('sessionend', onXRSessionEnd);
- _gl.vertexAttribPointer(programAttributes.position.location, 3, _gl.FLOAT, false, 0, 0);
- }
+ if (_transmissionRenderTarget) {
+ _transmissionRenderTarget.dispose();
- if (object.hasNormals) {
- _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.normal);
+ _transmissionRenderTarget = null;
+ }
- _gl.bufferData(_gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW);
+ animation.stop();
+ }; // Events
- bindingStates.enableAttribute(programAttributes.normal.location);
- _gl.vertexAttribPointer(programAttributes.normal.location, 3, _gl.FLOAT, false, 0, 0);
- }
+ function onContextLost(event) {
+ event.preventDefault();
+ console.log('THREE.WebGLRenderer: Context Lost.');
+ _isContextLost = true;
+ }
- if (object.hasUvs) {
- _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.uv);
+ function onContextRestore() {
+ console.log('THREE.WebGLRenderer: Context Restored.');
+ _isContextLost = false;
+ const infoAutoReset = info.autoReset;
+ const shadowMapEnabled = shadowMap.enabled;
+ const shadowMapAutoUpdate = shadowMap.autoUpdate;
+ const shadowMapNeedsUpdate = shadowMap.needsUpdate;
+ const shadowMapType = shadowMap.type;
+ initGLContext();
+ info.autoReset = infoAutoReset;
+ shadowMap.enabled = shadowMapEnabled;
+ shadowMap.autoUpdate = shadowMapAutoUpdate;
+ shadowMap.needsUpdate = shadowMapNeedsUpdate;
+ shadowMap.type = shadowMapType;
+ }
- _gl.bufferData(_gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW);
+ function onMaterialDispose(event) {
+ const material = event.target;
+ material.removeEventListener('dispose', onMaterialDispose);
+ deallocateMaterial(material);
+ } // Buffer deallocation
- bindingStates.enableAttribute(programAttributes.uv.location);
- _gl.vertexAttribPointer(programAttributes.uv.location, 2, _gl.FLOAT, false, 0, 0);
- }
+ function deallocateMaterial(material) {
+ releaseMaterialProgramReferences(material);
+ properties.remove(material);
+ }
- if (object.hasColors) {
- _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.color);
+ function releaseMaterialProgramReferences(material) {
+ const programs = properties.get(material).programs;
- _gl.bufferData(_gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW);
+ if (programs !== undefined) {
+ programs.forEach(function (program) {
+ programCache.releaseProgram(program);
+ });
+ }
+ } // Buffer rendering
- bindingStates.enableAttribute(programAttributes.color.location);
- _gl.vertexAttribPointer(programAttributes.color.location, 3, _gl.FLOAT, false, 0, 0);
- }
+ function renderObjectImmediate(object, program) {
+ object.render(function (object) {
+ _this.renderBufferImmediate(object, program);
+ });
+ }
- bindingStates.disableUnusedAttributes();
+ this.renderBufferImmediate = function (object, program) {
+ bindingStates.initAttributes();
+ const buffers = properties.get(object);
+ if (object.hasPositions && !buffers.position) buffers.position = _gl.createBuffer();
+ if (object.hasNormals && !buffers.normal) buffers.normal = _gl.createBuffer();
+ if (object.hasUvs && !buffers.uv) buffers.uv = _gl.createBuffer();
+ if (object.hasColors && !buffers.color) buffers.color = _gl.createBuffer();
+ const programAttributes = program.getAttributes();
- _gl.drawArrays(_gl.TRIANGLES, 0, object.count);
+ if (object.hasPositions) {
+ _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.position);
- object.count = 0;
- };
+ _gl.bufferData(_gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW);
- this.renderBufferDirect = function (camera, scene, geometry, material, object, group) {
- if (scene === null) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null)
+ bindingStates.enableAttribute(programAttributes.position.location);
- const frontFaceCW = object.isMesh && object.matrixWorld.determinant() < 0;
- const program = setProgram(camera, scene, material, object);
- state.setMaterial(material, frontFaceCW); //
+ _gl.vertexAttribPointer(programAttributes.position.location, 3, _gl.FLOAT, false, 0, 0);
+ }
- let index = geometry.index;
- const position = geometry.attributes.position; //
+ if (object.hasNormals) {
+ _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.normal);
- if (index === null) {
- if (position === undefined || position.count === 0) return;
- } else if (index.count === 0) {
- return;
- } //
+ _gl.bufferData(_gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW);
+ bindingStates.enableAttribute(programAttributes.normal.location);
- let rangeFactor = 1;
+ _gl.vertexAttribPointer(programAttributes.normal.location, 3, _gl.FLOAT, false, 0, 0);
+ }
- if (material.wireframe === true) {
- index = geometries.getWireframeAttribute(geometry);
- rangeFactor = 2;
- }
+ if (object.hasUvs) {
+ _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.uv);
- if (geometry.morphAttributes.position !== undefined || geometry.morphAttributes.normal !== undefined) {
- morphtargets.update(object, geometry, material, program);
- }
+ _gl.bufferData(_gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW);
- bindingStates.setup(object, material, program, geometry, index);
- let attribute;
- let renderer = bufferRenderer;
+ bindingStates.enableAttribute(programAttributes.uv.location);
- if (index !== null) {
- attribute = attributes.get(index);
- renderer = indexedBufferRenderer;
- renderer.setIndex(attribute);
- } //
+ _gl.vertexAttribPointer(programAttributes.uv.location, 2, _gl.FLOAT, false, 0, 0);
+ }
+ if (object.hasColors) {
+ _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.color);
- const dataCount = index !== null ? index.count : position.count;
- const rangeStart = geometry.drawRange.start * rangeFactor;
- const rangeCount = geometry.drawRange.count * rangeFactor;
- const groupStart = group !== null ? group.start * rangeFactor : 0;
- const groupCount = group !== null ? group.count * rangeFactor : Infinity;
- const drawStart = Math.max(rangeStart, groupStart);
- const drawEnd = Math.min(dataCount, rangeStart + rangeCount, groupStart + groupCount) - 1;
- const drawCount = Math.max(0, drawEnd - drawStart + 1);
- if (drawCount === 0) return; //
-
- if (object.isMesh) {
- if (material.wireframe === true) {
- state.setLineWidth(material.wireframeLinewidth * getTargetPixelRatio());
- renderer.setMode(_gl.LINES);
- } else {
- renderer.setMode(_gl.TRIANGLES);
- }
- } else if (object.isLine) {
- let lineWidth = material.linewidth;
- if (lineWidth === undefined) lineWidth = 1; // Not using Line*Material
+ _gl.bufferData(_gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW);
- state.setLineWidth(lineWidth * getTargetPixelRatio());
+ bindingStates.enableAttribute(programAttributes.color.location);
- if (object.isLineSegments) {
- renderer.setMode(_gl.LINES);
- } else if (object.isLineLoop) {
- renderer.setMode(_gl.LINE_LOOP);
- } else {
- renderer.setMode(_gl.LINE_STRIP);
- }
- } else if (object.isPoints) {
- renderer.setMode(_gl.POINTS);
- } else if (object.isSprite) {
- renderer.setMode(_gl.TRIANGLES);
- }
+ _gl.vertexAttribPointer(programAttributes.color.location, 3, _gl.FLOAT, false, 0, 0);
+ }
- if (object.isInstancedMesh) {
- renderer.renderInstances(drawStart, drawCount, object.count);
- } else if (geometry.isInstancedBufferGeometry) {
- const instanceCount = Math.min(geometry.instanceCount, geometry._maxInstanceCount);
- renderer.renderInstances(drawStart, drawCount, instanceCount);
- } else {
- renderer.render(drawStart, drawCount);
- }
- }; // Compile
+ bindingStates.disableUnusedAttributes();
+
+ _gl.drawArrays(_gl.TRIANGLES, 0, object.count);
+
+ object.count = 0;
+ };
+
+ this.renderBufferDirect = function (camera, scene, geometry, material, object, group) {
+ if (scene === null) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null)
+
+ const frontFaceCW = object.isMesh && object.matrixWorld.determinant() < 0;
+ const program = setProgram(camera, scene, material, object);
+ state.setMaterial(material, frontFaceCW); //
+
+ let index = geometry.index;
+ const position = geometry.attributes.position; //
+
+ if (index === null) {
+ if (position === undefined || position.count === 0) return;
+ } else if (index.count === 0) {
+ return;
+ } //
- this.compile = function (scene, camera) {
- currentRenderState = renderStates.get(scene);
- currentRenderState.init();
- renderStateStack.push(currentRenderState);
- scene.traverseVisible(function (object) {
- if (object.isLight && object.layers.test(camera.layers)) {
- currentRenderState.pushLight(object);
+ let rangeFactor = 1;
- if (object.castShadow) {
- currentRenderState.pushShadow(object);
+ if (material.wireframe === true) {
+ index = geometries.getWireframeAttribute(geometry);
+ rangeFactor = 2;
}
- }
- });
- currentRenderState.setupLights(_this.physicallyCorrectLights);
- scene.traverse(function (object) {
- const material = object.material;
- if (material) {
- if (Array.isArray(material)) {
- for (let i = 0; i < material.length; i++) {
- const material2 = material[i];
- getProgram(material2, scene, object);
+ if (geometry.morphAttributes.position !== undefined || geometry.morphAttributes.normal !== undefined) {
+ morphtargets.update(object, geometry, material, program);
+ }
+
+ bindingStates.setup(object, material, program, geometry, index);
+ let attribute;
+ let renderer = bufferRenderer;
+
+ if (index !== null) {
+ attribute = attributes.get(index);
+ renderer = indexedBufferRenderer;
+ renderer.setIndex(attribute);
+ } //
+
+
+ const dataCount = index !== null ? index.count : position.count;
+ const rangeStart = geometry.drawRange.start * rangeFactor;
+ const rangeCount = geometry.drawRange.count * rangeFactor;
+ const groupStart = group !== null ? group.start * rangeFactor : 0;
+ const groupCount = group !== null ? group.count * rangeFactor : Infinity;
+ const drawStart = Math.max(rangeStart, groupStart);
+ const drawEnd = Math.min(dataCount, rangeStart + rangeCount, groupStart + groupCount) - 1;
+ const drawCount = Math.max(0, drawEnd - drawStart + 1);
+ if (drawCount === 0) return; //
+
+ if (object.isMesh) {
+ if (material.wireframe === true) {
+ state.setLineWidth(material.wireframeLinewidth * getTargetPixelRatio());
+ renderer.setMode(_gl.LINES);
+ } else {
+ renderer.setMode(_gl.TRIANGLES);
}
- } else {
- getProgram(material, scene, object);
+ } else if (object.isLine) {
+ let lineWidth = material.linewidth;
+ if (lineWidth === undefined) lineWidth = 1; // Not using Line*Material
+
+ state.setLineWidth(lineWidth * getTargetPixelRatio());
+
+ if (object.isLineSegments) {
+ renderer.setMode(_gl.LINES);
+ } else if (object.isLineLoop) {
+ renderer.setMode(_gl.LINE_LOOP);
+ } else {
+ renderer.setMode(_gl.LINE_STRIP);
+ }
+ } else if (object.isPoints) {
+ renderer.setMode(_gl.POINTS);
+ } else if (object.isSprite) {
+ renderer.setMode(_gl.TRIANGLES);
}
- }
- });
- renderStateStack.pop();
- currentRenderState = null;
- }; // Animation Loop
+ if (object.isInstancedMesh) {
+ renderer.renderInstances(drawStart, drawCount, object.count);
+ } else if (geometry.isInstancedBufferGeometry) {
+ const instanceCount = Math.min(geometry.instanceCount, geometry._maxInstanceCount);
+ renderer.renderInstances(drawStart, drawCount, instanceCount);
+ } else {
+ renderer.render(drawStart, drawCount);
+ }
+ }; // Compile
- let onAnimationFrameCallback = null;
- function onAnimationFrame(time) {
- if (onAnimationFrameCallback) onAnimationFrameCallback(time);
- }
+ this.compile = function (scene, camera) {
+ currentRenderState = renderStates.get(scene);
+ currentRenderState.init();
+ renderStateStack.push(currentRenderState);
+ scene.traverseVisible(function (object) {
+ if (object.isLight && object.layers.test(camera.layers)) {
+ currentRenderState.pushLight(object);
- function onXRSessionStart() {
- animation.stop();
- }
+ if (object.castShadow) {
+ currentRenderState.pushShadow(object);
+ }
+ }
+ });
+ currentRenderState.setupLights(_this.physicallyCorrectLights);
+ scene.traverse(function (object) {
+ const material = object.material;
- function onXRSessionEnd() {
- animation.start();
- }
+ if (material) {
+ if (Array.isArray(material)) {
+ for (let i = 0; i < material.length; i++) {
+ const material2 = material[i];
+ getProgram(material2, scene, object);
+ }
+ } else {
+ getProgram(material, scene, object);
+ }
+ }
+ });
+ renderStateStack.pop();
+ currentRenderState = null;
+ }; // Animation Loop
- const animation = new WebGLAnimation();
- animation.setAnimationLoop(onAnimationFrame);
- if (typeof window !== 'undefined') animation.setContext(window);
- this.setAnimationLoop = function (callback) {
- onAnimationFrameCallback = callback;
- xr.setAnimationLoop(callback);
- callback === null ? animation.stop() : animation.start();
- };
+ let onAnimationFrameCallback = null;
- xr.addEventListener('sessionstart', onXRSessionStart);
- xr.addEventListener('sessionend', onXRSessionEnd); // Rendering
+ function onAnimationFrame(time) {
+ if (onAnimationFrameCallback) onAnimationFrameCallback(time);
+ }
- this.render = function (scene, camera) {
- if (camera !== undefined && camera.isCamera !== true) {
- console.error('THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.');
- return;
- }
+ function onXRSessionStart() {
+ animation.stop();
+ }
- if (_isContextLost === true) return; // update scene graph
+ function onXRSessionEnd() {
+ animation.start();
+ }
- if (scene.autoUpdate === true) scene.updateMatrixWorld(); // update camera matrices and frustum
+ const animation = new WebGLAnimation();
+ animation.setAnimationLoop(onAnimationFrame);
+ if (typeof window !== 'undefined') animation.setContext(window);
- if (camera.parent === null) camera.updateMatrixWorld();
+ this.setAnimationLoop = function (callback) {
+ onAnimationFrameCallback = callback;
+ xr.setAnimationLoop(callback);
+ callback === null ? animation.stop() : animation.start();
+ };
- if (xr.enabled === true && xr.isPresenting === true) {
- if (xr.cameraAutoUpdate === true) xr.updateCamera(camera);
- camera = xr.getCamera(); // use XR camera for rendering
- } //
+ xr.addEventListener('sessionstart', onXRSessionStart);
+ xr.addEventListener('sessionend', onXRSessionEnd); // Rendering
+ this.render = function (scene, camera) {
+ if (camera !== undefined && camera.isCamera !== true) {
+ console.error('THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.');
+ return;
+ }
- if (scene.isScene === true) scene.onBeforeRender(_this, scene, camera, _currentRenderTarget);
- currentRenderState = renderStates.get(scene, renderStateStack.length);
- currentRenderState.init();
- renderStateStack.push(currentRenderState);
+ if (_isContextLost === true) return; // update scene graph
- _projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse);
+ if (scene.autoUpdate === true) scene.updateMatrixWorld(); // update camera matrices and frustum
- _frustum.setFromProjectionMatrix(_projScreenMatrix);
+ if (camera.parent === null) camera.updateMatrixWorld();
- _localClippingEnabled = this.localClippingEnabled;
- _clippingEnabled = clipping.init(this.clippingPlanes, _localClippingEnabled, camera);
- currentRenderList = renderLists.get(scene, renderListStack.length);
- currentRenderList.init();
- renderListStack.push(currentRenderList);
- projectObject(scene, camera, 0, _this.sortObjects);
- currentRenderList.finish();
+ if (xr.enabled === true && xr.isPresenting === true) {
+ if (xr.cameraAutoUpdate === true) xr.updateCamera(camera);
+ camera = xr.getCamera(); // use XR camera for rendering
+ } //
- if (_this.sortObjects === true) {
- currentRenderList.sort(_opaqueSort, _transparentSort);
- } //
+ if (scene.isScene === true) scene.onBeforeRender(_this, scene, camera, _currentRenderTarget);
+ currentRenderState = renderStates.get(scene, renderStateStack.length);
+ currentRenderState.init();
+ renderStateStack.push(currentRenderState);
- if (_clippingEnabled === true) clipping.beginShadows();
- const shadowsArray = currentRenderState.state.shadowsArray;
- shadowMap.render(shadowsArray, scene, camera);
- if (_clippingEnabled === true) clipping.endShadows(); //
+ _projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse);
- if (this.info.autoReset === true) this.info.reset(); //
+ _frustum.setFromProjectionMatrix(_projScreenMatrix);
- background.render(currentRenderList, scene); // render scene
+ _localClippingEnabled = this.localClippingEnabled;
+ _clippingEnabled = clipping.init(this.clippingPlanes, _localClippingEnabled, camera);
+ currentRenderList = renderLists.get(scene, renderListStack.length);
+ currentRenderList.init();
+ renderListStack.push(currentRenderList);
+ projectObject(scene, camera, 0, _this.sortObjects);
+ currentRenderList.finish();
- currentRenderState.setupLights(_this.physicallyCorrectLights);
+ if (_this.sortObjects === true) {
+ currentRenderList.sort(_opaqueSort, _transparentSort);
+ } //
- if (camera.isArrayCamera) {
- const cameras = camera.cameras;
- for (let i = 0, l = cameras.length; i < l; i++) {
- const camera2 = cameras[i];
- renderScene(currentRenderList, scene, camera2, camera2.viewport);
- }
- } else {
- renderScene(currentRenderList, scene, camera);
- } //
+ if (_clippingEnabled === true) clipping.beginShadows();
+ const shadowsArray = currentRenderState.state.shadowsArray;
+ shadowMap.render(shadowsArray, scene, camera);
+ if (_clippingEnabled === true) clipping.endShadows(); //
+ if (this.info.autoReset === true) this.info.reset(); //
- if (_currentRenderTarget !== null) {
- // resolve multisample renderbuffers to a single-sample texture if necessary
- textures.updateMultisampleRenderTarget(_currentRenderTarget); // Generate mipmap if we're using any kind of mipmap filtering
+ background.render(currentRenderList, scene); // render scene
- textures.updateRenderTargetMipmap(_currentRenderTarget);
- } //
+ currentRenderState.setupLights(_this.physicallyCorrectLights);
+ if (camera.isArrayCamera) {
+ const cameras = camera.cameras;
- if (scene.isScene === true) scene.onAfterRender(_this, scene, camera); // Ensure depth buffer writing is enabled so it can be cleared on next render
+ for (let i = 0, l = cameras.length; i < l; i++) {
+ const camera2 = cameras[i];
+ renderScene(currentRenderList, scene, camera2, camera2.viewport);
+ }
+ } else {
+ renderScene(currentRenderList, scene, camera);
+ } //
- state.buffers.depth.setTest(true);
- state.buffers.depth.setMask(true);
- state.buffers.color.setMask(true);
- state.setPolygonOffset(false); // _gl.finish();
- bindingStates.resetDefaultState();
- _currentMaterialId = -1;
- _currentCamera = null;
- renderStateStack.pop();
+ if (_currentRenderTarget !== null) {
+ // resolve multisample renderbuffers to a single-sample texture if necessary
+ textures.updateMultisampleRenderTarget(_currentRenderTarget); // Generate mipmap if we're using any kind of mipmap filtering
- if (renderStateStack.length > 0) {
- currentRenderState = renderStateStack[renderStateStack.length - 1];
- } else {
- currentRenderState = null;
- }
+ textures.updateRenderTargetMipmap(_currentRenderTarget);
+ } //
- renderListStack.pop();
- if (renderListStack.length > 0) {
- currentRenderList = renderListStack[renderListStack.length - 1];
- } else {
- currentRenderList = null;
- }
- };
+ if (scene.isScene === true) scene.onAfterRender(_this, scene, camera); // Ensure depth buffer writing is enabled so it can be cleared on next render
- function projectObject(object, camera, groupOrder, sortObjects) {
- if (object.visible === false) return;
- const visible = object.layers.test(camera.layers);
+ state.buffers.depth.setTest(true);
+ state.buffers.depth.setMask(true);
+ state.buffers.color.setMask(true);
+ state.setPolygonOffset(false); // _gl.finish();
- if (visible) {
- if (object.isGroup) {
- groupOrder = object.renderOrder;
- } else if (object.isLOD) {
- if (object.autoUpdate === true) object.update(camera);
- } else if (object.isLight) {
- currentRenderState.pushLight(object);
+ bindingStates.resetDefaultState();
+ _currentMaterialId = -1;
+ _currentCamera = null;
+ renderStateStack.pop();
- if (object.castShadow) {
- currentRenderState.pushShadow(object);
+ if (renderStateStack.length > 0) {
+ currentRenderState = renderStateStack[renderStateStack.length - 1];
+ } else {
+ currentRenderState = null;
}
- } else if (object.isSprite) {
- if (!object.frustumCulled || _frustum.intersectsSprite(object)) {
- if (sortObjects) {
- _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);
- }
- const geometry = objects.update(object);
- const material = object.material;
+ renderListStack.pop();
- if (material.visible) {
- currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null);
- }
- }
- } else if (object.isImmediateRenderObject) {
- if (sortObjects) {
- _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);
+ if (renderListStack.length > 0) {
+ currentRenderList = renderListStack[renderListStack.length - 1];
+ } else {
+ currentRenderList = null;
}
+ };
- currentRenderList.push(object, null, object.material, groupOrder, _vector3.z, null);
- } else if (object.isMesh || object.isLine || object.isPoints) {
- if (object.isSkinnedMesh) {
- // update skeleton only once in a frame
- if (object.skeleton.frame !== info.render.frame) {
- object.skeleton.update();
- object.skeleton.frame = info.render.frame;
- }
- }
+ function projectObject(object, camera, groupOrder, sortObjects) {
+ if (object.visible === false) return;
+ const visible = object.layers.test(camera.layers);
- if (!object.frustumCulled || _frustum.intersectsObject(object)) {
- if (sortObjects) {
- _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);
- }
+ if (visible) {
+ if (object.isGroup) {
+ groupOrder = object.renderOrder;
+ } else if (object.isLOD) {
+ if (object.autoUpdate === true) object.update(camera);
+ } else if (object.isLight) {
+ currentRenderState.pushLight(object);
- const geometry = objects.update(object);
- const material = object.material;
+ if (object.castShadow) {
+ currentRenderState.pushShadow(object);
+ }
+ } else if (object.isSprite) {
+ if (!object.frustumCulled || _frustum.intersectsSprite(object)) {
+ if (sortObjects) {
+ _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);
+ }
- if (Array.isArray(material)) {
- const groups = geometry.groups;
+ const geometry = objects.update(object);
+ const material = object.material;
- for (let i = 0, l = groups.length; i < l; i++) {
- const group = groups[i];
- const groupMaterial = material[group.materialIndex];
+ if (material.visible) {
+ currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null);
+ }
+ }
+ } else if (object.isImmediateRenderObject) {
+ if (sortObjects) {
+ _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);
+ }
- if (groupMaterial && groupMaterial.visible) {
- currentRenderList.push(object, geometry, groupMaterial, groupOrder, _vector3.z, group);
+ currentRenderList.push(object, null, object.material, groupOrder, _vector3.z, null);
+ } else if (object.isMesh || object.isLine || object.isPoints) {
+ if (object.isSkinnedMesh) {
+ // update skeleton only once in a frame
+ if (object.skeleton.frame !== info.render.frame) {
+ object.skeleton.update();
+ object.skeleton.frame = info.render.frame;
}
}
- } else if (material.visible) {
- currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null);
- }
- }
- }
- }
- const children = object.children;
+ if (!object.frustumCulled || _frustum.intersectsObject(object)) {
+ if (sortObjects) {
+ _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);
+ }
- for (let i = 0, l = children.length; i < l; i++) {
- projectObject(children[i], camera, groupOrder, sortObjects);
- }
- }
+ const geometry = objects.update(object);
+ const material = object.material;
- function renderScene(currentRenderList, scene, camera, viewport) {
- const opaqueObjects = currentRenderList.opaque;
- const transmissiveObjects = currentRenderList.transmissive;
- const transparentObjects = currentRenderList.transparent;
- currentRenderState.setupLightsView(camera);
- if (transmissiveObjects.length > 0) renderTransmissionPass(opaqueObjects, scene, camera);
- if (viewport) state.viewport(_currentViewport.copy(viewport));
- if (opaqueObjects.length > 0) renderObjects(opaqueObjects, scene, camera);
- if (transmissiveObjects.length > 0) renderObjects(transmissiveObjects, scene, camera);
- if (transparentObjects.length > 0) renderObjects(transparentObjects, scene, camera);
- }
+ if (Array.isArray(material)) {
+ const groups = geometry.groups;
- function renderTransmissionPass(opaqueObjects, scene, camera) {
- if (_transmissionRenderTarget === null) {
- const needsAntialias = _antialias === true && capabilities.isWebGL2 === true;
- const renderTargetType = needsAntialias ? WebGLMultisampleRenderTarget : WebGLRenderTarget;
- _transmissionRenderTarget = new renderTargetType(1024, 1024, {
- generateMipmaps: true,
- type: utils.convert(HalfFloatType) !== null ? HalfFloatType : UnsignedByteType,
- minFilter: LinearMipmapLinearFilter,
- magFilter: NearestFilter,
- wrapS: ClampToEdgeWrapping,
- wrapT: ClampToEdgeWrapping
- });
- }
+ for (let i = 0, l = groups.length; i < l; i++) {
+ const group = groups[i];
+ const groupMaterial = material[group.materialIndex];
+
+ if (groupMaterial && groupMaterial.visible) {
+ currentRenderList.push(object, geometry, groupMaterial, groupOrder, _vector3.z, group);
+ }
+ }
+ } else if (material.visible) {
+ currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null);
+ }
+ }
+ }
+ }
- const currentRenderTarget = _this.getRenderTarget();
+ const children = object.children;
- _this.setRenderTarget(_transmissionRenderTarget);
+ for (let i = 0, l = children.length; i < l; i++) {
+ projectObject(children[i], camera, groupOrder, sortObjects);
+ }
+ }
- _this.clear(); // Turn off the features which can affect the frag color for opaque objects pass.
- // Otherwise they are applied twice in opaque objects pass and transmission objects pass.
+ function renderScene(currentRenderList, scene, camera, viewport) {
+ const opaqueObjects = currentRenderList.opaque;
+ const transmissiveObjects = currentRenderList.transmissive;
+ const transparentObjects = currentRenderList.transparent;
+ currentRenderState.setupLightsView(camera);
+ if (transmissiveObjects.length > 0) renderTransmissionPass(opaqueObjects, scene, camera);
+ if (viewport) state.viewport(_currentViewport.copy(viewport));
+ if (opaqueObjects.length > 0) renderObjects(opaqueObjects, scene, camera);
+ if (transmissiveObjects.length > 0) renderObjects(transmissiveObjects, scene, camera);
+ if (transparentObjects.length > 0) renderObjects(transparentObjects, scene, camera);
+ }
+
+ function renderTransmissionPass(opaqueObjects, scene, camera) {
+ if (_transmissionRenderTarget === null) {
+ const needsAntialias = _antialias === true && capabilities.isWebGL2 === true;
+ const renderTargetType = needsAntialias ? WebGLMultisampleRenderTarget : WebGLRenderTarget;
+ _transmissionRenderTarget = new renderTargetType(1024, 1024, {
+ generateMipmaps: true,
+ type: utils.convert(HalfFloatType) !== null ? HalfFloatType : UnsignedByteType,
+ minFilter: LinearMipmapLinearFilter,
+ magFilter: NearestFilter,
+ wrapS: ClampToEdgeWrapping,
+ wrapT: ClampToEdgeWrapping
+ });
+ }
+ const currentRenderTarget = _this.getRenderTarget();
- const currentToneMapping = _this.toneMapping;
- _this.toneMapping = NoToneMapping;
- renderObjects(opaqueObjects, scene, camera);
- _this.toneMapping = currentToneMapping;
- textures.updateMultisampleRenderTarget(_transmissionRenderTarget);
- textures.updateRenderTargetMipmap(_transmissionRenderTarget);
+ _this.setRenderTarget(_transmissionRenderTarget);
- _this.setRenderTarget(currentRenderTarget);
- }
+ _this.clear(); // Turn off the features which can affect the frag color for opaque objects pass.
+ // Otherwise they are applied twice in opaque objects pass and transmission objects pass.
- function renderObjects(renderList, scene, camera) {
- const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null;
- for (let i = 0, l = renderList.length; i < l; i++) {
- const renderItem = renderList[i];
- const object = renderItem.object;
- const geometry = renderItem.geometry;
- const material = overrideMaterial === null ? renderItem.material : overrideMaterial;
- const group = renderItem.group;
+ const currentToneMapping = _this.toneMapping;
+ _this.toneMapping = NoToneMapping;
+ renderObjects(opaqueObjects, scene, camera);
+ _this.toneMapping = currentToneMapping;
+ textures.updateMultisampleRenderTarget(_transmissionRenderTarget);
+ textures.updateRenderTargetMipmap(_transmissionRenderTarget);
- if (object.layers.test(camera.layers)) {
- renderObject(object, scene, camera, geometry, material, group);
+ _this.setRenderTarget(currentRenderTarget);
}
- }
- }
- function renderObject(object, scene, camera, geometry, material, group) {
- object.onBeforeRender(_this, scene, camera, geometry, material, group);
- object.modelViewMatrix.multiplyMatrices(camera.matrixWorldInverse, object.matrixWorld);
- object.normalMatrix.getNormalMatrix(object.modelViewMatrix);
+ function renderObjects(renderList, scene, camera) {
+ const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null;
- if (object.isImmediateRenderObject) {
- const program = setProgram(camera, scene, material, object);
- state.setMaterial(material);
- bindingStates.reset();
- renderObjectImmediate(object, program);
- } else {
- if (material.transparent === true && material.side === DoubleSide) {
- material.side = BackSide;
- material.needsUpdate = true;
+ for (let i = 0, l = renderList.length; i < l; i++) {
+ const renderItem = renderList[i];
+ const object = renderItem.object;
+ const geometry = renderItem.geometry;
+ const material = overrideMaterial === null ? renderItem.material : overrideMaterial;
+ const group = renderItem.group;
- _this.renderBufferDirect(camera, scene, geometry, material, object, group);
+ if (object.layers.test(camera.layers)) {
+ renderObject(object, scene, camera, geometry, material, group);
+ }
+ }
+ }
- material.side = FrontSide;
- material.needsUpdate = true;
+ function renderObject(object, scene, camera, geometry, material, group) {
+ object.onBeforeRender(_this, scene, camera, geometry, material, group);
+ object.modelViewMatrix.multiplyMatrices(camera.matrixWorldInverse, object.matrixWorld);
+ object.normalMatrix.getNormalMatrix(object.modelViewMatrix);
- _this.renderBufferDirect(camera, scene, geometry, material, object, group);
+ if (object.isImmediateRenderObject) {
+ const program = setProgram(camera, scene, material, object);
+ state.setMaterial(material);
+ bindingStates.reset();
+ renderObjectImmediate(object, program);
+ } else {
+ if (material.transparent === true && material.side === DoubleSide) {
+ material.side = BackSide;
+ material.needsUpdate = true;
- material.side = DoubleSide;
- } else {
- _this.renderBufferDirect(camera, scene, geometry, material, object, group);
- }
- }
+ _this.renderBufferDirect(camera, scene, geometry, material, object, group);
- object.onAfterRender(_this, scene, camera, geometry, material, group);
- }
+ material.side = FrontSide;
+ material.needsUpdate = true;
- function getProgram(material, scene, object) {
- if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
+ _this.renderBufferDirect(camera, scene, geometry, material, object, group);
- const materialProperties = properties.get(material);
- const lights = currentRenderState.state.lights;
- const shadowsArray = currentRenderState.state.shadowsArray;
- const lightsStateVersion = lights.state.version;
- const parameters = programCache.getParameters(material, lights.state, shadowsArray, scene, object);
- const programCacheKey = programCache.getProgramCacheKey(parameters);
- let programs = materialProperties.programs; // always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change
+ material.side = DoubleSide;
+ } else {
+ _this.renderBufferDirect(camera, scene, geometry, material, object, group);
+ }
+ }
- materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null;
- materialProperties.fog = scene.fog;
- materialProperties.envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || materialProperties.environment);
+ object.onAfterRender(_this, scene, camera, geometry, material, group);
+ }
- if (programs === undefined) {
- // new material
- material.addEventListener('dispose', onMaterialDispose);
- programs = new Map();
- materialProperties.programs = programs;
- }
+ function getProgram(material, scene, object) {
+ if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
- let program = programs.get(programCacheKey);
+ const materialProperties = properties.get(material);
+ const lights = currentRenderState.state.lights;
+ const shadowsArray = currentRenderState.state.shadowsArray;
+ const lightsStateVersion = lights.state.version;
+ const parameters = programCache.getParameters(material, lights.state, shadowsArray, scene, object);
+ const programCacheKey = programCache.getProgramCacheKey(parameters);
+ let programs = materialProperties.programs; // always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change
- if (program !== undefined) {
- // early out if program and light state is identical
- if (materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion) {
- updateCommonMaterialProperties(material, parameters);
- return program;
- }
- } else {
- parameters.uniforms = programCache.getUniforms(material);
- material.onBuild(parameters, _this);
- material.onBeforeCompile(parameters, _this);
- program = programCache.acquireProgram(parameters, programCacheKey);
- programs.set(programCacheKey, program);
- materialProperties.uniforms = parameters.uniforms;
- }
-
- const uniforms = materialProperties.uniforms;
-
- if (!material.isShaderMaterial && !material.isRawShaderMaterial || material.clipping === true) {
- uniforms.clippingPlanes = clipping.uniform;
- }
-
- updateCommonMaterialProperties(material, parameters); // store the light setup it was created for
-
- materialProperties.needsLights = materialNeedsLights(material);
- materialProperties.lightsStateVersion = lightsStateVersion;
-
- if (materialProperties.needsLights) {
- // wire up the material to this renderer's lighting state
- uniforms.ambientLightColor.value = lights.state.ambient;
- uniforms.lightProbe.value = lights.state.probe;
- uniforms.directionalLights.value = lights.state.directional;
- uniforms.directionalLightShadows.value = lights.state.directionalShadow;
- uniforms.spotLights.value = lights.state.spot;
- uniforms.spotLightShadows.value = lights.state.spotShadow;
- uniforms.rectAreaLights.value = lights.state.rectArea;
- uniforms.ltc_1.value = lights.state.rectAreaLTC1;
- uniforms.ltc_2.value = lights.state.rectAreaLTC2;
- uniforms.pointLights.value = lights.state.point;
- uniforms.pointLightShadows.value = lights.state.pointShadow;
- uniforms.hemisphereLights.value = lights.state.hemi;
- uniforms.directionalShadowMap.value = lights.state.directionalShadowMap;
- uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix;
- uniforms.spotShadowMap.value = lights.state.spotShadowMap;
- uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix;
- uniforms.pointShadowMap.value = lights.state.pointShadowMap;
- uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms
- }
-
- const progUniforms = program.getUniforms();
- const uniformsList = WebGLUniforms.seqWithValue(progUniforms.seq, uniforms);
- materialProperties.currentProgram = program;
- materialProperties.uniformsList = uniformsList;
- return program;
- }
+ materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null;
+ materialProperties.fog = scene.fog;
+ materialProperties.envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || materialProperties.environment);
- function updateCommonMaterialProperties(material, parameters) {
- const materialProperties = properties.get(material);
- materialProperties.outputEncoding = parameters.outputEncoding;
- materialProperties.instancing = parameters.instancing;
- materialProperties.skinning = parameters.skinning;
- materialProperties.morphTargets = parameters.morphTargets;
- materialProperties.morphNormals = parameters.morphNormals;
- materialProperties.numClippingPlanes = parameters.numClippingPlanes;
- materialProperties.numIntersection = parameters.numClipIntersection;
- materialProperties.vertexAlphas = parameters.vertexAlphas;
- materialProperties.vertexTangents = parameters.vertexTangents;
- }
+ if (programs === undefined) {
+ // new material
+ material.addEventListener('dispose', onMaterialDispose);
+ programs = new Map();
+ materialProperties.programs = programs;
+ }
- function setProgram(camera, scene, material, object) {
- if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
-
- textures.resetTextureUnits();
- const fog = scene.fog;
- const environment = material.isMeshStandardMaterial ? scene.environment : null;
- const encoding = _currentRenderTarget === null ? _this.outputEncoding : _currentRenderTarget.texture.encoding;
- const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment);
- const vertexAlphas = material.vertexColors === true && !!object.geometry && !!object.geometry.attributes.color && object.geometry.attributes.color.itemSize === 4;
- const vertexTangents = !!object.geometry && !!object.geometry.attributes.tangent;
- const morphTargets = !!object.geometry && !!object.geometry.morphAttributes.position;
- const morphNormals = !!object.geometry && !!object.geometry.morphAttributes.normal;
- const materialProperties = properties.get(material);
- const lights = currentRenderState.state.lights;
-
- if (_clippingEnabled === true) {
- if (_localClippingEnabled === true || camera !== _currentCamera) {
- const useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup
- // object instead of the material, once it becomes feasible
- // (#8465, #8379)
-
- clipping.setState(material, camera, useCache);
- }
- } //
+ let program = programs.get(programCacheKey);
+
+ if (program !== undefined) {
+ // early out if program and light state is identical
+ if (materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion) {
+ updateCommonMaterialProperties(material, parameters);
+ return program;
+ }
+ } else {
+ parameters.uniforms = programCache.getUniforms(material);
+ material.onBuild(parameters, _this);
+ material.onBeforeCompile(parameters, _this);
+ program = programCache.acquireProgram(parameters, programCacheKey);
+ programs.set(programCacheKey, program);
+ materialProperties.uniforms = parameters.uniforms;
+ }
+
+ const uniforms = materialProperties.uniforms;
+
+ if (!material.isShaderMaterial && !material.isRawShaderMaterial || material.clipping === true) {
+ uniforms.clippingPlanes = clipping.uniform;
+ }
+ updateCommonMaterialProperties(material, parameters); // store the light setup it was created for
+
+ materialProperties.needsLights = materialNeedsLights(material);
+ materialProperties.lightsStateVersion = lightsStateVersion;
+
+ if (materialProperties.needsLights) {
+ // wire up the material to this renderer's lighting state
+ uniforms.ambientLightColor.value = lights.state.ambient;
+ uniforms.lightProbe.value = lights.state.probe;
+ uniforms.directionalLights.value = lights.state.directional;
+ uniforms.directionalLightShadows.value = lights.state.directionalShadow;
+ uniforms.spotLights.value = lights.state.spot;
+ uniforms.spotLightShadows.value = lights.state.spotShadow;
+ uniforms.rectAreaLights.value = lights.state.rectArea;
+ uniforms.ltc_1.value = lights.state.rectAreaLTC1;
+ uniforms.ltc_2.value = lights.state.rectAreaLTC2;
+ uniforms.pointLights.value = lights.state.point;
+ uniforms.pointLightShadows.value = lights.state.pointShadow;
+ uniforms.hemisphereLights.value = lights.state.hemi;
+ uniforms.directionalShadowMap.value = lights.state.directionalShadowMap;
+ uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix;
+ uniforms.spotShadowMap.value = lights.state.spotShadowMap;
+ uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix;
+ uniforms.pointShadowMap.value = lights.state.pointShadowMap;
+ uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms
+ }
- let needsProgramChange = false;
-
- if (material.version === materialProperties.__version) {
- if (materialProperties.needsLights && materialProperties.lightsStateVersion !== lights.state.version) {
- needsProgramChange = true;
- } else if (materialProperties.outputEncoding !== encoding) {
- needsProgramChange = true;
- } else if (object.isInstancedMesh && materialProperties.instancing === false) {
- needsProgramChange = true;
- } else if (!object.isInstancedMesh && materialProperties.instancing === true) {
- needsProgramChange = true;
- } else if (object.isSkinnedMesh && materialProperties.skinning === false) {
- needsProgramChange = true;
- } else if (!object.isSkinnedMesh && materialProperties.skinning === true) {
- needsProgramChange = true;
- } else if (materialProperties.envMap !== envMap) {
- needsProgramChange = true;
- } else if (material.fog && materialProperties.fog !== fog) {
- needsProgramChange = true;
- } else if (materialProperties.numClippingPlanes !== undefined && (materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection)) {
- needsProgramChange = true;
- } else if (materialProperties.vertexAlphas !== vertexAlphas) {
- needsProgramChange = true;
- } else if (materialProperties.vertexTangents !== vertexTangents) {
- needsProgramChange = true;
- } else if (materialProperties.morphTargets !== morphTargets) {
- needsProgramChange = true;
- } else if (materialProperties.morphNormals !== morphNormals) {
- needsProgramChange = true;
+ const progUniforms = program.getUniforms();
+ const uniformsList = WebGLUniforms.seqWithValue(progUniforms.seq, uniforms);
+ materialProperties.currentProgram = program;
+ materialProperties.uniformsList = uniformsList;
+ return program;
}
- } else {
- needsProgramChange = true;
- materialProperties.__version = material.version;
- } //
+ function updateCommonMaterialProperties(material, parameters) {
+ const materialProperties = properties.get(material);
+ materialProperties.outputEncoding = parameters.outputEncoding;
+ materialProperties.instancing = parameters.instancing;
+ materialProperties.skinning = parameters.skinning;
+ materialProperties.morphTargets = parameters.morphTargets;
+ materialProperties.morphNormals = parameters.morphNormals;
+ materialProperties.numClippingPlanes = parameters.numClippingPlanes;
+ materialProperties.numIntersection = parameters.numClipIntersection;
+ materialProperties.vertexAlphas = parameters.vertexAlphas;
+ materialProperties.vertexTangents = parameters.vertexTangents;
+ }
+
+ function setProgram(camera, scene, material, object) {
+ if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
+
+ textures.resetTextureUnits();
+ const fog = scene.fog;
+ const environment = material.isMeshStandardMaterial ? scene.environment : null;
+ const encoding = _currentRenderTarget === null ? _this.outputEncoding : _currentRenderTarget.texture.encoding;
+ const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment);
+ const vertexAlphas = material.vertexColors === true && !!object.geometry && !!object.geometry.attributes.color && object.geometry.attributes.color.itemSize === 4;
+ const vertexTangents = !!object.geometry && !!object.geometry.attributes.tangent;
+ const morphTargets = !!object.geometry && !!object.geometry.morphAttributes.position;
+ const morphNormals = !!object.geometry && !!object.geometry.morphAttributes.normal;
+ const materialProperties = properties.get(material);
+ const lights = currentRenderState.state.lights;
+
+ if (_clippingEnabled === true) {
+ if (_localClippingEnabled === true || camera !== _currentCamera) {
+ const useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup
+ // object instead of the material, once it becomes feasible
+ // (#8465, #8379)
+
+ clipping.setState(material, camera, useCache);
+ }
+ } //
+
+
+ let needsProgramChange = false;
+
+ if (material.version === materialProperties.__version) {
+ if (materialProperties.needsLights && materialProperties.lightsStateVersion !== lights.state.version) {
+ needsProgramChange = true;
+ } else if (materialProperties.outputEncoding !== encoding) {
+ needsProgramChange = true;
+ } else if (object.isInstancedMesh && materialProperties.instancing === false) {
+ needsProgramChange = true;
+ } else if (!object.isInstancedMesh && materialProperties.instancing === true) {
+ needsProgramChange = true;
+ } else if (object.isSkinnedMesh && materialProperties.skinning === false) {
+ needsProgramChange = true;
+ } else if (!object.isSkinnedMesh && materialProperties.skinning === true) {
+ needsProgramChange = true;
+ } else if (materialProperties.envMap !== envMap) {
+ needsProgramChange = true;
+ } else if (material.fog && materialProperties.fog !== fog) {
+ needsProgramChange = true;
+ } else if (materialProperties.numClippingPlanes !== undefined && (materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection)) {
+ needsProgramChange = true;
+ } else if (materialProperties.vertexAlphas !== vertexAlphas) {
+ needsProgramChange = true;
+ } else if (materialProperties.vertexTangents !== vertexTangents) {
+ needsProgramChange = true;
+ } else if (materialProperties.morphTargets !== morphTargets) {
+ needsProgramChange = true;
+ } else if (materialProperties.morphNormals !== morphNormals) {
+ needsProgramChange = true;
+ }
+ } else {
+ needsProgramChange = true;
+ materialProperties.__version = material.version;
+ } //
- let program = materialProperties.currentProgram;
- if (needsProgramChange === true) {
- program = getProgram(material, scene, object);
- }
+ let program = materialProperties.currentProgram;
- let refreshProgram = false;
- let refreshMaterial = false;
- let refreshLights = false;
- const p_uniforms = program.getUniforms(),
+ if (needsProgramChange === true) {
+ program = getProgram(material, scene, object);
+ }
+
+ let refreshProgram = false;
+ let refreshMaterial = false;
+ let refreshLights = false;
+ const p_uniforms = program.getUniforms(),
m_uniforms = materialProperties.uniforms;
- if (state.useProgram(program.program)) {
- refreshProgram = true;
- refreshMaterial = true;
- refreshLights = true;
- }
+ if (state.useProgram(program.program)) {
+ refreshProgram = true;
+ refreshMaterial = true;
+ refreshLights = true;
+ }
- if (material.id !== _currentMaterialId) {
- _currentMaterialId = material.id;
- refreshMaterial = true;
- }
+ if (material.id !== _currentMaterialId) {
+ _currentMaterialId = material.id;
+ refreshMaterial = true;
+ }
- if (refreshProgram || _currentCamera !== camera) {
- p_uniforms.setValue(_gl, 'projectionMatrix', camera.projectionMatrix);
+ if (refreshProgram || _currentCamera !== camera) {
+ p_uniforms.setValue(_gl, 'projectionMatrix', camera.projectionMatrix);
- if (capabilities.logarithmicDepthBuffer) {
- p_uniforms.setValue(_gl, 'logDepthBufFC', 2.0 / (Math.log(camera.far + 1.0) / Math.LN2));
- }
+ if (capabilities.logarithmicDepthBuffer) {
+ p_uniforms.setValue(_gl, 'logDepthBufFC', 2.0 / (Math.log(camera.far + 1.0) / Math.LN2));
+ }
- if (_currentCamera !== camera) {
- _currentCamera = camera; // lighting uniforms depend on the camera so enforce an update
- // now, in case this material supports lights - or later, when
- // the next material that does gets activated:
+ if (_currentCamera !== camera) {
+ _currentCamera = camera; // lighting uniforms depend on the camera so enforce an update
+ // now, in case this material supports lights - or later, when
+ // the next material that does gets activated:
- refreshMaterial = true; // set to true on material change
+ refreshMaterial = true; // set to true on material change
- refreshLights = true; // remains set until update done
- } // load material specific uniforms
- // (shader material also gets them for the sake of genericity)
+ refreshLights = true; // remains set until update done
+ } // load material specific uniforms
+ // (shader material also gets them for the sake of genericity)
- if (material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshStandardMaterial || material.envMap) {
- const uCamPos = p_uniforms.map.cameraPosition;
+ if (material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshStandardMaterial || material.envMap) {
+ const uCamPos = p_uniforms.map.cameraPosition;
- if (uCamPos !== undefined) {
- uCamPos.setValue(_gl, _vector3.setFromMatrixPosition(camera.matrixWorld));
- }
- }
+ if (uCamPos !== undefined) {
+ uCamPos.setValue(_gl, _vector3.setFromMatrixPosition(camera.matrixWorld));
+ }
+ }
- if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial) {
- p_uniforms.setValue(_gl, 'isOrthographic', camera.isOrthographicCamera === true);
- }
+ if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial) {
+ p_uniforms.setValue(_gl, 'isOrthographic', camera.isOrthographicCamera === true);
+ }
- if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.isShadowMaterial || object.isSkinnedMesh) {
- p_uniforms.setValue(_gl, 'viewMatrix', camera.matrixWorldInverse);
- }
- } // skinning uniforms must be set even if material didn't change
- // auto-setting of texture unit for bone texture must go before other textures
- // otherwise textures used for skinning can take over texture units reserved for other material textures
+ if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.isShadowMaterial || object.isSkinnedMesh) {
+ p_uniforms.setValue(_gl, 'viewMatrix', camera.matrixWorldInverse);
+ }
+ } // skinning uniforms must be set even if material didn't change
+ // auto-setting of texture unit for bone texture must go before other textures
+ // otherwise textures used for skinning can take over texture units reserved for other material textures
- if (object.isSkinnedMesh) {
- p_uniforms.setOptional(_gl, object, 'bindMatrix');
- p_uniforms.setOptional(_gl, object, 'bindMatrixInverse');
- const skeleton = object.skeleton;
+ if (object.isSkinnedMesh) {
+ p_uniforms.setOptional(_gl, object, 'bindMatrix');
+ p_uniforms.setOptional(_gl, object, 'bindMatrixInverse');
+ const skeleton = object.skeleton;
+
+ if (skeleton) {
+ if (capabilities.floatVertexTextures) {
+ if (skeleton.boneTexture === null) skeleton.computeBoneTexture();
+ p_uniforms.setValue(_gl, 'boneTexture', skeleton.boneTexture, textures);
+ p_uniforms.setValue(_gl, 'boneTextureSize', skeleton.boneTextureSize);
+ } else {
+ p_uniforms.setOptional(_gl, skeleton, 'boneMatrices');
+ }
+ }
+ }
- if (skeleton) {
- if (capabilities.floatVertexTextures) {
- if (skeleton.boneTexture === null) skeleton.computeBoneTexture();
- p_uniforms.setValue(_gl, 'boneTexture', skeleton.boneTexture, textures);
- p_uniforms.setValue(_gl, 'boneTextureSize', skeleton.boneTextureSize);
- } else {
- p_uniforms.setOptional(_gl, skeleton, 'boneMatrices');
+ if (refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow) {
+ materialProperties.receiveShadow = object.receiveShadow;
+ p_uniforms.setValue(_gl, 'receiveShadow', object.receiveShadow);
}
- }
- }
- if (refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow) {
- materialProperties.receiveShadow = object.receiveShadow;
- p_uniforms.setValue(_gl, 'receiveShadow', object.receiveShadow);
- }
+ if (refreshMaterial) {
+ p_uniforms.setValue(_gl, 'toneMappingExposure', _this.toneMappingExposure);
- if (refreshMaterial) {
- p_uniforms.setValue(_gl, 'toneMappingExposure', _this.toneMappingExposure);
+ if (materialProperties.needsLights) {
+ // the current material requires lighting info
+ // note: all lighting uniforms are always set correctly
+ // they simply reference the renderer's state for their
+ // values
+ //
+ // use the current material's .needsUpdate flags to set
+ // the GL state when required
+ markUniformsLightsNeedsUpdate(m_uniforms, refreshLights);
+ } // refresh uniforms common to several materials
- if (materialProperties.needsLights) {
- // the current material requires lighting info
- // note: all lighting uniforms are always set correctly
- // they simply reference the renderer's state for their
- // values
- //
- // use the current material's .needsUpdate flags to set
- // the GL state when required
- markUniformsLightsNeedsUpdate(m_uniforms, refreshLights);
- } // refresh uniforms common to several materials
+ if (fog && material.fog) {
+ materials.refreshFogUniforms(m_uniforms, fog);
+ }
- if (fog && material.fog) {
- materials.refreshFogUniforms(m_uniforms, fog);
- }
+ materials.refreshMaterialUniforms(m_uniforms, material, _pixelRatio, _height, _transmissionRenderTarget);
+ WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures);
+ }
- materials.refreshMaterialUniforms(m_uniforms, material, _pixelRatio, _height, _transmissionRenderTarget);
- WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures);
- }
+ if (material.isShaderMaterial && material.uniformsNeedUpdate === true) {
+ WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures);
+ material.uniformsNeedUpdate = false;
+ }
- if (material.isShaderMaterial && material.uniformsNeedUpdate === true) {
- WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures);
- material.uniformsNeedUpdate = false;
- }
+ if (material.isSpriteMaterial) {
+ p_uniforms.setValue(_gl, 'center', object.center);
+ } // common matrices
- if (material.isSpriteMaterial) {
- p_uniforms.setValue(_gl, 'center', object.center);
- } // common matrices
+ p_uniforms.setValue(_gl, 'modelViewMatrix', object.modelViewMatrix);
+ p_uniforms.setValue(_gl, 'normalMatrix', object.normalMatrix);
+ p_uniforms.setValue(_gl, 'modelMatrix', object.matrixWorld);
+ return program;
+ } // If uniforms are marked as clean, they don't need to be loaded to the GPU.
- p_uniforms.setValue(_gl, 'modelViewMatrix', object.modelViewMatrix);
- p_uniforms.setValue(_gl, 'normalMatrix', object.normalMatrix);
- p_uniforms.setValue(_gl, 'modelMatrix', object.matrixWorld);
- return program;
- } // If uniforms are marked as clean, they don't need to be loaded to the GPU.
+ function markUniformsLightsNeedsUpdate(uniforms, value) {
+ uniforms.ambientLightColor.needsUpdate = value;
+ uniforms.lightProbe.needsUpdate = value;
+ uniforms.directionalLights.needsUpdate = value;
+ uniforms.directionalLightShadows.needsUpdate = value;
+ uniforms.pointLights.needsUpdate = value;
+ uniforms.pointLightShadows.needsUpdate = value;
+ uniforms.spotLights.needsUpdate = value;
+ uniforms.spotLightShadows.needsUpdate = value;
+ uniforms.rectAreaLights.needsUpdate = value;
+ uniforms.hemisphereLights.needsUpdate = value;
+ }
- function markUniformsLightsNeedsUpdate(uniforms, value) {
- uniforms.ambientLightColor.needsUpdate = value;
- uniforms.lightProbe.needsUpdate = value;
- uniforms.directionalLights.needsUpdate = value;
- uniforms.directionalLightShadows.needsUpdate = value;
- uniforms.pointLights.needsUpdate = value;
- uniforms.pointLightShadows.needsUpdate = value;
- uniforms.spotLights.needsUpdate = value;
- uniforms.spotLightShadows.needsUpdate = value;
- uniforms.rectAreaLights.needsUpdate = value;
- uniforms.hemisphereLights.needsUpdate = value;
- }
+ function materialNeedsLights(material) {
+ return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || material.isShaderMaterial && material.lights === true;
+ }
- function materialNeedsLights(material) {
- return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || material.isShaderMaterial && material.lights === true;
- }
+ this.getActiveCubeFace = function () {
+ return _currentActiveCubeFace;
+ };
- this.getActiveCubeFace = function () {
- return _currentActiveCubeFace;
- };
+ this.getActiveMipmapLevel = function () {
+ return _currentActiveMipmapLevel;
+ };
- this.getActiveMipmapLevel = function () {
- return _currentActiveMipmapLevel;
- };
+ this.getRenderTarget = function () {
+ return _currentRenderTarget;
+ };
- this.getRenderTarget = function () {
- return _currentRenderTarget;
- };
+ this.setRenderTarget = function (renderTarget, activeCubeFace = 0, activeMipmapLevel = 0) {
+ _currentRenderTarget = renderTarget;
+ _currentActiveCubeFace = activeCubeFace;
+ _currentActiveMipmapLevel = activeMipmapLevel;
- this.setRenderTarget = function (renderTarget, activeCubeFace = 0, activeMipmapLevel = 0) {
- _currentRenderTarget = renderTarget;
- _currentActiveCubeFace = activeCubeFace;
- _currentActiveMipmapLevel = activeMipmapLevel;
+ if (renderTarget && properties.get(renderTarget).__webglFramebuffer === undefined) {
+ textures.setupRenderTarget(renderTarget);
+ }
- if (renderTarget && properties.get(renderTarget).__webglFramebuffer === undefined) {
- textures.setupRenderTarget(renderTarget);
- }
+ let framebuffer = null;
+ let isCube = false;
+ let isRenderTarget3D = false;
- let framebuffer = null;
- let isCube = false;
- let isRenderTarget3D = false;
+ if (renderTarget) {
+ const texture = renderTarget.texture;
- if (renderTarget) {
- const texture = renderTarget.texture;
+ if (texture.isDataTexture3D || texture.isDataTexture2DArray) {
+ isRenderTarget3D = true;
+ }
- if (texture.isDataTexture3D || texture.isDataTexture2DArray) {
- isRenderTarget3D = true;
- }
+ const __webglFramebuffer = properties.get(renderTarget).__webglFramebuffer;
- const __webglFramebuffer = properties.get(renderTarget).__webglFramebuffer;
+ if (renderTarget.isWebGLCubeRenderTarget) {
+ framebuffer = __webglFramebuffer[activeCubeFace];
+ isCube = true;
+ } else if (renderTarget.isWebGLMultisampleRenderTarget) {
+ framebuffer = properties.get(renderTarget).__webglMultisampledFramebuffer;
+ } else {
+ framebuffer = __webglFramebuffer;
+ }
- if (renderTarget.isWebGLCubeRenderTarget) {
- framebuffer = __webglFramebuffer[activeCubeFace];
- isCube = true;
- } else if (renderTarget.isWebGLMultisampleRenderTarget) {
- framebuffer = properties.get(renderTarget).__webglMultisampledFramebuffer;
- } else {
- framebuffer = __webglFramebuffer;
- }
+ _currentViewport.copy(renderTarget.viewport);
- _currentViewport.copy(renderTarget.viewport);
+ _currentScissor.copy(renderTarget.scissor);
- _currentScissor.copy(renderTarget.scissor);
+ _currentScissorTest = renderTarget.scissorTest;
+ } else {
+ _currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor();
- _currentScissorTest = renderTarget.scissorTest;
- } else {
- _currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor();
+ _currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor();
- _currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor();
+ _currentScissorTest = _scissorTest;
+ }
- _currentScissorTest = _scissorTest;
- }
+ const framebufferBound = state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
- const framebufferBound = state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
+ if (framebufferBound && capabilities.drawBuffers) {
+ let needsUpdate = false;
- if (framebufferBound && capabilities.drawBuffers) {
- let needsUpdate = false;
+ if (renderTarget) {
+ if (renderTarget.isWebGLMultipleRenderTargets) {
+ const textures = renderTarget.texture;
- if (renderTarget) {
- if (renderTarget.isWebGLMultipleRenderTargets) {
- const textures = renderTarget.texture;
+ if (_currentDrawBuffers.length !== textures.length || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) {
+ for (let i = 0, il = textures.length; i < il; i++) {
+ _currentDrawBuffers[i] = _gl.COLOR_ATTACHMENT0 + i;
+ }
- if (_currentDrawBuffers.length !== textures.length || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) {
- for (let i = 0, il = textures.length; i < il; i++) {
- _currentDrawBuffers[i] = _gl.COLOR_ATTACHMENT0 + i;
+ _currentDrawBuffers.length = textures.length;
+ needsUpdate = true;
+ }
+ } else {
+ if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) {
+ _currentDrawBuffers[0] = _gl.COLOR_ATTACHMENT0;
+ _currentDrawBuffers.length = 1;
+ needsUpdate = true;
+ }
+ }
+ } else {
+ if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.BACK) {
+ _currentDrawBuffers[0] = _gl.BACK;
+ _currentDrawBuffers.length = 1;
+ needsUpdate = true;
}
-
- _currentDrawBuffers.length = textures.length;
- needsUpdate = true;
}
- } else {
- if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) {
- _currentDrawBuffers[0] = _gl.COLOR_ATTACHMENT0;
- _currentDrawBuffers.length = 1;
- needsUpdate = true;
+
+ if (needsUpdate) {
+ if (capabilities.isWebGL2) {
+ _gl.drawBuffers(_currentDrawBuffers);
+ } else {
+ extensions.get('WEBGL_draw_buffers').drawBuffersWEBGL(_currentDrawBuffers);
+ }
}
}
- } else {
- if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.BACK) {
- _currentDrawBuffers[0] = _gl.BACK;
- _currentDrawBuffers.length = 1;
- needsUpdate = true;
- }
- }
- if (needsUpdate) {
- if (capabilities.isWebGL2) {
- _gl.drawBuffers(_currentDrawBuffers);
- } else {
- extensions.get('WEBGL_draw_buffers').drawBuffersWEBGL(_currentDrawBuffers);
- }
- }
- }
+ state.viewport(_currentViewport);
+ state.scissor(_currentScissor);
+ state.setScissorTest(_currentScissorTest);
- state.viewport(_currentViewport);
- state.scissor(_currentScissor);
- state.setScissorTest(_currentScissorTest);
+ if (isCube) {
+ const textureProperties = properties.get(renderTarget.texture);
- if (isCube) {
- const textureProperties = properties.get(renderTarget.texture);
+ _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel);
+ } else if (isRenderTarget3D) {
+ const textureProperties = properties.get(renderTarget.texture);
+ const layer = activeCubeFace || 0;
- _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel);
- } else if (isRenderTarget3D) {
- const textureProperties = properties.get(renderTarget.texture);
- const layer = activeCubeFace || 0;
+ _gl.framebufferTextureLayer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureProperties.__webglTexture, activeMipmapLevel || 0, layer);
+ }
- _gl.framebufferTextureLayer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureProperties.__webglTexture, activeMipmapLevel || 0, layer);
- }
+ _currentMaterialId = -1; // reset current material to ensure correct uniform bindings
+ };
- _currentMaterialId = -1; // reset current material to ensure correct uniform bindings
- };
+ this.readRenderTargetPixels = function (renderTarget, x, y, width, height, buffer, activeCubeFaceIndex) {
+ if (!(renderTarget && renderTarget.isWebGLRenderTarget)) {
+ console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.');
+ return;
+ }
- this.readRenderTargetPixels = function (renderTarget, x, y, width, height, buffer, activeCubeFaceIndex) {
- if (!(renderTarget && renderTarget.isWebGLRenderTarget)) {
- console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.');
- return;
- }
+ let framebuffer = properties.get(renderTarget).__webglFramebuffer;
- let framebuffer = properties.get(renderTarget).__webglFramebuffer;
+ if (renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined) {
+ framebuffer = framebuffer[activeCubeFaceIndex];
+ }
- if (renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined) {
- framebuffer = framebuffer[activeCubeFaceIndex];
- }
+ if (framebuffer) {
+ state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
- if (framebuffer) {
- state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
+ try {
+ const texture = renderTarget.texture;
+ const textureFormat = texture.format;
+ const textureType = texture.type;
- try {
- const texture = renderTarget.texture;
- const textureFormat = texture.format;
- const textureType = texture.type;
+ if (textureFormat !== RGBAFormat && utils.convert(textureFormat) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_FORMAT)) {
+ console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.');
+ return;
+ }
- if (textureFormat !== RGBAFormat && utils.convert(textureFormat) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_FORMAT)) {
- console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.');
- return;
- }
+ const halfFloatSupportedByExt = textureType === HalfFloatType && (extensions.has('EXT_color_buffer_half_float') || capabilities.isWebGL2 && extensions.has('EXT_color_buffer_float'));
- const halfFloatSupportedByExt = textureType === HalfFloatType && (extensions.has('EXT_color_buffer_half_float') || capabilities.isWebGL2 && extensions.has('EXT_color_buffer_float'));
+ if (textureType !== UnsignedByteType && utils.convert(textureType) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_TYPE) && // Edge and Chrome Mac < 52 (#9513)
+ !(textureType === FloatType && (capabilities.isWebGL2 || extensions.has('OES_texture_float') || extensions.has('WEBGL_color_buffer_float'))) && // Chrome Mac >= 52 and Firefox
+ !halfFloatSupportedByExt) {
+ console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.');
+ return;
+ }
- if (textureType !== UnsignedByteType && utils.convert(textureType) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_TYPE) && // Edge and Chrome Mac < 52 (#9513)
- !(textureType === FloatType && (capabilities.isWebGL2 || extensions.has('OES_texture_float') || extensions.has('WEBGL_color_buffer_float'))) && // Chrome Mac >= 52 and Firefox
- !halfFloatSupportedByExt) {
- console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.');
- return;
+ if (_gl.checkFramebufferStatus(_gl.FRAMEBUFFER) === _gl.FRAMEBUFFER_COMPLETE) {
+ // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)
+ if (x >= 0 && x <= renderTarget.width - width && y >= 0 && y <= renderTarget.height - height) {
+ _gl.readPixels(x, y, width, height, utils.convert(textureFormat), utils.convert(textureType), buffer);
+ }
+ } else {
+ console.error('THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.');
+ }
+ } finally {
+ // restore framebuffer of current render target if necessary
+ const framebuffer = _currentRenderTarget !== null ? properties.get(_currentRenderTarget).__webglFramebuffer : null;
+ state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
+ }
}
+ };
- if (_gl.checkFramebufferStatus(_gl.FRAMEBUFFER) === _gl.FRAMEBUFFER_COMPLETE) {
- // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)
- if (x >= 0 && x <= renderTarget.width - width && y >= 0 && y <= renderTarget.height - height) {
- _gl.readPixels(x, y, width, height, utils.convert(textureFormat), utils.convert(textureType), buffer);
- }
- } else {
- console.error('THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.');
+ this.copyFramebufferToTexture = function (position, texture, level = 0) {
+ const levelScale = Math.pow(2, -level);
+ const width = Math.floor(texture.image.width * levelScale);
+ const height = Math.floor(texture.image.height * levelScale);
+ let glFormat = utils.convert(texture.format);
+
+ if (capabilities.isWebGL2) {
+ // Workaround for https://bugs.chromium.org/p/chromium/issues/detail?id=1120100
+ // Not needed in Chrome 93+
+ if (glFormat === _gl.RGB) glFormat = _gl.RGB8;
+ if (glFormat === _gl.RGBA) glFormat = _gl.RGBA8;
}
- } finally {
- // restore framebuffer of current render target if necessary
- const framebuffer = _currentRenderTarget !== null ? properties.get(_currentRenderTarget).__webglFramebuffer : null;
- state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
- }
- }
- };
- this.copyFramebufferToTexture = function (position, texture, level = 0) {
- const levelScale = Math.pow(2, -level);
- const width = Math.floor(texture.image.width * levelScale);
- const height = Math.floor(texture.image.height * levelScale);
- let glFormat = utils.convert(texture.format);
+ textures.setTexture2D(texture, 0);
- if (capabilities.isWebGL2) {
- // Workaround for https://bugs.chromium.org/p/chromium/issues/detail?id=1120100
- // Not needed in Chrome 93+
- if (glFormat === _gl.RGB) glFormat = _gl.RGB8;
- if (glFormat === _gl.RGBA) glFormat = _gl.RGBA8;
- }
+ _gl.copyTexImage2D(_gl.TEXTURE_2D, level, glFormat, position.x, position.y, width, height, 0);
- textures.setTexture2D(texture, 0);
+ state.unbindTexture();
+ };
- _gl.copyTexImage2D(_gl.TEXTURE_2D, level, glFormat, position.x, position.y, width, height, 0);
+ this.copyTextureToTexture = function (position, srcTexture, dstTexture, level = 0) {
+ const width = srcTexture.image.width;
+ const height = srcTexture.image.height;
+ const glFormat = utils.convert(dstTexture.format);
+ const glType = utils.convert(dstTexture.type);
+ textures.setTexture2D(dstTexture, 0); // As another texture upload may have changed pixelStorei
+ // parameters, make sure they are correct for the dstTexture
- state.unbindTexture();
- };
+ _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY);
- this.copyTextureToTexture = function (position, srcTexture, dstTexture, level = 0) {
- const width = srcTexture.image.width;
- const height = srcTexture.image.height;
- const glFormat = utils.convert(dstTexture.format);
- const glType = utils.convert(dstTexture.type);
- textures.setTexture2D(dstTexture, 0); // As another texture upload may have changed pixelStorei
- // parameters, make sure they are correct for the dstTexture
+ _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha);
- _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY);
+ _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment);
- _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha);
+ if (srcTexture.isDataTexture) {
+ _gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data);
+ } else {
+ if (srcTexture.isCompressedTexture) {
+ _gl.compressedTexSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, srcTexture.mipmaps[0].width, srcTexture.mipmaps[0].height, glFormat, srcTexture.mipmaps[0].data);
+ } else {
+ _gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, glFormat, glType, srcTexture.image);
+ }
+ } // Generate mipmaps only when copying level 0
- _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment);
- if (srcTexture.isDataTexture) {
- _gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data);
- } else {
- if (srcTexture.isCompressedTexture) {
- _gl.compressedTexSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, srcTexture.mipmaps[0].width, srcTexture.mipmaps[0].height, glFormat, srcTexture.mipmaps[0].data);
- } else {
- _gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, glFormat, glType, srcTexture.image);
- }
- } // Generate mipmaps only when copying level 0
+ if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(_gl.TEXTURE_2D);
+ state.unbindTexture();
+ };
+ this.copyTextureToTexture3D = function (sourceBox, position, srcTexture, dstTexture, level = 0) {
+ if (_this.isWebGL1Renderer) {
+ console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: can only be used with WebGL2.');
+ return;
+ }
- if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(_gl.TEXTURE_2D);
- state.unbindTexture();
- };
+ const width = sourceBox.max.x - sourceBox.min.x + 1;
+ const height = sourceBox.max.y - sourceBox.min.y + 1;
+ const depth = sourceBox.max.z - sourceBox.min.z + 1;
+ const glFormat = utils.convert(dstTexture.format);
+ const glType = utils.convert(dstTexture.type);
+ let glTarget;
+
+ if (dstTexture.isDataTexture3D) {
+ textures.setTexture3D(dstTexture, 0);
+ glTarget = _gl.TEXTURE_3D;
+ } else if (dstTexture.isDataTexture2DArray) {
+ textures.setTexture2DArray(dstTexture, 0);
+ glTarget = _gl.TEXTURE_2D_ARRAY;
+ } else {
+ console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: only supports THREE.DataTexture3D and THREE.DataTexture2DArray.');
+ return;
+ }
- this.copyTextureToTexture3D = function (sourceBox, position, srcTexture, dstTexture, level = 0) {
- if (_this.isWebGL1Renderer) {
- console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: can only be used with WebGL2.');
- return;
- }
+ _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY);
- const width = sourceBox.max.x - sourceBox.min.x + 1;
- const height = sourceBox.max.y - sourceBox.min.y + 1;
- const depth = sourceBox.max.z - sourceBox.min.z + 1;
- const glFormat = utils.convert(dstTexture.format);
- const glType = utils.convert(dstTexture.type);
- let glTarget;
+ _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha);
- if (dstTexture.isDataTexture3D) {
- textures.setTexture3D(dstTexture, 0);
- glTarget = _gl.TEXTURE_3D;
- } else if (dstTexture.isDataTexture2DArray) {
- textures.setTexture2DArray(dstTexture, 0);
- glTarget = _gl.TEXTURE_2D_ARRAY;
- } else {
- console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: only supports THREE.DataTexture3D and THREE.DataTexture2DArray.');
- return;
- }
+ _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment);
- _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY);
+ const unpackRowLen = _gl.getParameter(_gl.UNPACK_ROW_LENGTH);
- _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha);
+ const unpackImageHeight = _gl.getParameter(_gl.UNPACK_IMAGE_HEIGHT);
- _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment);
+ const unpackSkipPixels = _gl.getParameter(_gl.UNPACK_SKIP_PIXELS);
- const unpackRowLen = _gl.getParameter(_gl.UNPACK_ROW_LENGTH);
+ const unpackSkipRows = _gl.getParameter(_gl.UNPACK_SKIP_ROWS);
- const unpackImageHeight = _gl.getParameter(_gl.UNPACK_IMAGE_HEIGHT);
+ const unpackSkipImages = _gl.getParameter(_gl.UNPACK_SKIP_IMAGES);
- const unpackSkipPixels = _gl.getParameter(_gl.UNPACK_SKIP_PIXELS);
+ const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[0] : srcTexture.image;
- const unpackSkipRows = _gl.getParameter(_gl.UNPACK_SKIP_ROWS);
+ _gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, image.width);
- const unpackSkipImages = _gl.getParameter(_gl.UNPACK_SKIP_IMAGES);
+ _gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, image.height);
- const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[0] : srcTexture.image;
+ _gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, sourceBox.min.x);
- _gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, image.width);
+ _gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, sourceBox.min.y);
- _gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, image.height);
+ _gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, sourceBox.min.z);
- _gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, sourceBox.min.x);
+ if (srcTexture.isDataTexture || srcTexture.isDataTexture3D) {
+ _gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image.data);
+ } else {
+ if (srcTexture.isCompressedTexture) {
+ console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: untested support for compressed srcTexture.');
- _gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, sourceBox.min.y);
+ _gl.compressedTexSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, image.data);
+ } else {
+ _gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image);
+ }
+ }
- _gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, sourceBox.min.z);
+ _gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, unpackRowLen);
- if (srcTexture.isDataTexture || srcTexture.isDataTexture3D) {
- _gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image.data);
- } else {
- if (srcTexture.isCompressedTexture) {
- console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: untested support for compressed srcTexture.');
+ _gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, unpackImageHeight);
- _gl.compressedTexSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, image.data);
- } else {
- _gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image);
- }
- }
+ _gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, unpackSkipPixels);
- _gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, unpackRowLen);
+ _gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, unpackSkipRows);
- _gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, unpackImageHeight);
+ _gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, unpackSkipImages); // Generate mipmaps only when copying level 0
- _gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, unpackSkipPixels);
- _gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, unpackSkipRows);
+ if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(glTarget);
+ state.unbindTexture();
+ };
- _gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, unpackSkipImages); // Generate mipmaps only when copying level 0
+ this.initTexture = function (texture) {
+ textures.setTexture2D(texture, 0);
+ state.unbindTexture();
+ };
+ this.resetState = function () {
+ _currentActiveCubeFace = 0;
+ _currentActiveMipmapLevel = 0;
+ _currentRenderTarget = null;
+ state.reset();
+ bindingStates.reset();
+ };
- if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(glTarget);
- state.unbindTexture();
- };
+ if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
+ __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', {
+ detail: this
+ })); // eslint-disable-line no-undef
- this.initTexture = function (texture) {
- textures.setTexture2D(texture, 0);
- state.unbindTexture();
- };
+ }
+ }
- this.resetState = function () {
- _currentActiveCubeFace = 0;
- _currentActiveMipmapLevel = 0;
- _currentRenderTarget = null;
- state.reset();
- bindingStates.reset();
- };
+ class WebGL1Renderer extends WebGLRenderer {
+ }
- if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
- __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', {
- detail: this
- })); // eslint-disable-line no-undef
+ WebGL1Renderer.prototype.isWebGL1Renderer = true;
- }
- }
+ class FogExp2 {
+ constructor(color, density = 0.00025) {
+ this.name = '';
+ this.color = new Color(color);
+ this.density = density;
+ }
- class WebGL1Renderer extends WebGLRenderer {}
+ clone() {
+ return new FogExp2(this.color, this.density);
+ }
- WebGL1Renderer.prototype.isWebGL1Renderer = true;
+ toJSON() {
+ return {
+ type: 'FogExp2',
+ color: this.color.getHex(),
+ density: this.density
+ };
+ }
- class FogExp2 {
- constructor(color, density = 0.00025) {
- this.name = '';
- this.color = new Color(color);
- this.density = density;
- }
+ }
- clone() {
- return new FogExp2(this.color, this.density);
- }
+ FogExp2.prototype.isFogExp2 = true;
- toJSON() {
- return {
- type: 'FogExp2',
- color: this.color.getHex(),
- density: this.density
- };
- }
+ class Fog {
+ constructor(color, near = 1, far = 1000) {
+ this.name = '';
+ this.color = new Color(color);
+ this.near = near;
+ this.far = far;
+ }
- }
+ clone() {
+ return new Fog(this.color, this.near, this.far);
+ }
- FogExp2.prototype.isFogExp2 = true;
+ toJSON() {
+ return {
+ type: 'Fog',
+ color: this.color.getHex(),
+ near: this.near,
+ far: this.far
+ };
+ }
- class Fog {
- constructor(color, near = 1, far = 1000) {
- this.name = '';
- this.color = new Color(color);
- this.near = near;
- this.far = far;
- }
+ }
- clone() {
- return new Fog(this.color, this.near, this.far);
- }
+ Fog.prototype.isFog = true;
- toJSON() {
- return {
- type: 'Fog',
- color: this.color.getHex(),
- near: this.near,
- far: this.far
- };
- }
+ class Scene extends Object3D {
+ constructor() {
+ super();
+ this.type = 'Scene';
+ this.background = null;
+ this.environment = null;
+ this.fog = null;
+ this.overrideMaterial = null;
+ this.autoUpdate = true; // checked by the renderer
- }
+ if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
+ __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', {
+ detail: this
+ })); // eslint-disable-line no-undef
- Fog.prototype.isFog = true;
+ }
+ }
- class Scene extends Object3D {
- constructor() {
- super();
- this.type = 'Scene';
- this.background = null;
- this.environment = null;
- this.fog = null;
- this.overrideMaterial = null;
- this.autoUpdate = true; // checked by the renderer
+ copy(source, recursive) {
+ super.copy(source, recursive);
+ if (source.background !== null) this.background = source.background.clone();
+ if (source.environment !== null) this.environment = source.environment.clone();
+ if (source.fog !== null) this.fog = source.fog.clone();
+ if (source.overrideMaterial !== null) this.overrideMaterial = source.overrideMaterial.clone();
+ this.autoUpdate = source.autoUpdate;
+ this.matrixAutoUpdate = source.matrixAutoUpdate;
+ return this;
+ }
- if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
- __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', {
- detail: this
- })); // eslint-disable-line no-undef
+ toJSON(meta) {
+ const data = super.toJSON(meta);
+ if (this.fog !== null) data.object.fog = this.fog.toJSON();
+ return data;
+ }
}
- }
- copy(source, recursive) {
- super.copy(source, recursive);
- if (source.background !== null) this.background = source.background.clone();
- if (source.environment !== null) this.environment = source.environment.clone();
- if (source.fog !== null) this.fog = source.fog.clone();
- if (source.overrideMaterial !== null) this.overrideMaterial = source.overrideMaterial.clone();
- this.autoUpdate = source.autoUpdate;
- this.matrixAutoUpdate = source.matrixAutoUpdate;
- return this;
- }
+ Scene.prototype.isScene = true;
- toJSON(meta) {
- const data = super.toJSON(meta);
- if (this.fog !== null) data.object.fog = this.fog.toJSON();
- return data;
- }
+ class InterleavedBuffer {
+ constructor(array, stride) {
+ this.array = array;
+ this.stride = stride;
+ this.count = array !== undefined ? array.length / stride : 0;
+ this.usage = StaticDrawUsage;
+ this.updateRange = {
+ offset: 0,
+ count: -1
+ };
+ this.version = 0;
+ this.uuid = generateUUID();
+ }
- }
+ onUploadCallback() {
+ }
- Scene.prototype.isScene = true;
-
- class InterleavedBuffer {
- constructor(array, stride) {
- this.array = array;
- this.stride = stride;
- this.count = array !== undefined ? array.length / stride : 0;
- this.usage = StaticDrawUsage;
- this.updateRange = {
- offset: 0,
- count: -1
- };
- this.version = 0;
- this.uuid = generateUUID();
- }
+ set needsUpdate(value) {
+ if (value === true) this.version++;
+ }
- onUploadCallback() {}
+ setUsage(value) {
+ this.usage = value;
+ return this;
+ }
- set needsUpdate(value) {
- if (value === true) this.version++;
- }
+ copy(source) {
+ this.array = new source.array.constructor(source.array);
+ this.count = source.count;
+ this.stride = source.stride;
+ this.usage = source.usage;
+ return this;
+ }
- setUsage(value) {
- this.usage = value;
- return this;
- }
+ copyAt(index1, attribute, index2) {
+ index1 *= this.stride;
+ index2 *= attribute.stride;
- copy(source) {
- this.array = new source.array.constructor(source.array);
- this.count = source.count;
- this.stride = source.stride;
- this.usage = source.usage;
- return this;
- }
+ for (let i = 0, l = this.stride; i < l; i++) {
+ this.array[index1 + i] = attribute.array[index2 + i];
+ }
- copyAt(index1, attribute, index2) {
- index1 *= this.stride;
- index2 *= attribute.stride;
+ return this;
+ }
- for (let i = 0, l = this.stride; i < l; i++) {
- this.array[index1 + i] = attribute.array[index2 + i];
- }
+ set(value, offset = 0) {
+ this.array.set(value, offset);
+ return this;
+ }
- return this;
- }
+ clone(data) {
+ if (data.arrayBuffers === undefined) {
+ data.arrayBuffers = {};
+ }
- set(value, offset = 0) {
- this.array.set(value, offset);
- return this;
- }
+ if (this.array.buffer._uuid === undefined) {
+ this.array.buffer._uuid = generateUUID();
+ }
- clone(data) {
- if (data.arrayBuffers === undefined) {
- data.arrayBuffers = {};
- }
+ if (data.arrayBuffers[this.array.buffer._uuid] === undefined) {
+ data.arrayBuffers[this.array.buffer._uuid] = this.array.slice(0).buffer;
+ }
- if (this.array.buffer._uuid === undefined) {
- this.array.buffer._uuid = generateUUID();
- }
+ const array = new this.array.constructor(data.arrayBuffers[this.array.buffer._uuid]);
+ const ib = new this.constructor(array, this.stride);
+ ib.setUsage(this.usage);
+ return ib;
+ }
- if (data.arrayBuffers[this.array.buffer._uuid] === undefined) {
- data.arrayBuffers[this.array.buffer._uuid] = this.array.slice(0).buffer;
- }
+ onUpload(callback) {
+ this.onUploadCallback = callback;
+ return this;
+ }
- const array = new this.array.constructor(data.arrayBuffers[this.array.buffer._uuid]);
- const ib = new this.constructor(array, this.stride);
- ib.setUsage(this.usage);
- return ib;
- }
+ toJSON(data) {
+ if (data.arrayBuffers === undefined) {
+ data.arrayBuffers = {};
+ } // generate UUID for array buffer if necessary
- onUpload(callback) {
- this.onUploadCallback = callback;
- return this;
- }
- toJSON(data) {
- if (data.arrayBuffers === undefined) {
- data.arrayBuffers = {};
- } // generate UUID for array buffer if necessary
+ if (this.array.buffer._uuid === undefined) {
+ this.array.buffer._uuid = generateUUID();
+ }
+ if (data.arrayBuffers[this.array.buffer._uuid] === undefined) {
+ data.arrayBuffers[this.array.buffer._uuid] = Array.prototype.slice.call(new Uint32Array(this.array.buffer));
+ } //
- if (this.array.buffer._uuid === undefined) {
- this.array.buffer._uuid = generateUUID();
- }
- if (data.arrayBuffers[this.array.buffer._uuid] === undefined) {
- data.arrayBuffers[this.array.buffer._uuid] = Array.prototype.slice.call(new Uint32Array(this.array.buffer));
- } //
+ return {
+ uuid: this.uuid,
+ buffer: this.array.buffer._uuid,
+ type: this.array.constructor.name,
+ stride: this.stride
+ };
+ }
+ }
- return {
- uuid: this.uuid,
- buffer: this.array.buffer._uuid,
- type: this.array.constructor.name,
- stride: this.stride
- };
- }
+ InterleavedBuffer.prototype.isInterleavedBuffer = true;
- }
+ const _vector$6 = /*@__PURE__*/new Vector3();
- InterleavedBuffer.prototype.isInterleavedBuffer = true;
+ class InterleavedBufferAttribute {
+ constructor(interleavedBuffer, itemSize, offset, normalized = false) {
+ this.name = '';
+ this.data = interleavedBuffer;
+ this.itemSize = itemSize;
+ this.offset = offset;
+ this.normalized = normalized === true;
+ }
- const _vector$6 = /*@__PURE__*/new Vector3();
+ get count() {
+ return this.data.count;
+ }
- class InterleavedBufferAttribute {
- constructor(interleavedBuffer, itemSize, offset, normalized = false) {
- this.name = '';
- this.data = interleavedBuffer;
- this.itemSize = itemSize;
- this.offset = offset;
- this.normalized = normalized === true;
- }
+ get array() {
+ return this.data.array;
+ }
- get count() {
- return this.data.count;
- }
+ set needsUpdate(value) {
+ this.data.needsUpdate = value;
+ }
- get array() {
- return this.data.array;
- }
+ applyMatrix4(m) {
+ for (let i = 0, l = this.data.count; i < l; i++) {
+ _vector$6.x = this.getX(i);
+ _vector$6.y = this.getY(i);
+ _vector$6.z = this.getZ(i);
- set needsUpdate(value) {
- this.data.needsUpdate = value;
- }
+ _vector$6.applyMatrix4(m);
- applyMatrix4(m) {
- for (let i = 0, l = this.data.count; i < l; i++) {
- _vector$6.x = this.getX(i);
- _vector$6.y = this.getY(i);
- _vector$6.z = this.getZ(i);
+ this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);
+ }
- _vector$6.applyMatrix4(m);
+ return this;
+ }
- this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);
- }
+ applyNormalMatrix(m) {
+ for (let i = 0, l = this.count; i < l; i++) {
+ _vector$6.x = this.getX(i);
+ _vector$6.y = this.getY(i);
+ _vector$6.z = this.getZ(i);
- return this;
- }
+ _vector$6.applyNormalMatrix(m);
- applyNormalMatrix(m) {
- for (let i = 0, l = this.count; i < l; i++) {
- _vector$6.x = this.getX(i);
- _vector$6.y = this.getY(i);
- _vector$6.z = this.getZ(i);
+ this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);
+ }
- _vector$6.applyNormalMatrix(m);
+ return this;
+ }
- this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);
- }
+ transformDirection(m) {
+ for (let i = 0, l = this.count; i < l; i++) {
+ _vector$6.x = this.getX(i);
+ _vector$6.y = this.getY(i);
+ _vector$6.z = this.getZ(i);
- return this;
- }
+ _vector$6.transformDirection(m);
- transformDirection(m) {
- for (let i = 0, l = this.count; i < l; i++) {
- _vector$6.x = this.getX(i);
- _vector$6.y = this.getY(i);
- _vector$6.z = this.getZ(i);
+ this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);
+ }
- _vector$6.transformDirection(m);
+ return this;
+ }
- this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);
- }
+ setX(index, x) {
+ this.data.array[index * this.data.stride + this.offset] = x;
+ return this;
+ }
- return this;
- }
+ setY(index, y) {
+ this.data.array[index * this.data.stride + this.offset + 1] = y;
+ return this;
+ }
- setX(index, x) {
- this.data.array[index * this.data.stride + this.offset] = x;
- return this;
- }
+ setZ(index, z) {
+ this.data.array[index * this.data.stride + this.offset + 2] = z;
+ return this;
+ }
- setY(index, y) {
- this.data.array[index * this.data.stride + this.offset + 1] = y;
- return this;
- }
+ setW(index, w) {
+ this.data.array[index * this.data.stride + this.offset + 3] = w;
+ return this;
+ }
- setZ(index, z) {
- this.data.array[index * this.data.stride + this.offset + 2] = z;
- return this;
- }
+ getX(index) {
+ return this.data.array[index * this.data.stride + this.offset];
+ }
- setW(index, w) {
- this.data.array[index * this.data.stride + this.offset + 3] = w;
- return this;
- }
+ getY(index) {
+ return this.data.array[index * this.data.stride + this.offset + 1];
+ }
- getX(index) {
- return this.data.array[index * this.data.stride + this.offset];
- }
+ getZ(index) {
+ return this.data.array[index * this.data.stride + this.offset + 2];
+ }
- getY(index) {
- return this.data.array[index * this.data.stride + this.offset + 1];
- }
+ getW(index) {
+ return this.data.array[index * this.data.stride + this.offset + 3];
+ }
- getZ(index) {
- return this.data.array[index * this.data.stride + this.offset + 2];
- }
+ setXY(index, x, y) {
+ index = index * this.data.stride + this.offset;
+ this.data.array[index + 0] = x;
+ this.data.array[index + 1] = y;
+ return this;
+ }
- getW(index) {
- return this.data.array[index * this.data.stride + this.offset + 3];
- }
+ setXYZ(index, x, y, z) {
+ index = index * this.data.stride + this.offset;
+ this.data.array[index + 0] = x;
+ this.data.array[index + 1] = y;
+ this.data.array[index + 2] = z;
+ return this;
+ }
- setXY(index, x, y) {
- index = index * this.data.stride + this.offset;
- this.data.array[index + 0] = x;
- this.data.array[index + 1] = y;
- return this;
- }
+ setXYZW(index, x, y, z, w) {
+ index = index * this.data.stride + this.offset;
+ this.data.array[index + 0] = x;
+ this.data.array[index + 1] = y;
+ this.data.array[index + 2] = z;
+ this.data.array[index + 3] = w;
+ return this;
+ }
- setXYZ(index, x, y, z) {
- index = index * this.data.stride + this.offset;
- this.data.array[index + 0] = x;
- this.data.array[index + 1] = y;
- this.data.array[index + 2] = z;
- return this;
- }
+ clone(data) {
+ if (data === undefined) {
+ console.log('THREE.InterleavedBufferAttribute.clone(): Cloning an interlaved buffer attribute will deinterleave buffer data.');
+ const array = [];
- setXYZW(index, x, y, z, w) {
- index = index * this.data.stride + this.offset;
- this.data.array[index + 0] = x;
- this.data.array[index + 1] = y;
- this.data.array[index + 2] = z;
- this.data.array[index + 3] = w;
- return this;
- }
+ for (let i = 0; i < this.count; i++) {
+ const index = i * this.data.stride + this.offset;
+
+ for (let j = 0; j < this.itemSize; j++) {
+ array.push(this.data.array[index + j]);
+ }
+ }
- clone(data) {
- if (data === undefined) {
- console.log('THREE.InterleavedBufferAttribute.clone(): Cloning an interlaved buffer attribute will deinterleave buffer data.');
- const array = [];
+ return new BufferAttribute(new this.array.constructor(array), this.itemSize, this.normalized);
+ } else {
+ if (data.interleavedBuffers === undefined) {
+ data.interleavedBuffers = {};
+ }
- for (let i = 0; i < this.count; i++) {
- const index = i * this.data.stride + this.offset;
+ if (data.interleavedBuffers[this.data.uuid] === undefined) {
+ data.interleavedBuffers[this.data.uuid] = this.data.clone(data);
+ }
- for (let j = 0; j < this.itemSize; j++) {
- array.push(this.data.array[index + j]);
+ return new InterleavedBufferAttribute(data.interleavedBuffers[this.data.uuid], this.itemSize, this.offset, this.normalized);
}
}
- return new BufferAttribute(new this.array.constructor(array), this.itemSize, this.normalized);
- } else {
- if (data.interleavedBuffers === undefined) {
- data.interleavedBuffers = {};
- }
+ toJSON(data) {
+ if (data === undefined) {
+ console.log('THREE.InterleavedBufferAttribute.toJSON(): Serializing an interlaved buffer attribute will deinterleave buffer data.');
+ const array = [];
- if (data.interleavedBuffers[this.data.uuid] === undefined) {
- data.interleavedBuffers[this.data.uuid] = this.data.clone(data);
- }
+ for (let i = 0; i < this.count; i++) {
+ const index = i * this.data.stride + this.offset;
- return new InterleavedBufferAttribute(data.interleavedBuffers[this.data.uuid], this.itemSize, this.offset, this.normalized);
- }
- }
+ for (let j = 0; j < this.itemSize; j++) {
+ array.push(this.data.array[index + j]);
+ }
+ } // deinterleave data and save it as an ordinary buffer attribute for now
- toJSON(data) {
- if (data === undefined) {
- console.log('THREE.InterleavedBufferAttribute.toJSON(): Serializing an interlaved buffer attribute will deinterleave buffer data.');
- const array = [];
- for (let i = 0; i < this.count; i++) {
- const index = i * this.data.stride + this.offset;
+ return {
+ itemSize: this.itemSize,
+ type: this.array.constructor.name,
+ array: array,
+ normalized: this.normalized
+ };
+ } else {
+ // save as true interlaved attribtue
+ if (data.interleavedBuffers === undefined) {
+ data.interleavedBuffers = {};
+ }
- for (let j = 0; j < this.itemSize; j++) {
- array.push(this.data.array[index + j]);
+ if (data.interleavedBuffers[this.data.uuid] === undefined) {
+ data.interleavedBuffers[this.data.uuid] = this.data.toJSON(data);
+ }
+
+ return {
+ isInterleavedBufferAttribute: true,
+ itemSize: this.itemSize,
+ data: this.data.uuid,
+ offset: this.offset,
+ normalized: this.normalized
+ };
}
- } // deinterleave data and save it as an ordinary buffer attribute for now
+ }
+ }
- return {
- itemSize: this.itemSize,
- type: this.array.constructor.name,
- array: array,
- normalized: this.normalized
- };
- } else {
- // save as true interlaved attribtue
- if (data.interleavedBuffers === undefined) {
- data.interleavedBuffers = {};
- }
+ InterleavedBufferAttribute.prototype.isInterleavedBufferAttribute = true;
+
+ /**
+ * parameters = {
+ * color: <hex>,
+ * map: new THREE.Texture( <Image> ),
+ * alphaMap: new THREE.Texture( <Image> ),
+ * rotation: <float>,
+ * sizeAttenuation: <bool>
+ * }
+ */
- if (data.interleavedBuffers[this.data.uuid] === undefined) {
- data.interleavedBuffers[this.data.uuid] = this.data.toJSON(data);
+ class SpriteMaterial extends Material {
+ constructor(parameters) {
+ super();
+ this.type = 'SpriteMaterial';
+ this.color = new Color(0xffffff);
+ this.map = null;
+ this.alphaMap = null;
+ this.rotation = 0;
+ this.sizeAttenuation = true;
+ this.transparent = true;
+ this.setValues(parameters);
+ }
+
+ copy(source) {
+ super.copy(source);
+ this.color.copy(source.color);
+ this.map = source.map;
+ this.alphaMap = source.alphaMap;
+ this.rotation = source.rotation;
+ this.sizeAttenuation = source.sizeAttenuation;
+ return this;
}
- return {
- isInterleavedBufferAttribute: true,
- itemSize: this.itemSize,
- data: this.data.uuid,
- offset: this.offset,
- normalized: this.normalized
- };
}
- }
-
- }
-
- InterleavedBufferAttribute.prototype.isInterleavedBufferAttribute = true;
-
- /**
- * parameters = {
- * color: <hex>,
- * map: new THREE.Texture( <Image> ),
- * alphaMap: new THREE.Texture( <Image> ),
- * rotation: <float>,
- * sizeAttenuation: <bool>
- * }
- */
-
- class SpriteMaterial extends Material {
- constructor(parameters) {
- super();
- this.type = 'SpriteMaterial';
- this.color = new Color(0xffffff);
- this.map = null;
- this.alphaMap = null;
- this.rotation = 0;
- this.sizeAttenuation = true;
- this.transparent = true;
- this.setValues(parameters);
- }
- copy(source) {
- super.copy(source);
- this.color.copy(source.color);
- this.map = source.map;
- this.alphaMap = source.alphaMap;
- this.rotation = source.rotation;
- this.sizeAttenuation = source.sizeAttenuation;
- return this;
- }
+ SpriteMaterial.prototype.isSpriteMaterial = true;
- }
+ let _geometry;
- SpriteMaterial.prototype.isSpriteMaterial = true;
+ const _intersectPoint = /*@__PURE__*/new Vector3();
- let _geometry;
+ const _worldScale = /*@__PURE__*/new Vector3();
- const _intersectPoint = /*@__PURE__*/new Vector3();
+ const _mvPosition = /*@__PURE__*/new Vector3();
- const _worldScale = /*@__PURE__*/new Vector3();
+ const _alignedPosition = /*@__PURE__*/new Vector2();
- const _mvPosition = /*@__PURE__*/new Vector3();
+ const _rotatedPosition = /*@__PURE__*/new Vector2();
- const _alignedPosition = /*@__PURE__*/new Vector2();
+ const _viewWorldMatrix = /*@__PURE__*/new Matrix4();
- const _rotatedPosition = /*@__PURE__*/new Vector2();
+ const _vA = /*@__PURE__*/new Vector3();
- const _viewWorldMatrix = /*@__PURE__*/new Matrix4();
+ const _vB = /*@__PURE__*/new Vector3();
- const _vA = /*@__PURE__*/new Vector3();
+ const _vC = /*@__PURE__*/new Vector3();
- const _vB = /*@__PURE__*/new Vector3();
+ const _uvA = /*@__PURE__*/new Vector2();
- const _vC = /*@__PURE__*/new Vector3();
+ const _uvB = /*@__PURE__*/new Vector2();
- const _uvA = /*@__PURE__*/new Vector2();
+ const _uvC = /*@__PURE__*/new Vector2();
- const _uvB = /*@__PURE__*/new Vector2();
+ class Sprite extends Object3D {
+ constructor(material) {
+ super();
+ this.type = 'Sprite';
- const _uvC = /*@__PURE__*/new Vector2();
+ if (_geometry === undefined) {
+ _geometry = new BufferGeometry();
+ const float32Array = new Float32Array([-0.5, -0.5, 0, 0, 0, 0.5, -0.5, 0, 1, 0, 0.5, 0.5, 0, 1, 1, -0.5, 0.5, 0, 0, 1]);
+ const interleavedBuffer = new InterleavedBuffer(float32Array, 5);
- class Sprite extends Object3D {
- constructor(material) {
- super();
- this.type = 'Sprite';
+ _geometry.setIndex([0, 1, 2, 0, 2, 3]);
- if (_geometry === undefined) {
- _geometry = new BufferGeometry();
- const float32Array = new Float32Array([-0.5, -0.5, 0, 0, 0, 0.5, -0.5, 0, 1, 0, 0.5, 0.5, 0, 1, 1, -0.5, 0.5, 0, 0, 1]);
- const interleavedBuffer = new InterleavedBuffer(float32Array, 5);
+ _geometry.setAttribute('position', new InterleavedBufferAttribute(interleavedBuffer, 3, 0, false));
- _geometry.setIndex([0, 1, 2, 0, 2, 3]);
+ _geometry.setAttribute('uv', new InterleavedBufferAttribute(interleavedBuffer, 2, 3, false));
+ }
- _geometry.setAttribute('position', new InterleavedBufferAttribute(interleavedBuffer, 3, 0, false));
+ this.geometry = _geometry;
+ this.material = material !== undefined ? material : new SpriteMaterial();
+ this.center = new Vector2(0.5, 0.5);
+ }
- _geometry.setAttribute('uv', new InterleavedBufferAttribute(interleavedBuffer, 2, 3, false));
- }
+ raycast(raycaster, intersects) {
+ if (raycaster.camera === null) {
+ console.error('THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.');
+ }
- this.geometry = _geometry;
- this.material = material !== undefined ? material : new SpriteMaterial();
- this.center = new Vector2(0.5, 0.5);
- }
+ _worldScale.setFromMatrixScale(this.matrixWorld);
- raycast(raycaster, intersects) {
- if (raycaster.camera === null) {
- console.error('THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.');
- }
+ _viewWorldMatrix.copy(raycaster.camera.matrixWorld);
- _worldScale.setFromMatrixScale(this.matrixWorld);
+ this.modelViewMatrix.multiplyMatrices(raycaster.camera.matrixWorldInverse, this.matrixWorld);
- _viewWorldMatrix.copy(raycaster.camera.matrixWorld);
+ _mvPosition.setFromMatrixPosition(this.modelViewMatrix);
- this.modelViewMatrix.multiplyMatrices(raycaster.camera.matrixWorldInverse, this.matrixWorld);
+ if (raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false) {
+ _worldScale.multiplyScalar(-_mvPosition.z);
+ }
- _mvPosition.setFromMatrixPosition(this.modelViewMatrix);
+ const rotation = this.material.rotation;
+ let sin, cos;
- if (raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false) {
- _worldScale.multiplyScalar(-_mvPosition.z);
- }
+ if (rotation !== 0) {
+ cos = Math.cos(rotation);
+ sin = Math.sin(rotation);
+ }
- const rotation = this.material.rotation;
- let sin, cos;
+ const center = this.center;
+ transformVertex(_vA.set(-0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos);
+ transformVertex(_vB.set(0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos);
+ transformVertex(_vC.set(0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos);
- if (rotation !== 0) {
- cos = Math.cos(rotation);
- sin = Math.sin(rotation);
- }
+ _uvA.set(0, 0);
- const center = this.center;
- transformVertex(_vA.set(-0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos);
- transformVertex(_vB.set(0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos);
- transformVertex(_vC.set(0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos);
+ _uvB.set(1, 0);
- _uvA.set(0, 0);
+ _uvC.set(1, 1); // check first triangle
- _uvB.set(1, 0);
- _uvC.set(1, 1); // check first triangle
+ let intersect = raycaster.ray.intersectTriangle(_vA, _vB, _vC, false, _intersectPoint);
+ if (intersect === null) {
+ // check second triangle
+ transformVertex(_vB.set(-0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos);
- let intersect = raycaster.ray.intersectTriangle(_vA, _vB, _vC, false, _intersectPoint);
+ _uvB.set(0, 1);
- if (intersect === null) {
- // check second triangle
- transformVertex(_vB.set(-0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos);
+ intersect = raycaster.ray.intersectTriangle(_vA, _vC, _vB, false, _intersectPoint);
- _uvB.set(0, 1);
+ if (intersect === null) {
+ return;
+ }
+ }
- intersect = raycaster.ray.intersectTriangle(_vA, _vC, _vB, false, _intersectPoint);
+ const distance = raycaster.ray.origin.distanceTo(_intersectPoint);
+ if (distance < raycaster.near || distance > raycaster.far) return;
+ intersects.push({
+ distance: distance,
+ point: _intersectPoint.clone(),
+ uv: Triangle.getUV(_intersectPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2()),
+ face: null,
+ object: this
+ });
+ }
- if (intersect === null) {
- return;
+ copy(source) {
+ super.copy(source);
+ if (source.center !== undefined) this.center.copy(source.center);
+ this.material = source.material;
+ return this;
}
+
}
- const distance = raycaster.ray.origin.distanceTo(_intersectPoint);
- if (distance < raycaster.near || distance > raycaster.far) return;
- intersects.push({
- distance: distance,
- point: _intersectPoint.clone(),
- uv: Triangle.getUV(_intersectPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2()),
- face: null,
- object: this
- });
- }
+ Sprite.prototype.isSprite = true;
- copy(source) {
- super.copy(source);
- if (source.center !== undefined) this.center.copy(source.center);
- this.material = source.material;
- return this;
- }
+ function transformVertex(vertexPosition, mvPosition, center, scale, sin, cos) {
+ // compute position in camera space
+ _alignedPosition.subVectors(vertexPosition, center).addScalar(0.5).multiply(scale); // to check if rotation is not zero
- }
- Sprite.prototype.isSprite = true;
+ if (sin !== undefined) {
+ _rotatedPosition.x = cos * _alignedPosition.x - sin * _alignedPosition.y;
+ _rotatedPosition.y = sin * _alignedPosition.x + cos * _alignedPosition.y;
+ } else {
+ _rotatedPosition.copy(_alignedPosition);
+ }
- function transformVertex(vertexPosition, mvPosition, center, scale, sin, cos) {
- // compute position in camera space
- _alignedPosition.subVectors(vertexPosition, center).addScalar(0.5).multiply(scale); // to check if rotation is not zero
+ vertexPosition.copy(mvPosition);
+ vertexPosition.x += _rotatedPosition.x;
+ vertexPosition.y += _rotatedPosition.y; // transform to world space
+ vertexPosition.applyMatrix4(_viewWorldMatrix);
+ }
- if (sin !== undefined) {
- _rotatedPosition.x = cos * _alignedPosition.x - sin * _alignedPosition.y;
- _rotatedPosition.y = sin * _alignedPosition.x + cos * _alignedPosition.y;
- } else {
- _rotatedPosition.copy(_alignedPosition);
- }
+ const _v1$2 = /*@__PURE__*/new Vector3();
- vertexPosition.copy(mvPosition);
- vertexPosition.x += _rotatedPosition.x;
- vertexPosition.y += _rotatedPosition.y; // transform to world space
+ const _v2$1 = /*@__PURE__*/new Vector3();
- vertexPosition.applyMatrix4(_viewWorldMatrix);
- }
+ class LOD extends Object3D {
+ constructor() {
+ super();
+ this._currentLevel = 0;
+ this.type = 'LOD';
+ Object.defineProperties(this, {
+ levels: {
+ enumerable: true,
+ value: []
+ },
+ isLOD: {
+ value: true
+ }
+ });
+ this.autoUpdate = true;
+ }
- const _v1$2 = /*@__PURE__*/new Vector3();
+ copy(source) {
+ super.copy(source, false);
+ const levels = source.levels;
- const _v2$1 = /*@__PURE__*/new Vector3();
+ for (let i = 0, l = levels.length; i < l; i++) {
+ const level = levels[i];
+ this.addLevel(level.object.clone(), level.distance);
+ }
- class LOD extends Object3D {
- constructor() {
- super();
- this._currentLevel = 0;
- this.type = 'LOD';
- Object.defineProperties(this, {
- levels: {
- enumerable: true,
- value: []
- },
- isLOD: {
- value: true
+ this.autoUpdate = source.autoUpdate;
+ return this;
}
- });
- this.autoUpdate = true;
- }
-
- copy(source) {
- super.copy(source, false);
- const levels = source.levels;
-
- for (let i = 0, l = levels.length; i < l; i++) {
- const level = levels[i];
- this.addLevel(level.object.clone(), level.distance);
- }
- this.autoUpdate = source.autoUpdate;
- return this;
- }
+ addLevel(object, distance = 0) {
+ distance = Math.abs(distance);
+ const levels = this.levels;
+ let l;
- addLevel(object, distance = 0) {
- distance = Math.abs(distance);
- const levels = this.levels;
- let l;
+ for (l = 0; l < levels.length; l++) {
+ if (distance < levels[l].distance) {
+ break;
+ }
+ }
- for (l = 0; l < levels.length; l++) {
- if (distance < levels[l].distance) {
- break;
+ levels.splice(l, 0, {
+ distance: distance,
+ object: object
+ });
+ this.add(object);
+ return this;
}
- }
- levels.splice(l, 0, {
- distance: distance,
- object: object
- });
- this.add(object);
- return this;
- }
+ getCurrentLevel() {
+ return this._currentLevel;
+ }
- getCurrentLevel() {
- return this._currentLevel;
- }
+ getObjectForDistance(distance) {
+ const levels = this.levels;
- getObjectForDistance(distance) {
- const levels = this.levels;
+ if (levels.length > 0) {
+ let i, l;
- if (levels.length > 0) {
- let i, l;
+ for (i = 1, l = levels.length; i < l; i++) {
+ if (distance < levels[i].distance) {
+ break;
+ }
+ }
- for (i = 1, l = levels.length; i < l; i++) {
- if (distance < levels[i].distance) {
- break;
+ return levels[i - 1].object;
}
+
+ return null;
}
- return levels[i - 1].object;
- }
+ raycast(raycaster, intersects) {
+ const levels = this.levels;
- return null;
- }
+ if (levels.length > 0) {
+ _v1$2.setFromMatrixPosition(this.matrixWorld);
- raycast(raycaster, intersects) {
- const levels = this.levels;
+ const distance = raycaster.ray.origin.distanceTo(_v1$2);
+ this.getObjectForDistance(distance).raycast(raycaster, intersects);
+ }
+ }
- if (levels.length > 0) {
- _v1$2.setFromMatrixPosition(this.matrixWorld);
+ update(camera) {
+ const levels = this.levels;
- const distance = raycaster.ray.origin.distanceTo(_v1$2);
- this.getObjectForDistance(distance).raycast(raycaster, intersects);
- }
- }
+ if (levels.length > 1) {
+ _v1$2.setFromMatrixPosition(camera.matrixWorld);
- update(camera) {
- const levels = this.levels;
+ _v2$1.setFromMatrixPosition(this.matrixWorld);
- if (levels.length > 1) {
- _v1$2.setFromMatrixPosition(camera.matrixWorld);
+ const distance = _v1$2.distanceTo(_v2$1) / camera.zoom;
+ levels[0].object.visible = true;
+ let i, l;
- _v2$1.setFromMatrixPosition(this.matrixWorld);
+ for (i = 1, l = levels.length; i < l; i++) {
+ if (distance >= levels[i].distance) {
+ levels[i - 1].object.visible = false;
+ levels[i].object.visible = true;
+ } else {
+ break;
+ }
+ }
- const distance = _v1$2.distanceTo(_v2$1) / camera.zoom;
- levels[0].object.visible = true;
- let i, l;
+ this._currentLevel = i - 1;
- for (i = 1, l = levels.length; i < l; i++) {
- if (distance >= levels[i].distance) {
- levels[i - 1].object.visible = false;
- levels[i].object.visible = true;
- } else {
- break;
+ for (; i < l; i++) {
+ levels[i].object.visible = false;
+ }
}
}
- this._currentLevel = i - 1;
+ toJSON(meta) {
+ const data = super.toJSON(meta);
+ if (this.autoUpdate === false) data.object.autoUpdate = false;
+ data.object.levels = [];
+ const levels = this.levels;
+
+ for (let i = 0, l = levels.length; i < l; i++) {
+ const level = levels[i];
+ data.object.levels.push({
+ object: level.object.uuid,
+ distance: level.distance
+ });
+ }
- for (; i < l; i++) {
- levels[i].object.visible = false;
+ return data;
}
- }
- }
- toJSON(meta) {
- const data = super.toJSON(meta);
- if (this.autoUpdate === false) data.object.autoUpdate = false;
- data.object.levels = [];
- const levels = this.levels;
-
- for (let i = 0, l = levels.length; i < l; i++) {
- const level = levels[i];
- data.object.levels.push({
- object: level.object.uuid,
- distance: level.distance
- });
}
- return data;
- }
-
- }
+ const _basePosition = /*@__PURE__*/new Vector3();
- const _basePosition = /*@__PURE__*/new Vector3();
+ const _skinIndex = /*@__PURE__*/new Vector4();
- const _skinIndex = /*@__PURE__*/new Vector4();
+ const _skinWeight = /*@__PURE__*/new Vector4();
- const _skinWeight = /*@__PURE__*/new Vector4();
+ const _vector$5 = /*@__PURE__*/new Vector3();
- const _vector$5 = /*@__PURE__*/new Vector3();
+ const _matrix = /*@__PURE__*/new Matrix4();
- const _matrix = /*@__PURE__*/new Matrix4();
+ class SkinnedMesh extends Mesh {
+ constructor(geometry, material) {
+ super(geometry, material);
+ this.type = 'SkinnedMesh';
+ this.bindMode = 'attached';
+ this.bindMatrix = new Matrix4();
+ this.bindMatrixInverse = new Matrix4();
+ }
- class SkinnedMesh extends Mesh {
- constructor(geometry, material) {
- super(geometry, material);
- this.type = 'SkinnedMesh';
- this.bindMode = 'attached';
- this.bindMatrix = new Matrix4();
- this.bindMatrixInverse = new Matrix4();
- }
+ copy(source) {
+ super.copy(source);
+ this.bindMode = source.bindMode;
+ this.bindMatrix.copy(source.bindMatrix);
+ this.bindMatrixInverse.copy(source.bindMatrixInverse);
+ this.skeleton = source.skeleton;
+ return this;
+ }
- copy(source) {
- super.copy(source);
- this.bindMode = source.bindMode;
- this.bindMatrix.copy(source.bindMatrix);
- this.bindMatrixInverse.copy(source.bindMatrixInverse);
- this.skeleton = source.skeleton;
- return this;
- }
+ bind(skeleton, bindMatrix) {
+ this.skeleton = skeleton;
- bind(skeleton, bindMatrix) {
- this.skeleton = skeleton;
+ if (bindMatrix === undefined) {
+ this.updateMatrixWorld(true);
+ this.skeleton.calculateInverses();
+ bindMatrix = this.matrixWorld;
+ }
- if (bindMatrix === undefined) {
- this.updateMatrixWorld(true);
- this.skeleton.calculateInverses();
- bindMatrix = this.matrixWorld;
- }
+ this.bindMatrix.copy(bindMatrix);
+ this.bindMatrixInverse.copy(bindMatrix).invert();
+ }
- this.bindMatrix.copy(bindMatrix);
- this.bindMatrixInverse.copy(bindMatrix).invert();
- }
+ pose() {
+ this.skeleton.pose();
+ }
- pose() {
- this.skeleton.pose();
- }
+ normalizeSkinWeights() {
+ const vector = new Vector4();
+ const skinWeight = this.geometry.attributes.skinWeight;
- normalizeSkinWeights() {
- const vector = new Vector4();
- const skinWeight = this.geometry.attributes.skinWeight;
+ for (let i = 0, l = skinWeight.count; i < l; i++) {
+ vector.x = skinWeight.getX(i);
+ vector.y = skinWeight.getY(i);
+ vector.z = skinWeight.getZ(i);
+ vector.w = skinWeight.getW(i);
+ const scale = 1.0 / vector.manhattanLength();
- for (let i = 0, l = skinWeight.count; i < l; i++) {
- vector.x = skinWeight.getX(i);
- vector.y = skinWeight.getY(i);
- vector.z = skinWeight.getZ(i);
- vector.w = skinWeight.getW(i);
- const scale = 1.0 / vector.manhattanLength();
+ if (scale !== Infinity) {
+ vector.multiplyScalar(scale);
+ } else {
+ vector.set(1, 0, 0, 0); // do something reasonable
+ }
- if (scale !== Infinity) {
- vector.multiplyScalar(scale);
- } else {
- vector.set(1, 0, 0, 0); // do something reasonable
+ skinWeight.setXYZW(i, vector.x, vector.y, vector.z, vector.w);
+ }
}
- skinWeight.setXYZW(i, vector.x, vector.y, vector.z, vector.w);
- }
- }
+ updateMatrixWorld(force) {
+ super.updateMatrixWorld(force);
- updateMatrixWorld(force) {
- super.updateMatrixWorld(force);
+ if (this.bindMode === 'attached') {
+ this.bindMatrixInverse.copy(this.matrixWorld).invert();
+ } else if (this.bindMode === 'detached') {
+ this.bindMatrixInverse.copy(this.bindMatrix).invert();
+ } else {
+ console.warn('THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode);
+ }
+ }
- if (this.bindMode === 'attached') {
- this.bindMatrixInverse.copy(this.matrixWorld).invert();
- } else if (this.bindMode === 'detached') {
- this.bindMatrixInverse.copy(this.bindMatrix).invert();
- } else {
- console.warn('THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode);
- }
- }
+ boneTransform(index, target) {
+ const skeleton = this.skeleton;
+ const geometry = this.geometry;
- boneTransform(index, target) {
- const skeleton = this.skeleton;
- const geometry = this.geometry;
+ _skinIndex.fromBufferAttribute(geometry.attributes.skinIndex, index);
- _skinIndex.fromBufferAttribute(geometry.attributes.skinIndex, index);
+ _skinWeight.fromBufferAttribute(geometry.attributes.skinWeight, index);
- _skinWeight.fromBufferAttribute(geometry.attributes.skinWeight, index);
+ _basePosition.fromBufferAttribute(geometry.attributes.position, index).applyMatrix4(this.bindMatrix);
- _basePosition.fromBufferAttribute(geometry.attributes.position, index).applyMatrix4(this.bindMatrix);
+ target.set(0, 0, 0);
- target.set(0, 0, 0);
+ for (let i = 0; i < 4; i++) {
+ const weight = _skinWeight.getComponent(i);
- for (let i = 0; i < 4; i++) {
- const weight = _skinWeight.getComponent(i);
+ if (weight !== 0) {
+ const boneIndex = _skinIndex.getComponent(i);
- if (weight !== 0) {
- const boneIndex = _skinIndex.getComponent(i);
+ _matrix.multiplyMatrices(skeleton.bones[boneIndex].matrixWorld, skeleton.boneInverses[boneIndex]);
- _matrix.multiplyMatrices(skeleton.bones[boneIndex].matrixWorld, skeleton.boneInverses[boneIndex]);
+ target.addScaledVector(_vector$5.copy(_basePosition).applyMatrix4(_matrix), weight);
+ }
+ }
- target.addScaledVector(_vector$5.copy(_basePosition).applyMatrix4(_matrix), weight);
+ return target.applyMatrix4(this.bindMatrixInverse);
}
+
}
- return target.applyMatrix4(this.bindMatrixInverse);
- }
+ SkinnedMesh.prototype.isSkinnedMesh = true;
- }
+ class Bone extends Object3D {
+ constructor() {
+ super();
+ this.type = 'Bone';
+ }
- SkinnedMesh.prototype.isSkinnedMesh = true;
+ }
- class Bone extends Object3D {
- constructor() {
- super();
- this.type = 'Bone';
- }
+ Bone.prototype.isBone = true;
- }
+ class DataTexture extends Texture {
+ constructor(data = null, width = 1, height = 1, format, type, mapping, wrapS, wrapT, magFilter = NearestFilter, minFilter = NearestFilter, anisotropy, encoding) {
+ super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
+ this.image = {
+ data: data,
+ width: width,
+ height: height
+ };
+ this.magFilter = magFilter;
+ this.minFilter = minFilter;
+ this.generateMipmaps = false;
+ this.flipY = false;
+ this.unpackAlignment = 1;
+ this.needsUpdate = true;
+ }
- Bone.prototype.isBone = true;
+ }
- class DataTexture extends Texture {
- constructor(data = null, width = 1, height = 1, format, type, mapping, wrapS, wrapT, magFilter = NearestFilter, minFilter = NearestFilter, anisotropy, encoding) {
- super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
- this.image = {
- data: data,
- width: width,
- height: height
- };
- this.magFilter = magFilter;
- this.minFilter = minFilter;
- this.generateMipmaps = false;
- this.flipY = false;
- this.unpackAlignment = 1;
- this.needsUpdate = true;
- }
+ DataTexture.prototype.isDataTexture = true;
- }
+ const _offsetMatrix = /*@__PURE__*/new Matrix4();
- DataTexture.prototype.isDataTexture = true;
+ const _identityMatrix = /*@__PURE__*/new Matrix4();
- const _offsetMatrix = /*@__PURE__*/new Matrix4();
+ class Skeleton {
+ constructor(bones = [], boneInverses = []) {
+ this.uuid = generateUUID();
+ this.bones = bones.slice(0);
+ this.boneInverses = boneInverses;
+ this.boneMatrices = null;
+ this.boneTexture = null;
+ this.boneTextureSize = 0;
+ this.frame = -1;
+ this.init();
+ }
- const _identityMatrix = /*@__PURE__*/new Matrix4();
+ init() {
+ const bones = this.bones;
+ const boneInverses = this.boneInverses;
+ this.boneMatrices = new Float32Array(bones.length * 16); // calculate inverse bone matrices if necessary
- class Skeleton {
- constructor(bones = [], boneInverses = []) {
- this.uuid = generateUUID();
- this.bones = bones.slice(0);
- this.boneInverses = boneInverses;
- this.boneMatrices = null;
- this.boneTexture = null;
- this.boneTextureSize = 0;
- this.frame = -1;
- this.init();
- }
+ if (boneInverses.length === 0) {
+ this.calculateInverses();
+ } else {
+ // handle special case
+ if (bones.length !== boneInverses.length) {
+ console.warn('THREE.Skeleton: Number of inverse bone matrices does not match amount of bones.');
+ this.boneInverses = [];
- init() {
- const bones = this.bones;
- const boneInverses = this.boneInverses;
- this.boneMatrices = new Float32Array(bones.length * 16); // calculate inverse bone matrices if necessary
+ for (let i = 0, il = this.bones.length; i < il; i++) {
+ this.boneInverses.push(new Matrix4());
+ }
+ }
+ }
+ }
- if (boneInverses.length === 0) {
- this.calculateInverses();
- } else {
- // handle special case
- if (bones.length !== boneInverses.length) {
- console.warn('THREE.Skeleton: Number of inverse bone matrices does not match amount of bones.');
- this.boneInverses = [];
+ calculateInverses() {
+ this.boneInverses.length = 0;
for (let i = 0, il = this.bones.length; i < il; i++) {
- this.boneInverses.push(new Matrix4());
+ const inverse = new Matrix4();
+
+ if (this.bones[i]) {
+ inverse.copy(this.bones[i].matrixWorld).invert();
+ }
+
+ this.boneInverses.push(inverse);
}
}
- }
- }
- calculateInverses() {
- this.boneInverses.length = 0;
+ pose() {
+ // recover the bind-time world matrices
+ for (let i = 0, il = this.bones.length; i < il; i++) {
+ const bone = this.bones[i];
- for (let i = 0, il = this.bones.length; i < il; i++) {
- const inverse = new Matrix4();
+ if (bone) {
+ bone.matrixWorld.copy(this.boneInverses[i]).invert();
+ }
+ } // compute the local matrices, positions, rotations and scales
- if (this.bones[i]) {
- inverse.copy(this.bones[i].matrixWorld).invert();
- }
- this.boneInverses.push(inverse);
- }
- }
+ for (let i = 0, il = this.bones.length; i < il; i++) {
+ const bone = this.bones[i];
- pose() {
- // recover the bind-time world matrices
- for (let i = 0, il = this.bones.length; i < il; i++) {
- const bone = this.bones[i];
+ if (bone) {
+ if (bone.parent && bone.parent.isBone) {
+ bone.matrix.copy(bone.parent.matrixWorld).invert();
+ bone.matrix.multiply(bone.matrixWorld);
+ } else {
+ bone.matrix.copy(bone.matrixWorld);
+ }
- if (bone) {
- bone.matrixWorld.copy(this.boneInverses[i]).invert();
+ bone.matrix.decompose(bone.position, bone.quaternion, bone.scale);
+ }
+ }
}
- } // compute the local matrices, positions, rotations and scales
+ update() {
+ const bones = this.bones;
+ const boneInverses = this.boneInverses;
+ const boneMatrices = this.boneMatrices;
+ const boneTexture = this.boneTexture; // flatten bone matrices to array
- for (let i = 0, il = this.bones.length; i < il; i++) {
- const bone = this.bones[i];
+ for (let i = 0, il = bones.length; i < il; i++) {
+ // compute the offset between the current and the original transform
+ const matrix = bones[i] ? bones[i].matrixWorld : _identityMatrix;
- if (bone) {
- if (bone.parent && bone.parent.isBone) {
- bone.matrix.copy(bone.parent.matrixWorld).invert();
- bone.matrix.multiply(bone.matrixWorld);
- } else {
- bone.matrix.copy(bone.matrixWorld);
+ _offsetMatrix.multiplyMatrices(matrix, boneInverses[i]);
+
+ _offsetMatrix.toArray(boneMatrices, i * 16);
}
- bone.matrix.decompose(bone.position, bone.quaternion, bone.scale);
+ if (boneTexture !== null) {
+ boneTexture.needsUpdate = true;
+ }
}
- }
- }
- update() {
- const bones = this.bones;
- const boneInverses = this.boneInverses;
- const boneMatrices = this.boneMatrices;
- const boneTexture = this.boneTexture; // flatten bone matrices to array
+ clone() {
+ return new Skeleton(this.bones, this.boneInverses);
+ }
- for (let i = 0, il = bones.length; i < il; i++) {
- // compute the offset between the current and the original transform
- const matrix = bones[i] ? bones[i].matrixWorld : _identityMatrix;
+ computeBoneTexture() {
+ // layout (1 matrix = 4 pixels)
+ // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
+ // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8)
+ // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16)
+ // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32)
+ // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)
+ let size = Math.sqrt(this.bones.length * 4); // 4 pixels needed for 1 matrix
- _offsetMatrix.multiplyMatrices(matrix, boneInverses[i]);
+ size = ceilPowerOfTwo(size);
+ size = Math.max(size, 4);
+ const boneMatrices = new Float32Array(size * size * 4); // 4 floats per RGBA pixel
- _offsetMatrix.toArray(boneMatrices, i * 16);
- }
+ boneMatrices.set(this.boneMatrices); // copy current values
- if (boneTexture !== null) {
- boneTexture.needsUpdate = true;
- }
- }
+ const boneTexture = new DataTexture(boneMatrices, size, size, RGBAFormat, FloatType);
+ this.boneMatrices = boneMatrices;
+ this.boneTexture = boneTexture;
+ this.boneTextureSize = size;
+ return this;
+ }
- clone() {
- return new Skeleton(this.bones, this.boneInverses);
- }
+ getBoneByName(name) {
+ for (let i = 0, il = this.bones.length; i < il; i++) {
+ const bone = this.bones[i];
- computeBoneTexture() {
- // layout (1 matrix = 4 pixels)
- // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
- // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8)
- // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16)
- // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32)
- // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)
- let size = Math.sqrt(this.bones.length * 4); // 4 pixels needed for 1 matrix
-
- size = ceilPowerOfTwo(size);
- size = Math.max(size, 4);
- const boneMatrices = new Float32Array(size * size * 4); // 4 floats per RGBA pixel
-
- boneMatrices.set(this.boneMatrices); // copy current values
-
- const boneTexture = new DataTexture(boneMatrices, size, size, RGBAFormat, FloatType);
- this.boneMatrices = boneMatrices;
- this.boneTexture = boneTexture;
- this.boneTextureSize = size;
- return this;
- }
+ if (bone.name === name) {
+ return bone;
+ }
+ }
- getBoneByName(name) {
- for (let i = 0, il = this.bones.length; i < il; i++) {
- const bone = this.bones[i];
+ return undefined;
+ }
- if (bone.name === name) {
- return bone;
+ dispose() {
+ if (this.boneTexture !== null) {
+ this.boneTexture.dispose();
+ this.boneTexture = null;
+ }
}
- }
- return undefined;
- }
+ fromJSON(json, bones) {
+ this.uuid = json.uuid;
- dispose() {
- if (this.boneTexture !== null) {
- this.boneTexture.dispose();
- this.boneTexture = null;
- }
- }
+ for (let i = 0, l = json.bones.length; i < l; i++) {
+ const uuid = json.bones[i];
+ let bone = bones[uuid];
- fromJSON(json, bones) {
- this.uuid = json.uuid;
+ if (bone === undefined) {
+ console.warn('THREE.Skeleton: No bone found with UUID:', uuid);
+ bone = new Bone();
+ }
- for (let i = 0, l = json.bones.length; i < l; i++) {
- const uuid = json.bones[i];
- let bone = bones[uuid];
+ this.bones.push(bone);
+ this.boneInverses.push(new Matrix4().fromArray(json.boneInverses[i]));
+ }
- if (bone === undefined) {
- console.warn('THREE.Skeleton: No bone found with UUID:', uuid);
- bone = new Bone();
+ this.init();
+ return this;
}
- this.bones.push(bone);
- this.boneInverses.push(new Matrix4().fromArray(json.boneInverses[i]));
- }
-
- this.init();
- return this;
- }
+ toJSON() {
+ const data = {
+ metadata: {
+ version: 4.5,
+ type: 'Skeleton',
+ generator: 'Skeleton.toJSON'
+ },
+ bones: [],
+ boneInverses: []
+ };
+ data.uuid = this.uuid;
+ const bones = this.bones;
+ const boneInverses = this.boneInverses;
+
+ for (let i = 0, l = bones.length; i < l; i++) {
+ const bone = bones[i];
+ data.bones.push(bone.uuid);
+ const boneInverse = boneInverses[i];
+ data.boneInverses.push(boneInverse.toArray());
+ }
- toJSON() {
- const data = {
- metadata: {
- version: 4.5,
- type: 'Skeleton',
- generator: 'Skeleton.toJSON'
- },
- bones: [],
- boneInverses: []
- };
- data.uuid = this.uuid;
- const bones = this.bones;
- const boneInverses = this.boneInverses;
+ return data;
+ }
- for (let i = 0, l = bones.length; i < l; i++) {
- const bone = bones[i];
- data.bones.push(bone.uuid);
- const boneInverse = boneInverses[i];
- data.boneInverses.push(boneInverse.toArray());
}
- return data;
- }
+ class InstancedBufferAttribute extends BufferAttribute {
+ constructor(array, itemSize, normalized, meshPerAttribute = 1) {
+ if (typeof normalized === 'number') {
+ meshPerAttribute = normalized;
+ normalized = false;
+ console.error('THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.');
+ }
- }
+ super(array, itemSize, normalized);
+ this.meshPerAttribute = meshPerAttribute;
+ }
+
+ copy(source) {
+ super.copy(source);
+ this.meshPerAttribute = source.meshPerAttribute;
+ return this;
+ }
+
+ toJSON() {
+ const data = super.toJSON();
+ data.meshPerAttribute = this.meshPerAttribute;
+ data.isInstancedBufferAttribute = true;
+ return data;
+ }
- class InstancedBufferAttribute extends BufferAttribute {
- constructor(array, itemSize, normalized, meshPerAttribute = 1) {
- if (typeof normalized === 'number') {
- meshPerAttribute = normalized;
- normalized = false;
- console.error('THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.');
}
- super(array, itemSize, normalized);
- this.meshPerAttribute = meshPerAttribute;
- }
+ InstancedBufferAttribute.prototype.isInstancedBufferAttribute = true;
- copy(source) {
- super.copy(source);
- this.meshPerAttribute = source.meshPerAttribute;
- return this;
- }
-
- toJSON() {
- const data = super.toJSON();
- data.meshPerAttribute = this.meshPerAttribute;
- data.isInstancedBufferAttribute = true;
- return data;
- }
+ const _instanceLocalMatrix = /*@__PURE__*/new Matrix4();
- }
+ const _instanceWorldMatrix = /*@__PURE__*/new Matrix4();
- InstancedBufferAttribute.prototype.isInstancedBufferAttribute = true;
+ const _instanceIntersects = [];
- const _instanceLocalMatrix = /*@__PURE__*/new Matrix4();
+ const _mesh = /*@__PURE__*/new Mesh();
- const _instanceWorldMatrix = /*@__PURE__*/new Matrix4();
+ class InstancedMesh extends Mesh {
+ constructor(geometry, material, count) {
+ super(geometry, material);
+ this.instanceMatrix = new InstancedBufferAttribute(new Float32Array(count * 16), 16);
+ this.instanceColor = null;
+ this.count = count;
+ this.frustumCulled = false;
+ }
- const _instanceIntersects = [];
+ copy(source) {
+ super.copy(source);
+ this.instanceMatrix.copy(source.instanceMatrix);
+ if (source.instanceColor !== null) this.instanceColor = source.instanceColor.clone();
+ this.count = source.count;
+ return this;
+ }
- const _mesh = /*@__PURE__*/new Mesh();
+ getColorAt(index, color) {
+ color.fromArray(this.instanceColor.array, index * 3);
+ }
- class InstancedMesh extends Mesh {
- constructor(geometry, material, count) {
- super(geometry, material);
- this.instanceMatrix = new InstancedBufferAttribute(new Float32Array(count * 16), 16);
- this.instanceColor = null;
- this.count = count;
- this.frustumCulled = false;
- }
+ getMatrixAt(index, matrix) {
+ matrix.fromArray(this.instanceMatrix.array, index * 16);
+ }
- copy(source) {
- super.copy(source);
- this.instanceMatrix.copy(source.instanceMatrix);
- if (source.instanceColor !== null) this.instanceColor = source.instanceColor.clone();
- this.count = source.count;
- return this;
- }
+ raycast(raycaster, intersects) {
+ const matrixWorld = this.matrixWorld;
+ const raycastTimes = this.count;
+ _mesh.geometry = this.geometry;
+ _mesh.material = this.material;
+ if (_mesh.material === undefined) return;
- getColorAt(index, color) {
- color.fromArray(this.instanceColor.array, index * 3);
- }
+ for (let instanceId = 0; instanceId < raycastTimes; instanceId++) {
+ // calculate the world matrix for each instance
+ this.getMatrixAt(instanceId, _instanceLocalMatrix);
- getMatrixAt(index, matrix) {
- matrix.fromArray(this.instanceMatrix.array, index * 16);
- }
+ _instanceWorldMatrix.multiplyMatrices(matrixWorld, _instanceLocalMatrix); // the mesh represents this single instance
- raycast(raycaster, intersects) {
- const matrixWorld = this.matrixWorld;
- const raycastTimes = this.count;
- _mesh.geometry = this.geometry;
- _mesh.material = this.material;
- if (_mesh.material === undefined) return;
- for (let instanceId = 0; instanceId < raycastTimes; instanceId++) {
- // calculate the world matrix for each instance
- this.getMatrixAt(instanceId, _instanceLocalMatrix);
+ _mesh.matrixWorld = _instanceWorldMatrix;
- _instanceWorldMatrix.multiplyMatrices(matrixWorld, _instanceLocalMatrix); // the mesh represents this single instance
+ _mesh.raycast(raycaster, _instanceIntersects); // process the result of raycast
- _mesh.matrixWorld = _instanceWorldMatrix;
+ for (let i = 0, l = _instanceIntersects.length; i < l; i++) {
+ const intersect = _instanceIntersects[i];
+ intersect.instanceId = instanceId;
+ intersect.object = this;
+ intersects.push(intersect);
+ }
- _mesh.raycast(raycaster, _instanceIntersects); // process the result of raycast
+ _instanceIntersects.length = 0;
+ }
+ }
+ setColorAt(index, color) {
+ if (this.instanceColor === null) {
+ this.instanceColor = new InstancedBufferAttribute(new Float32Array(this.instanceMatrix.count * 3), 3);
+ }
- for (let i = 0, l = _instanceIntersects.length; i < l; i++) {
- const intersect = _instanceIntersects[i];
- intersect.instanceId = instanceId;
- intersect.object = this;
- intersects.push(intersect);
+ color.toArray(this.instanceColor.array, index * 3);
}
- _instanceIntersects.length = 0;
- }
- }
-
- setColorAt(index, color) {
- if (this.instanceColor === null) {
- this.instanceColor = new InstancedBufferAttribute(new Float32Array(this.instanceMatrix.count * 3), 3);
- }
+ setMatrixAt(index, matrix) {
+ matrix.toArray(this.instanceMatrix.array, index * 16);
+ }
- color.toArray(this.instanceColor.array, index * 3);
- }
+ updateMorphTargets() {
+ }
- setMatrixAt(index, matrix) {
- matrix.toArray(this.instanceMatrix.array, index * 16);
- }
+ dispose() {
+ this.dispatchEvent({
+ type: 'dispose'
+ });
+ }
- updateMorphTargets() {}
+ }
- dispose() {
- this.dispatchEvent({
- type: 'dispose'
- });
- }
+ InstancedMesh.prototype.isInstancedMesh = true;
- }
+ /**
+ * parameters = {
+ * color: <hex>,
+ * opacity: <float>,
+ *
+ * linewidth: <float>,
+ * linecap: "round",
+ * linejoin: "round"
+ * }
+ */
- InstancedMesh.prototype.isInstancedMesh = true;
-
- /**
- * parameters = {
- * color: <hex>,
- * opacity: <float>,
- *
- * linewidth: <float>,
- * linecap: "round",
- * linejoin: "round"
- * }
- */
-
- class LineBasicMaterial extends Material {
- constructor(parameters) {
- super();
- this.type = 'LineBasicMaterial';
- this.color = new Color(0xffffff);
- this.linewidth = 1;
- this.linecap = 'round';
- this.linejoin = 'round';
- this.setValues(parameters);
- }
+ class LineBasicMaterial extends Material {
+ constructor(parameters) {
+ super();
+ this.type = 'LineBasicMaterial';
+ this.color = new Color(0xffffff);
+ this.linewidth = 1;
+ this.linecap = 'round';
+ this.linejoin = 'round';
+ this.setValues(parameters);
+ }
+
+ copy(source) {
+ super.copy(source);
+ this.color.copy(source.color);
+ this.linewidth = source.linewidth;
+ this.linecap = source.linecap;
+ this.linejoin = source.linejoin;
+ return this;
+ }
- copy(source) {
- super.copy(source);
- this.color.copy(source.color);
- this.linewidth = source.linewidth;
- this.linecap = source.linecap;
- this.linejoin = source.linejoin;
- return this;
- }
+ }
- }
+ LineBasicMaterial.prototype.isLineBasicMaterial = true;
- LineBasicMaterial.prototype.isLineBasicMaterial = true;
+ const _start$1 = /*@__PURE__*/new Vector3();
- const _start$1 = /*@__PURE__*/new Vector3();
+ const _end$1 = /*@__PURE__*/new Vector3();
- const _end$1 = /*@__PURE__*/new Vector3();
+ const _inverseMatrix$1 = /*@__PURE__*/new Matrix4();
- const _inverseMatrix$1 = /*@__PURE__*/new Matrix4();
+ const _ray$1 = /*@__PURE__*/new Ray();
- const _ray$1 = /*@__PURE__*/new Ray();
+ const _sphere$1 = /*@__PURE__*/new Sphere();
- const _sphere$1 = /*@__PURE__*/new Sphere();
+ class Line extends Object3D {
+ constructor(geometry = new BufferGeometry(), material = new LineBasicMaterial()) {
+ super();
+ this.type = 'Line';
+ this.geometry = geometry;
+ this.material = material;
+ this.updateMorphTargets();
+ }
- class Line extends Object3D {
- constructor(geometry = new BufferGeometry(), material = new LineBasicMaterial()) {
- super();
- this.type = 'Line';
- this.geometry = geometry;
- this.material = material;
- this.updateMorphTargets();
- }
+ copy(source) {
+ super.copy(source);
+ this.material = source.material;
+ this.geometry = source.geometry;
+ return this;
+ }
- copy(source) {
- super.copy(source);
- this.material = source.material;
- this.geometry = source.geometry;
- return this;
- }
+ computeLineDistances() {
+ const geometry = this.geometry;
- computeLineDistances() {
- const geometry = this.geometry;
+ if (geometry.isBufferGeometry) {
+ // we assume non-indexed geometry
+ if (geometry.index === null) {
+ const positionAttribute = geometry.attributes.position;
+ const lineDistances = [0];
- if (geometry.isBufferGeometry) {
- // we assume non-indexed geometry
- if (geometry.index === null) {
- const positionAttribute = geometry.attributes.position;
- const lineDistances = [0];
+ for (let i = 1, l = positionAttribute.count; i < l; i++) {
+ _start$1.fromBufferAttribute(positionAttribute, i - 1);
- for (let i = 1, l = positionAttribute.count; i < l; i++) {
- _start$1.fromBufferAttribute(positionAttribute, i - 1);
+ _end$1.fromBufferAttribute(positionAttribute, i);
- _end$1.fromBufferAttribute(positionAttribute, i);
+ lineDistances[i] = lineDistances[i - 1];
+ lineDistances[i] += _start$1.distanceTo(_end$1);
+ }
- lineDistances[i] = lineDistances[i - 1];
- lineDistances[i] += _start$1.distanceTo(_end$1);
+ geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1));
+ } else {
+ console.warn('THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.');
+ }
+ } else if (geometry.isGeometry) {
+ console.error('THREE.Line.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
}
- geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1));
- } else {
- console.warn('THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.');
+ return this;
}
- } else if (geometry.isGeometry) {
- console.error('THREE.Line.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
- }
-
- return this;
- }
- raycast(raycaster, intersects) {
- const geometry = this.geometry;
- const matrixWorld = this.matrixWorld;
- const threshold = raycaster.params.Line.threshold;
- const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray
+ raycast(raycaster, intersects) {
+ const geometry = this.geometry;
+ const matrixWorld = this.matrixWorld;
+ const threshold = raycaster.params.Line.threshold;
+ const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray
- if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
+ if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
- _sphere$1.copy(geometry.boundingSphere);
+ _sphere$1.copy(geometry.boundingSphere);
- _sphere$1.applyMatrix4(matrixWorld);
+ _sphere$1.applyMatrix4(matrixWorld);
- _sphere$1.radius += threshold;
- if (raycaster.ray.intersectsSphere(_sphere$1) === false) return; //
+ _sphere$1.radius += threshold;
+ if (raycaster.ray.intersectsSphere(_sphere$1) === false) return; //
- _inverseMatrix$1.copy(matrixWorld).invert();
+ _inverseMatrix$1.copy(matrixWorld).invert();
- _ray$1.copy(raycaster.ray).applyMatrix4(_inverseMatrix$1);
+ _ray$1.copy(raycaster.ray).applyMatrix4(_inverseMatrix$1);
- const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3);
- const localThresholdSq = localThreshold * localThreshold;
- const vStart = new Vector3();
- const vEnd = new Vector3();
- const interSegment = new Vector3();
- const interRay = new Vector3();
- const step = this.isLineSegments ? 2 : 1;
+ const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3);
+ const localThresholdSq = localThreshold * localThreshold;
+ const vStart = new Vector3();
+ const vEnd = new Vector3();
+ const interSegment = new Vector3();
+ const interRay = new Vector3();
+ const step = this.isLineSegments ? 2 : 1;
- if (geometry.isBufferGeometry) {
- const index = geometry.index;
- const attributes = geometry.attributes;
- const positionAttribute = attributes.position;
+ if (geometry.isBufferGeometry) {
+ const index = geometry.index;
+ const attributes = geometry.attributes;
+ const positionAttribute = attributes.position;
- if (index !== null) {
- const start = Math.max(0, drawRange.start);
- const end = Math.min(index.count, drawRange.start + drawRange.count);
+ if (index !== null) {
+ const start = Math.max(0, drawRange.start);
+ const end = Math.min(index.count, drawRange.start + drawRange.count);
- for (let i = start, l = end - 1; i < l; i += step) {
- const a = index.getX(i);
- const b = index.getX(i + 1);
- vStart.fromBufferAttribute(positionAttribute, a);
- vEnd.fromBufferAttribute(positionAttribute, b);
+ for (let i = start, l = end - 1; i < l; i += step) {
+ const a = index.getX(i);
+ const b = index.getX(i + 1);
+ vStart.fromBufferAttribute(positionAttribute, a);
+ vEnd.fromBufferAttribute(positionAttribute, b);
- const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment);
+ const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment);
- if (distSq > localThresholdSq) continue;
- interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation
+ if (distSq > localThresholdSq) continue;
+ interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation
- const distance = raycaster.ray.origin.distanceTo(interRay);
- if (distance < raycaster.near || distance > raycaster.far) continue;
- intersects.push({
- distance: distance,
- // What do we want? intersection point on the ray or on the segment??
- // point: raycaster.ray.at( distance ),
- point: interSegment.clone().applyMatrix4(this.matrixWorld),
- index: i,
- face: null,
- faceIndex: null,
- object: this
- });
- }
- } else {
- const start = Math.max(0, drawRange.start);
- const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count);
-
- for (let i = start, l = end - 1; i < l; i += step) {
- vStart.fromBufferAttribute(positionAttribute, i);
- vEnd.fromBufferAttribute(positionAttribute, i + 1);
-
- const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment);
-
- if (distSq > localThresholdSq) continue;
- interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation
-
- const distance = raycaster.ray.origin.distanceTo(interRay);
- if (distance < raycaster.near || distance > raycaster.far) continue;
- intersects.push({
- distance: distance,
- // What do we want? intersection point on the ray or on the segment??
- // point: raycaster.ray.at( distance ),
- point: interSegment.clone().applyMatrix4(this.matrixWorld),
- index: i,
- face: null,
- faceIndex: null,
- object: this
- });
+ const distance = raycaster.ray.origin.distanceTo(interRay);
+ if (distance < raycaster.near || distance > raycaster.far) continue;
+ intersects.push({
+ distance: distance,
+ // What do we want? intersection point on the ray or on the segment??
+ // point: raycaster.ray.at( distance ),
+ point: interSegment.clone().applyMatrix4(this.matrixWorld),
+ index: i,
+ face: null,
+ faceIndex: null,
+ object: this
+ });
+ }
+ } else {
+ const start = Math.max(0, drawRange.start);
+ const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count);
+
+ for (let i = start, l = end - 1; i < l; i += step) {
+ vStart.fromBufferAttribute(positionAttribute, i);
+ vEnd.fromBufferAttribute(positionAttribute, i + 1);
+
+ const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment);
+
+ if (distSq > localThresholdSq) continue;
+ interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation
+
+ const distance = raycaster.ray.origin.distanceTo(interRay);
+ if (distance < raycaster.near || distance > raycaster.far) continue;
+ intersects.push({
+ distance: distance,
+ // What do we want? intersection point on the ray or on the segment??
+ // point: raycaster.ray.at( distance ),
+ point: interSegment.clone().applyMatrix4(this.matrixWorld),
+ index: i,
+ face: null,
+ faceIndex: null,
+ object: this
+ });
+ }
+ }
+ } else if (geometry.isGeometry) {
+ console.error('THREE.Line.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
}
}
- } else if (geometry.isGeometry) {
- console.error('THREE.Line.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
- }
- }
- updateMorphTargets() {
- const geometry = this.geometry;
+ updateMorphTargets() {
+ const geometry = this.geometry;
- if (geometry.isBufferGeometry) {
- const morphAttributes = geometry.morphAttributes;
- const keys = Object.keys(morphAttributes);
+ if (geometry.isBufferGeometry) {
+ const morphAttributes = geometry.morphAttributes;
+ const keys = Object.keys(morphAttributes);
- if (keys.length > 0) {
- const morphAttribute = morphAttributes[keys[0]];
+ if (keys.length > 0) {
+ const morphAttribute = morphAttributes[keys[0]];
- if (morphAttribute !== undefined) {
- this.morphTargetInfluences = [];
- this.morphTargetDictionary = {};
+ if (morphAttribute !== undefined) {
+ this.morphTargetInfluences = [];
+ this.morphTargetDictionary = {};
- for (let m = 0, ml = morphAttribute.length; m < ml; m++) {
- const name = morphAttribute[m].name || String(m);
- this.morphTargetInfluences.push(0);
- this.morphTargetDictionary[name] = m;
+ for (let m = 0, ml = morphAttribute.length; m < ml; m++) {
+ const name = morphAttribute[m].name || String(m);
+ this.morphTargetInfluences.push(0);
+ this.morphTargetDictionary[name] = m;
+ }
+ }
+ }
+ } else {
+ const morphTargets = geometry.morphTargets;
+
+ if (morphTargets !== undefined && morphTargets.length > 0) {
+ console.error('THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.');
}
}
}
- } else {
- const morphTargets = geometry.morphTargets;
- if (morphTargets !== undefined && morphTargets.length > 0) {
- console.error('THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.');
- }
}
- }
- }
+ Line.prototype.isLine = true;
- Line.prototype.isLine = true;
+ const _start = /*@__PURE__*/new Vector3();
- const _start = /*@__PURE__*/new Vector3();
+ const _end = /*@__PURE__*/new Vector3();
- const _end = /*@__PURE__*/new Vector3();
+ class LineSegments extends Line {
+ constructor(geometry, material) {
+ super(geometry, material);
+ this.type = 'LineSegments';
+ }
- class LineSegments extends Line {
- constructor(geometry, material) {
- super(geometry, material);
- this.type = 'LineSegments';
- }
+ computeLineDistances() {
+ const geometry = this.geometry;
- computeLineDistances() {
- const geometry = this.geometry;
+ if (geometry.isBufferGeometry) {
+ // we assume non-indexed geometry
+ if (geometry.index === null) {
+ const positionAttribute = geometry.attributes.position;
+ const lineDistances = [];
- if (geometry.isBufferGeometry) {
- // we assume non-indexed geometry
- if (geometry.index === null) {
- const positionAttribute = geometry.attributes.position;
- const lineDistances = [];
+ for (let i = 0, l = positionAttribute.count; i < l; i += 2) {
+ _start.fromBufferAttribute(positionAttribute, i);
- for (let i = 0, l = positionAttribute.count; i < l; i += 2) {
- _start.fromBufferAttribute(positionAttribute, i);
+ _end.fromBufferAttribute(positionAttribute, i + 1);
- _end.fromBufferAttribute(positionAttribute, i + 1);
+ lineDistances[i] = i === 0 ? 0 : lineDistances[i - 1];
+ lineDistances[i + 1] = lineDistances[i] + _start.distanceTo(_end);
+ }
- lineDistances[i] = i === 0 ? 0 : lineDistances[i - 1];
- lineDistances[i + 1] = lineDistances[i] + _start.distanceTo(_end);
+ geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1));
+ } else {
+ console.warn('THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.');
+ }
+ } else if (geometry.isGeometry) {
+ console.error('THREE.LineSegments.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
}
- geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1));
- } else {
- console.warn('THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.');
+ return this;
}
- } else if (geometry.isGeometry) {
- console.error('THREE.LineSegments.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
- }
- return this;
- }
+ }
- }
+ LineSegments.prototype.isLineSegments = true;
- LineSegments.prototype.isLineSegments = true;
+ class LineLoop extends Line {
+ constructor(geometry, material) {
+ super(geometry, material);
+ this.type = 'LineLoop';
+ }
- class LineLoop extends Line {
- constructor(geometry, material) {
- super(geometry, material);
- this.type = 'LineLoop';
- }
+ }
- }
+ LineLoop.prototype.isLineLoop = true;
- LineLoop.prototype.isLineLoop = true;
-
- /**
- * parameters = {
- * color: <hex>,
- * opacity: <float>,
- * map: new THREE.Texture( <Image> ),
- * alphaMap: new THREE.Texture( <Image> ),
- *
- * size: <float>,
- * sizeAttenuation: <bool>
- *
- * }
- */
-
- class PointsMaterial extends Material {
- constructor(parameters) {
- super();
- this.type = 'PointsMaterial';
- this.color = new Color(0xffffff);
- this.map = null;
- this.alphaMap = null;
- this.size = 1;
- this.sizeAttenuation = true;
- this.setValues(parameters);
- }
+ /**
+ * parameters = {
+ * color: <hex>,
+ * opacity: <float>,
+ * map: new THREE.Texture( <Image> ),
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * size: <float>,
+ * sizeAttenuation: <bool>
+ *
+ * }
+ */
- copy(source) {
- super.copy(source);
- this.color.copy(source.color);
- this.map = source.map;
- this.alphaMap = source.alphaMap;
- this.size = source.size;
- this.sizeAttenuation = source.sizeAttenuation;
- return this;
- }
+ class PointsMaterial extends Material {
+ constructor(parameters) {
+ super();
+ this.type = 'PointsMaterial';
+ this.color = new Color(0xffffff);
+ this.map = null;
+ this.alphaMap = null;
+ this.size = 1;
+ this.sizeAttenuation = true;
+ this.setValues(parameters);
+ }
+
+ copy(source) {
+ super.copy(source);
+ this.color.copy(source.color);
+ this.map = source.map;
+ this.alphaMap = source.alphaMap;
+ this.size = source.size;
+ this.sizeAttenuation = source.sizeAttenuation;
+ return this;
+ }
- }
+ }
- PointsMaterial.prototype.isPointsMaterial = true;
+ PointsMaterial.prototype.isPointsMaterial = true;
- const _inverseMatrix = /*@__PURE__*/new Matrix4();
+ const _inverseMatrix = /*@__PURE__*/new Matrix4();
- const _ray = /*@__PURE__*/new Ray();
+ const _ray = /*@__PURE__*/new Ray();
- const _sphere = /*@__PURE__*/new Sphere();
+ const _sphere = /*@__PURE__*/new Sphere();
- const _position$2 = /*@__PURE__*/new Vector3();
+ const _position$2 = /*@__PURE__*/new Vector3();
- class Points extends Object3D {
- constructor(geometry = new BufferGeometry(), material = new PointsMaterial()) {
- super();
- this.type = 'Points';
- this.geometry = geometry;
- this.material = material;
- this.updateMorphTargets();
- }
+ class Points extends Object3D {
+ constructor(geometry = new BufferGeometry(), material = new PointsMaterial()) {
+ super();
+ this.type = 'Points';
+ this.geometry = geometry;
+ this.material = material;
+ this.updateMorphTargets();
+ }
- copy(source) {
- super.copy(source);
- this.material = source.material;
- this.geometry = source.geometry;
- return this;
- }
+ copy(source) {
+ super.copy(source);
+ this.material = source.material;
+ this.geometry = source.geometry;
+ return this;
+ }
- raycast(raycaster, intersects) {
- const geometry = this.geometry;
- const matrixWorld = this.matrixWorld;
- const threshold = raycaster.params.Points.threshold;
- const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray
+ raycast(raycaster, intersects) {
+ const geometry = this.geometry;
+ const matrixWorld = this.matrixWorld;
+ const threshold = raycaster.params.Points.threshold;
+ const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray
- if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
+ if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
- _sphere.copy(geometry.boundingSphere);
+ _sphere.copy(geometry.boundingSphere);
- _sphere.applyMatrix4(matrixWorld);
+ _sphere.applyMatrix4(matrixWorld);
- _sphere.radius += threshold;
- if (raycaster.ray.intersectsSphere(_sphere) === false) return; //
+ _sphere.radius += threshold;
+ if (raycaster.ray.intersectsSphere(_sphere) === false) return; //
- _inverseMatrix.copy(matrixWorld).invert();
+ _inverseMatrix.copy(matrixWorld).invert();
- _ray.copy(raycaster.ray).applyMatrix4(_inverseMatrix);
+ _ray.copy(raycaster.ray).applyMatrix4(_inverseMatrix);
- const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3);
- const localThresholdSq = localThreshold * localThreshold;
+ const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3);
+ const localThresholdSq = localThreshold * localThreshold;
- if (geometry.isBufferGeometry) {
- const index = geometry.index;
- const attributes = geometry.attributes;
- const positionAttribute = attributes.position;
+ if (geometry.isBufferGeometry) {
+ const index = geometry.index;
+ const attributes = geometry.attributes;
+ const positionAttribute = attributes.position;
- if (index !== null) {
- const start = Math.max(0, drawRange.start);
- const end = Math.min(index.count, drawRange.start + drawRange.count);
+ if (index !== null) {
+ const start = Math.max(0, drawRange.start);
+ const end = Math.min(index.count, drawRange.start + drawRange.count);
- for (let i = start, il = end; i < il; i++) {
- const a = index.getX(i);
+ for (let i = start, il = end; i < il; i++) {
+ const a = index.getX(i);
- _position$2.fromBufferAttribute(positionAttribute, a);
+ _position$2.fromBufferAttribute(positionAttribute, a);
- testPoint(_position$2, a, localThresholdSq, matrixWorld, raycaster, intersects, this);
- }
- } else {
- const start = Math.max(0, drawRange.start);
- const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count);
+ testPoint(_position$2, a, localThresholdSq, matrixWorld, raycaster, intersects, this);
+ }
+ } else {
+ const start = Math.max(0, drawRange.start);
+ const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count);
- for (let i = start, l = end; i < l; i++) {
- _position$2.fromBufferAttribute(positionAttribute, i);
+ for (let i = start, l = end; i < l; i++) {
+ _position$2.fromBufferAttribute(positionAttribute, i);
- testPoint(_position$2, i, localThresholdSq, matrixWorld, raycaster, intersects, this);
+ testPoint(_position$2, i, localThresholdSq, matrixWorld, raycaster, intersects, this);
+ }
+ }
+ } else {
+ console.error('THREE.Points.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
}
}
- } else {
- console.error('THREE.Points.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
- }
- }
- updateMorphTargets() {
- const geometry = this.geometry;
+ updateMorphTargets() {
+ const geometry = this.geometry;
+
+ if (geometry.isBufferGeometry) {
+ const morphAttributes = geometry.morphAttributes;
+ const keys = Object.keys(morphAttributes);
- if (geometry.isBufferGeometry) {
- const morphAttributes = geometry.morphAttributes;
- const keys = Object.keys(morphAttributes);
+ if (keys.length > 0) {
+ const morphAttribute = morphAttributes[keys[0]];
- if (keys.length > 0) {
- const morphAttribute = morphAttributes[keys[0]];
+ if (morphAttribute !== undefined) {
+ this.morphTargetInfluences = [];
+ this.morphTargetDictionary = {};
- if (morphAttribute !== undefined) {
- this.morphTargetInfluences = [];
- this.morphTargetDictionary = {};
+ for (let m = 0, ml = morphAttribute.length; m < ml; m++) {
+ const name = morphAttribute[m].name || String(m);
+ this.morphTargetInfluences.push(0);
+ this.morphTargetDictionary[name] = m;
+ }
+ }
+ }
+ } else {
+ const morphTargets = geometry.morphTargets;
- for (let m = 0, ml = morphAttribute.length; m < ml; m++) {
- const name = morphAttribute[m].name || String(m);
- this.morphTargetInfluences.push(0);
- this.morphTargetDictionary[name] = m;
+ if (morphTargets !== undefined && morphTargets.length > 0) {
+ console.error('THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.');
}
}
}
- } else {
- const morphTargets = geometry.morphTargets;
- if (morphTargets !== undefined && morphTargets.length > 0) {
- console.error('THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.');
- }
}
- }
- }
+ Points.prototype.isPoints = true;
- Points.prototype.isPoints = true;
+ function testPoint(point, index, localThresholdSq, matrixWorld, raycaster, intersects, object) {
+ const rayPointDistanceSq = _ray.distanceSqToPoint(point);
- function testPoint(point, index, localThresholdSq, matrixWorld, raycaster, intersects, object) {
- const rayPointDistanceSq = _ray.distanceSqToPoint(point);
+ if (rayPointDistanceSq < localThresholdSq) {
+ const intersectPoint = new Vector3();
- if (rayPointDistanceSq < localThresholdSq) {
- const intersectPoint = new Vector3();
+ _ray.closestPointToPoint(point, intersectPoint);
- _ray.closestPointToPoint(point, intersectPoint);
+ intersectPoint.applyMatrix4(matrixWorld);
+ const distance = raycaster.ray.origin.distanceTo(intersectPoint);
+ if (distance < raycaster.near || distance > raycaster.far) return;
+ intersects.push({
+ distance: distance,
+ distanceToRay: Math.sqrt(rayPointDistanceSq),
+ point: intersectPoint,
+ index: index,
+ face: null,
+ object: object
+ });
+ }
+ }
- intersectPoint.applyMatrix4(matrixWorld);
- const distance = raycaster.ray.origin.distanceTo(intersectPoint);
- if (distance < raycaster.near || distance > raycaster.far) return;
- intersects.push({
- distance: distance,
- distanceToRay: Math.sqrt(rayPointDistanceSq),
- point: intersectPoint,
- index: index,
- face: null,
- object: object
- });
- }
- }
+ class VideoTexture extends Texture {
+ constructor(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) {
+ super(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
+ this.format = format !== undefined ? format : RGBFormat;
+ this.minFilter = minFilter !== undefined ? minFilter : LinearFilter;
+ this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
+ this.generateMipmaps = false;
+ const scope = this;
- class VideoTexture extends Texture {
- constructor(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) {
- super(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
- this.format = format !== undefined ? format : RGBFormat;
- this.minFilter = minFilter !== undefined ? minFilter : LinearFilter;
- this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
- this.generateMipmaps = false;
- const scope = this;
+ function updateVideo() {
+ scope.needsUpdate = true;
+ video.requestVideoFrameCallback(updateVideo);
+ }
- function updateVideo() {
- scope.needsUpdate = true;
- video.requestVideoFrameCallback(updateVideo);
- }
+ if ('requestVideoFrameCallback' in video) {
+ video.requestVideoFrameCallback(updateVideo);
+ }
+ }
- if ('requestVideoFrameCallback' in video) {
- video.requestVideoFrameCallback(updateVideo);
- }
- }
+ clone() {
+ return new this.constructor(this.image).copy(this);
+ }
- clone() {
- return new this.constructor(this.image).copy(this);
- }
+ update() {
+ const video = this.image;
+ const hasVideoFrameCallback = ('requestVideoFrameCallback' in video);
- update() {
- const video = this.image;
- const hasVideoFrameCallback = ('requestVideoFrameCallback' in video);
+ if (hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA) {
+ this.needsUpdate = true;
+ }
+ }
- if (hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA) {
- this.needsUpdate = true;
}
- }
- }
+ VideoTexture.prototype.isVideoTexture = true;
- VideoTexture.prototype.isVideoTexture = true;
+ class CompressedTexture extends Texture {
+ constructor(mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding) {
+ super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
+ this.image = {
+ width: width,
+ height: height
+ };
+ this.mipmaps = mipmaps; // no flipping for cube textures
+ // (also flipping doesn't work for compressed textures )
- class CompressedTexture extends Texture {
- constructor(mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding) {
- super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
- this.image = {
- width: width,
- height: height
- };
- this.mipmaps = mipmaps; // no flipping for cube textures
- // (also flipping doesn't work for compressed textures )
+ this.flipY = false; // can't generate mipmaps for compressed textures
+ // mips must be embedded in DDS files
- this.flipY = false; // can't generate mipmaps for compressed textures
- // mips must be embedded in DDS files
+ this.generateMipmaps = false;
+ }
- this.generateMipmaps = false;
- }
+ }
- }
+ CompressedTexture.prototype.isCompressedTexture = true;
- CompressedTexture.prototype.isCompressedTexture = true;
+ class CanvasTexture extends Texture {
+ constructor(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) {
+ super(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
+ this.needsUpdate = true;
+ }
- class CanvasTexture extends Texture {
- constructor(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) {
- super(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
- this.needsUpdate = true;
- }
+ }
- }
+ CanvasTexture.prototype.isCanvasTexture = true;
- CanvasTexture.prototype.isCanvasTexture = true;
+ class DepthTexture extends Texture {
+ constructor(width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format) {
+ format = format !== undefined ? format : DepthFormat;
- class DepthTexture extends Texture {
- constructor(width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format) {
- format = format !== undefined ? format : DepthFormat;
+ if (format !== DepthFormat && format !== DepthStencilFormat) {
+ throw new Error('DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat');
+ }
+
+ if (type === undefined && format === DepthFormat) type = UnsignedShortType;
+ if (type === undefined && format === DepthStencilFormat) type = UnsignedInt248Type;
+ super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
+ this.image = {
+ width: width,
+ height: height
+ };
+ this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
+ this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;
+ this.flipY = false;
+ this.generateMipmaps = false;
+ }
- if (format !== DepthFormat && format !== DepthStencilFormat) {
- throw new Error('DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat');
}
- if (type === undefined && format === DepthFormat) type = UnsignedShortType;
- if (type === undefined && format === DepthStencilFormat) type = UnsignedInt248Type;
- super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
- this.image = {
- width: width,
- height: height
- };
- this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
- this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;
- this.flipY = false;
- this.generateMipmaps = false;
- }
+ DepthTexture.prototype.isDepthTexture = true;
- }
+ class CircleGeometry extends BufferGeometry {
+ constructor(radius = 1, segments = 8, thetaStart = 0, thetaLength = Math.PI * 2) {
+ super();
+ this.type = 'CircleGeometry';
+ this.parameters = {
+ radius: radius,
+ segments: segments,
+ thetaStart: thetaStart,
+ thetaLength: thetaLength
+ };
+ segments = Math.max(3, segments); // buffers
- DepthTexture.prototype.isDepthTexture = true;
-
- class CircleGeometry extends BufferGeometry {
- constructor(radius = 1, segments = 8, thetaStart = 0, thetaLength = Math.PI * 2) {
- super();
- this.type = 'CircleGeometry';
- this.parameters = {
- radius: radius,
- segments: segments,
- thetaStart: thetaStart,
- thetaLength: thetaLength
- };
- segments = Math.max(3, segments); // buffers
+ const indices = [];
+ const vertices = [];
+ const normals = [];
+ const uvs = []; // helper variables
+
+ const vertex = new Vector3();
+ const uv = new Vector2(); // center point
+
+ vertices.push(0, 0, 0);
+ normals.push(0, 0, 1);
+ uvs.push(0.5, 0.5);
- const indices = [];
- const vertices = [];
- const normals = [];
- const uvs = []; // helper variables
+ for (let s = 0, i = 3; s <= segments; s++, i += 3) {
+ const segment = thetaStart + s / segments * thetaLength; // vertex
- const vertex = new Vector3();
- const uv = new Vector2(); // center point
+ vertex.x = radius * Math.cos(segment);
+ vertex.y = radius * Math.sin(segment);
+ vertices.push(vertex.x, vertex.y, vertex.z); // normal
- vertices.push(0, 0, 0);
- normals.push(0, 0, 1);
- uvs.push(0.5, 0.5);
+ normals.push(0, 0, 1); // uvs
- for (let s = 0, i = 3; s <= segments; s++, i += 3) {
- const segment = thetaStart + s / segments * thetaLength; // vertex
+ uv.x = (vertices[i] / radius + 1) / 2;
+ uv.y = (vertices[i + 1] / radius + 1) / 2;
+ uvs.push(uv.x, uv.y);
+ } // indices
- vertex.x = radius * Math.cos(segment);
- vertex.y = radius * Math.sin(segment);
- vertices.push(vertex.x, vertex.y, vertex.z); // normal
- normals.push(0, 0, 1); // uvs
+ for (let i = 1; i <= segments; i++) {
+ indices.push(i, i + 1, 0);
+ } // build geometry
- uv.x = (vertices[i] / radius + 1) / 2;
- uv.y = (vertices[i + 1] / radius + 1) / 2;
- uvs.push(uv.x, uv.y);
- } // indices
+ this.setIndex(indices);
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
+ }
- for (let i = 1; i <= segments; i++) {
- indices.push(i, i + 1, 0);
- } // build geometry
+ static fromJSON(data) {
+ return new CircleGeometry(data.radius, data.segments, data.thetaStart, data.thetaLength);
+ }
+ }
- this.setIndex(indices);
- this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
- this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
- }
+ class CylinderGeometry extends BufferGeometry {
+ constructor(radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) {
+ super();
+ this.type = 'CylinderGeometry';
+ this.parameters = {
+ radiusTop: radiusTop,
+ radiusBottom: radiusBottom,
+ height: height,
+ radialSegments: radialSegments,
+ heightSegments: heightSegments,
+ openEnded: openEnded,
+ thetaStart: thetaStart,
+ thetaLength: thetaLength
+ };
+ const scope = this;
+ radialSegments = Math.floor(radialSegments);
+ heightSegments = Math.floor(heightSegments); // buffers
- static fromJSON(data) {
- return new CircleGeometry(data.radius, data.segments, data.thetaStart, data.thetaLength);
- }
+ const indices = [];
+ const vertices = [];
+ const normals = [];
+ const uvs = []; // helper variables
- }
+ let index = 0;
+ const indexArray = [];
+ const halfHeight = height / 2;
+ let groupStart = 0; // generate geometry
- class CylinderGeometry extends BufferGeometry {
- constructor(radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) {
- super();
- this.type = 'CylinderGeometry';
- this.parameters = {
- radiusTop: radiusTop,
- radiusBottom: radiusBottom,
- height: height,
- radialSegments: radialSegments,
- heightSegments: heightSegments,
- openEnded: openEnded,
- thetaStart: thetaStart,
- thetaLength: thetaLength
- };
- const scope = this;
- radialSegments = Math.floor(radialSegments);
- heightSegments = Math.floor(heightSegments); // buffers
+ generateTorso();
- const indices = [];
- const vertices = [];
- const normals = [];
- const uvs = []; // helper variables
+ if (openEnded === false) {
+ if (radiusTop > 0) generateCap(true);
+ if (radiusBottom > 0) generateCap(false);
+ } // build geometry
- let index = 0;
- const indexArray = [];
- const halfHeight = height / 2;
- let groupStart = 0; // generate geometry
- generateTorso();
+ this.setIndex(indices);
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
- if (openEnded === false) {
- if (radiusTop > 0) generateCap(true);
- if (radiusBottom > 0) generateCap(false);
- } // build geometry
+ function generateTorso() {
+ const normal = new Vector3();
+ const vertex = new Vector3();
+ let groupCount = 0; // this will be used to calculate the normal
+ const slope = (radiusBottom - radiusTop) / height; // generate vertices, normals and uvs
- this.setIndex(indices);
- this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
- this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
+ for (let y = 0; y <= heightSegments; y++) {
+ const indexRow = [];
+ const v = y / heightSegments; // calculate the radius of the current row
- function generateTorso() {
- const normal = new Vector3();
- const vertex = new Vector3();
- let groupCount = 0; // this will be used to calculate the normal
+ const radius = v * (radiusBottom - radiusTop) + radiusTop;
- const slope = (radiusBottom - radiusTop) / height; // generate vertices, normals and uvs
+ for (let x = 0; x <= radialSegments; x++) {
+ const u = x / radialSegments;
+ const theta = u * thetaLength + thetaStart;
+ const sinTheta = Math.sin(theta);
+ const cosTheta = Math.cos(theta); // vertex
- for (let y = 0; y <= heightSegments; y++) {
- const indexRow = [];
- const v = y / heightSegments; // calculate the radius of the current row
+ vertex.x = radius * sinTheta;
+ vertex.y = -v * height + halfHeight;
+ vertex.z = radius * cosTheta;
+ vertices.push(vertex.x, vertex.y, vertex.z); // normal
- const radius = v * (radiusBottom - radiusTop) + radiusTop;
+ normal.set(sinTheta, slope, cosTheta).normalize();
+ normals.push(normal.x, normal.y, normal.z); // uv
- for (let x = 0; x <= radialSegments; x++) {
- const u = x / radialSegments;
- const theta = u * thetaLength + thetaStart;
- const sinTheta = Math.sin(theta);
- const cosTheta = Math.cos(theta); // vertex
+ uvs.push(u, 1 - v); // save index of vertex in respective row
- vertex.x = radius * sinTheta;
- vertex.y = -v * height + halfHeight;
- vertex.z = radius * cosTheta;
- vertices.push(vertex.x, vertex.y, vertex.z); // normal
+ indexRow.push(index++);
+ } // now save vertices of the row in our index array
- normal.set(sinTheta, slope, cosTheta).normalize();
- normals.push(normal.x, normal.y, normal.z); // uv
- uvs.push(u, 1 - v); // save index of vertex in respective row
+ indexArray.push(indexRow);
+ } // generate indices
- indexRow.push(index++);
- } // now save vertices of the row in our index array
+ for (let x = 0; x < radialSegments; x++) {
+ for (let y = 0; y < heightSegments; y++) {
+ // we use the index array to access the correct indices
+ const a = indexArray[y][x];
+ const b = indexArray[y + 1][x];
+ const c = indexArray[y + 1][x + 1];
+ const d = indexArray[y][x + 1]; // faces
- indexArray.push(indexRow);
- } // generate indices
+ indices.push(a, b, d);
+ indices.push(b, c, d); // update group counter
+ groupCount += 6;
+ }
+ } // add a group to the geometry. this will ensure multi material support
- for (let x = 0; x < radialSegments; x++) {
- for (let y = 0; y < heightSegments; y++) {
- // we use the index array to access the correct indices
- const a = indexArray[y][x];
- const b = indexArray[y + 1][x];
- const c = indexArray[y + 1][x + 1];
- const d = indexArray[y][x + 1]; // faces
- indices.push(a, b, d);
- indices.push(b, c, d); // update group counter
+ scope.addGroup(groupStart, groupCount, 0); // calculate new start value for groups
- groupCount += 6;
+ groupStart += groupCount;
}
- } // add a group to the geometry. this will ensure multi material support
-
- scope.addGroup(groupStart, groupCount, 0); // calculate new start value for groups
+ function generateCap(top) {
+ // save the index of the first center vertex
+ const centerIndexStart = index;
+ const uv = new Vector2();
+ const vertex = new Vector3();
+ let groupCount = 0;
+ const radius = top === true ? radiusTop : radiusBottom;
+ const sign = top === true ? 1 : -1; // first we generate the center vertex data of the cap.
+ // because the geometry needs one set of uvs per face,
+ // we must generate a center vertex per face/segment
- groupStart += groupCount;
- }
+ for (let x = 1; x <= radialSegments; x++) {
+ // vertex
+ vertices.push(0, halfHeight * sign, 0); // normal
- function generateCap(top) {
- // save the index of the first center vertex
- const centerIndexStart = index;
- const uv = new Vector2();
- const vertex = new Vector3();
- let groupCount = 0;
- const radius = top === true ? radiusTop : radiusBottom;
- const sign = top === true ? 1 : -1; // first we generate the center vertex data of the cap.
- // because the geometry needs one set of uvs per face,
- // we must generate a center vertex per face/segment
+ normals.push(0, sign, 0); // uv
- for (let x = 1; x <= radialSegments; x++) {
- // vertex
- vertices.push(0, halfHeight * sign, 0); // normal
+ uvs.push(0.5, 0.5); // increase index
- normals.push(0, sign, 0); // uv
+ index++;
+ } // save the index of the last center vertex
- uvs.push(0.5, 0.5); // increase index
- index++;
- } // save the index of the last center vertex
+ const centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs
+ for (let x = 0; x <= radialSegments; x++) {
+ const u = x / radialSegments;
+ const theta = u * thetaLength + thetaStart;
+ const cosTheta = Math.cos(theta);
+ const sinTheta = Math.sin(theta); // vertex
- const centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs
+ vertex.x = radius * sinTheta;
+ vertex.y = halfHeight * sign;
+ vertex.z = radius * cosTheta;
+ vertices.push(vertex.x, vertex.y, vertex.z); // normal
- for (let x = 0; x <= radialSegments; x++) {
- const u = x / radialSegments;
- const theta = u * thetaLength + thetaStart;
- const cosTheta = Math.cos(theta);
- const sinTheta = Math.sin(theta); // vertex
+ normals.push(0, sign, 0); // uv
- vertex.x = radius * sinTheta;
- vertex.y = halfHeight * sign;
- vertex.z = radius * cosTheta;
- vertices.push(vertex.x, vertex.y, vertex.z); // normal
+ uv.x = cosTheta * 0.5 + 0.5;
+ uv.y = sinTheta * 0.5 * sign + 0.5;
+ uvs.push(uv.x, uv.y); // increase index
- normals.push(0, sign, 0); // uv
+ index++;
+ } // generate indices
- uv.x = cosTheta * 0.5 + 0.5;
- uv.y = sinTheta * 0.5 * sign + 0.5;
- uvs.push(uv.x, uv.y); // increase index
- index++;
- } // generate indices
+ for (let x = 0; x < radialSegments; x++) {
+ const c = centerIndexStart + x;
+ const i = centerIndexEnd + x;
+ if (top === true) {
+ // face top
+ indices.push(i, i + 1, c);
+ } else {
+ // face bottom
+ indices.push(i + 1, i, c);
+ }
- for (let x = 0; x < radialSegments; x++) {
- const c = centerIndexStart + x;
- const i = centerIndexEnd + x;
+ groupCount += 3;
+ } // add a group to the geometry. this will ensure multi material support
- if (top === true) {
- // face top
- indices.push(i, i + 1, c);
- } else {
- // face bottom
- indices.push(i + 1, i, c);
- }
- groupCount += 3;
- } // add a group to the geometry. this will ensure multi material support
+ scope.addGroup(groupStart, groupCount, top === true ? 1 : 2); // calculate new start value for groups
+ groupStart += groupCount;
+ }
+ }
- scope.addGroup(groupStart, groupCount, top === true ? 1 : 2); // calculate new start value for groups
+ static fromJSON(data) {
+ return new CylinderGeometry(data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength);
+ }
- groupStart += groupCount;
}
- }
- static fromJSON(data) {
- return new CylinderGeometry(data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength);
- }
+ class ConeGeometry extends CylinderGeometry {
+ constructor(radius = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) {
+ super(0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength);
+ this.type = 'ConeGeometry';
+ this.parameters = {
+ radius: radius,
+ height: height,
+ radialSegments: radialSegments,
+ heightSegments: heightSegments,
+ openEnded: openEnded,
+ thetaStart: thetaStart,
+ thetaLength: thetaLength
+ };
+ }
- }
+ static fromJSON(data) {
+ return new ConeGeometry(data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength);
+ }
- class ConeGeometry extends CylinderGeometry {
- constructor(radius = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) {
- super(0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength);
- this.type = 'ConeGeometry';
- this.parameters = {
- radius: radius,
- height: height,
- radialSegments: radialSegments,
- heightSegments: heightSegments,
- openEnded: openEnded,
- thetaStart: thetaStart,
- thetaLength: thetaLength
- };
- }
+ }
- static fromJSON(data) {
- return new ConeGeometry(data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength);
- }
+ class PolyhedronGeometry extends BufferGeometry {
+ constructor(vertices, indices, radius = 1, detail = 0) {
+ super();
+ this.type = 'PolyhedronGeometry';
+ this.parameters = {
+ vertices: vertices,
+ indices: indices,
+ radius: radius,
+ detail: detail
+ }; // default buffer data
- }
+ const vertexBuffer = [];
+ const uvBuffer = []; // the subdivision creates the vertex buffer data
+
+ subdivide(detail); // all vertices should lie on a conceptual sphere with a given radius
- class PolyhedronGeometry extends BufferGeometry {
- constructor(vertices, indices, radius = 1, detail = 0) {
- super();
- this.type = 'PolyhedronGeometry';
- this.parameters = {
- vertices: vertices,
- indices: indices,
- radius: radius,
- detail: detail
- }; // default buffer data
+ applyRadius(radius); // finally, create the uv data
- const vertexBuffer = [];
- const uvBuffer = []; // the subdivision creates the vertex buffer data
+ generateUVs(); // build non-indexed geometry
- subdivide(detail); // all vertices should lie on a conceptual sphere with a given radius
+ this.setAttribute('position', new Float32BufferAttribute(vertexBuffer, 3));
+ this.setAttribute('normal', new Float32BufferAttribute(vertexBuffer.slice(), 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvBuffer, 2));
- applyRadius(radius); // finally, create the uv data
+ if (detail === 0) {
+ this.computeVertexNormals(); // flat normals
+ } else {
+ this.normalizeNormals(); // smooth normals
+ } // helper functions
- generateUVs(); // build non-indexed geometry
- this.setAttribute('position', new Float32BufferAttribute(vertexBuffer, 3));
- this.setAttribute('normal', new Float32BufferAttribute(vertexBuffer.slice(), 3));
- this.setAttribute('uv', new Float32BufferAttribute(uvBuffer, 2));
+ function subdivide(detail) {
+ const a = new Vector3();
+ const b = new Vector3();
+ const c = new Vector3(); // iterate over all faces and apply a subdivison with the given detail value
- if (detail === 0) {
- this.computeVertexNormals(); // flat normals
- } else {
- this.normalizeNormals(); // smooth normals
- } // helper functions
+ for (let i = 0; i < indices.length; i += 3) {
+ // get the vertices of the face
+ getVertexByIndex(indices[i + 0], a);
+ getVertexByIndex(indices[i + 1], b);
+ getVertexByIndex(indices[i + 2], c); // perform subdivision
+ subdivideFace(a, b, c, detail);
+ }
+ }
- function subdivide(detail) {
- const a = new Vector3();
- const b = new Vector3();
- const c = new Vector3(); // iterate over all faces and apply a subdivison with the given detail value
+ function subdivideFace(a, b, c, detail) {
+ const cols = detail + 1; // we use this multidimensional array as a data structure for creating the subdivision
- for (let i = 0; i < indices.length; i += 3) {
- // get the vertices of the face
- getVertexByIndex(indices[i + 0], a);
- getVertexByIndex(indices[i + 1], b);
- getVertexByIndex(indices[i + 2], c); // perform subdivision
+ const v = []; // construct all of the vertices for this subdivision
- subdivideFace(a, b, c, detail);
- }
- }
+ for (let i = 0; i <= cols; i++) {
+ v[i] = [];
+ const aj = a.clone().lerp(c, i / cols);
+ const bj = b.clone().lerp(c, i / cols);
+ const rows = cols - i;
- function subdivideFace(a, b, c, detail) {
- const cols = detail + 1; // we use this multidimensional array as a data structure for creating the subdivision
+ for (let j = 0; j <= rows; j++) {
+ if (j === 0 && i === cols) {
+ v[i][j] = aj;
+ } else {
+ v[i][j] = aj.clone().lerp(bj, j / rows);
+ }
+ }
+ } // construct all of the faces
- const v = []; // construct all of the vertices for this subdivision
- for (let i = 0; i <= cols; i++) {
- v[i] = [];
- const aj = a.clone().lerp(c, i / cols);
- const bj = b.clone().lerp(c, i / cols);
- const rows = cols - i;
+ for (let i = 0; i < cols; i++) {
+ for (let j = 0; j < 2 * (cols - i) - 1; j++) {
+ const k = Math.floor(j / 2);
- for (let j = 0; j <= rows; j++) {
- if (j === 0 && i === cols) {
- v[i][j] = aj;
- } else {
- v[i][j] = aj.clone().lerp(bj, j / rows);
+ if (j % 2 === 0) {
+ pushVertex(v[i][k + 1]);
+ pushVertex(v[i + 1][k]);
+ pushVertex(v[i][k]);
+ } else {
+ pushVertex(v[i][k + 1]);
+ pushVertex(v[i + 1][k + 1]);
+ pushVertex(v[i + 1][k]);
+ }
+ }
}
}
- } // construct all of the faces
-
- for (let i = 0; i < cols; i++) {
- for (let j = 0; j < 2 * (cols - i) - 1; j++) {
- const k = Math.floor(j / 2);
-
- if (j % 2 === 0) {
- pushVertex(v[i][k + 1]);
- pushVertex(v[i + 1][k]);
- pushVertex(v[i][k]);
- } else {
- pushVertex(v[i][k + 1]);
- pushVertex(v[i + 1][k + 1]);
- pushVertex(v[i + 1][k]);
+ function applyRadius(radius) {
+ const vertex = new Vector3(); // iterate over the entire buffer and apply the radius to each vertex
+
+ for (let i = 0; i < vertexBuffer.length; i += 3) {
+ vertex.x = vertexBuffer[i + 0];
+ vertex.y = vertexBuffer[i + 1];
+ vertex.z = vertexBuffer[i + 2];
+ vertex.normalize().multiplyScalar(radius);
+ vertexBuffer[i + 0] = vertex.x;
+ vertexBuffer[i + 1] = vertex.y;
+ vertexBuffer[i + 2] = vertex.z;
}
}
- }
- }
- function applyRadius(radius) {
- const vertex = new Vector3(); // iterate over the entire buffer and apply the radius to each vertex
+ function generateUVs() {
+ const vertex = new Vector3();
- for (let i = 0; i < vertexBuffer.length; i += 3) {
- vertex.x = vertexBuffer[i + 0];
- vertex.y = vertexBuffer[i + 1];
- vertex.z = vertexBuffer[i + 2];
- vertex.normalize().multiplyScalar(radius);
- vertexBuffer[i + 0] = vertex.x;
- vertexBuffer[i + 1] = vertex.y;
- vertexBuffer[i + 2] = vertex.z;
- }
- }
+ for (let i = 0; i < vertexBuffer.length; i += 3) {
+ vertex.x = vertexBuffer[i + 0];
+ vertex.y = vertexBuffer[i + 1];
+ vertex.z = vertexBuffer[i + 2];
+ const u = azimuth(vertex) / 2 / Math.PI + 0.5;
+ const v = inclination(vertex) / Math.PI + 0.5;
+ uvBuffer.push(u, 1 - v);
+ }
- function generateUVs() {
- const vertex = new Vector3();
+ correctUVs();
+ correctSeam();
+ }
- for (let i = 0; i < vertexBuffer.length; i += 3) {
- vertex.x = vertexBuffer[i + 0];
- vertex.y = vertexBuffer[i + 1];
- vertex.z = vertexBuffer[i + 2];
- const u = azimuth(vertex) / 2 / Math.PI + 0.5;
- const v = inclination(vertex) / Math.PI + 0.5;
- uvBuffer.push(u, 1 - v);
- }
+ function correctSeam() {
+ // handle case when face straddles the seam, see #3269
+ for (let i = 0; i < uvBuffer.length; i += 6) {
+ // uv data of a single face
+ const x0 = uvBuffer[i + 0];
+ const x1 = uvBuffer[i + 2];
+ const x2 = uvBuffer[i + 4];
+ const max = Math.max(x0, x1, x2);
+ const min = Math.min(x0, x1, x2); // 0.9 is somewhat arbitrary
+
+ if (max > 0.9 && min < 0.1) {
+ if (x0 < 0.2) uvBuffer[i + 0] += 1;
+ if (x1 < 0.2) uvBuffer[i + 2] += 1;
+ if (x2 < 0.2) uvBuffer[i + 4] += 1;
+ }
+ }
+ }
- correctUVs();
- correctSeam();
- }
+ function pushVertex(vertex) {
+ vertexBuffer.push(vertex.x, vertex.y, vertex.z);
+ }
- function correctSeam() {
- // handle case when face straddles the seam, see #3269
- for (let i = 0; i < uvBuffer.length; i += 6) {
- // uv data of a single face
- const x0 = uvBuffer[i + 0];
- const x1 = uvBuffer[i + 2];
- const x2 = uvBuffer[i + 4];
- const max = Math.max(x0, x1, x2);
- const min = Math.min(x0, x1, x2); // 0.9 is somewhat arbitrary
+ function getVertexByIndex(index, vertex) {
+ const stride = index * 3;
+ vertex.x = vertices[stride + 0];
+ vertex.y = vertices[stride + 1];
+ vertex.z = vertices[stride + 2];
+ }
- if (max > 0.9 && min < 0.1) {
- if (x0 < 0.2) uvBuffer[i + 0] += 1;
- if (x1 < 0.2) uvBuffer[i + 2] += 1;
- if (x2 < 0.2) uvBuffer[i + 4] += 1;
+ function correctUVs() {
+ const a = new Vector3();
+ const b = new Vector3();
+ const c = new Vector3();
+ const centroid = new Vector3();
+ const uvA = new Vector2();
+ const uvB = new Vector2();
+ const uvC = new Vector2();
+
+ for (let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6) {
+ a.set(vertexBuffer[i + 0], vertexBuffer[i + 1], vertexBuffer[i + 2]);
+ b.set(vertexBuffer[i + 3], vertexBuffer[i + 4], vertexBuffer[i + 5]);
+ c.set(vertexBuffer[i + 6], vertexBuffer[i + 7], vertexBuffer[i + 8]);
+ uvA.set(uvBuffer[j + 0], uvBuffer[j + 1]);
+ uvB.set(uvBuffer[j + 2], uvBuffer[j + 3]);
+ uvC.set(uvBuffer[j + 4], uvBuffer[j + 5]);
+ centroid.copy(a).add(b).add(c).divideScalar(3);
+ const azi = azimuth(centroid);
+ correctUV(uvA, j + 0, a, azi);
+ correctUV(uvB, j + 2, b, azi);
+ correctUV(uvC, j + 4, c, azi);
+ }
}
- }
- }
- function pushVertex(vertex) {
- vertexBuffer.push(vertex.x, vertex.y, vertex.z);
- }
+ function correctUV(uv, stride, vector, azimuth) {
+ if (azimuth < 0 && uv.x === 1) {
+ uvBuffer[stride] = uv.x - 1;
+ }
- function getVertexByIndex(index, vertex) {
- const stride = index * 3;
- vertex.x = vertices[stride + 0];
- vertex.y = vertices[stride + 1];
- vertex.z = vertices[stride + 2];
- }
+ if (vector.x === 0 && vector.z === 0) {
+ uvBuffer[stride] = azimuth / 2 / Math.PI + 0.5;
+ }
+ } // Angle around the Y axis, counter-clockwise when looking from above.
- function correctUVs() {
- const a = new Vector3();
- const b = new Vector3();
- const c = new Vector3();
- const centroid = new Vector3();
- const uvA = new Vector2();
- const uvB = new Vector2();
- const uvC = new Vector2();
- for (let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6) {
- a.set(vertexBuffer[i + 0], vertexBuffer[i + 1], vertexBuffer[i + 2]);
- b.set(vertexBuffer[i + 3], vertexBuffer[i + 4], vertexBuffer[i + 5]);
- c.set(vertexBuffer[i + 6], vertexBuffer[i + 7], vertexBuffer[i + 8]);
- uvA.set(uvBuffer[j + 0], uvBuffer[j + 1]);
- uvB.set(uvBuffer[j + 2], uvBuffer[j + 3]);
- uvC.set(uvBuffer[j + 4], uvBuffer[j + 5]);
- centroid.copy(a).add(b).add(c).divideScalar(3);
- const azi = azimuth(centroid);
- correctUV(uvA, j + 0, a, azi);
- correctUV(uvB, j + 2, b, azi);
- correctUV(uvC, j + 4, c, azi);
- }
- }
+ function azimuth(vector) {
+ return Math.atan2(vector.z, -vector.x);
+ } // Angle above the XZ plane.
- function correctUV(uv, stride, vector, azimuth) {
- if (azimuth < 0 && uv.x === 1) {
- uvBuffer[stride] = uv.x - 1;
+
+ function inclination(vector) {
+ return Math.atan2(-vector.y, Math.sqrt(vector.x * vector.x + vector.z * vector.z));
+ }
}
- if (vector.x === 0 && vector.z === 0) {
- uvBuffer[stride] = azimuth / 2 / Math.PI + 0.5;
+ static fromJSON(data) {
+ return new PolyhedronGeometry(data.vertices, data.indices, data.radius, data.details);
}
- } // Angle around the Y axis, counter-clockwise when looking from above.
+ }
- function azimuth(vector) {
- return Math.atan2(vector.z, -vector.x);
- } // Angle above the XZ plane.
+ class DodecahedronGeometry extends PolyhedronGeometry {
+ constructor(radius = 1, detail = 0) {
+ const t = (1 + Math.sqrt(5)) / 2;
+ const r = 1 / t;
+ const vertices = [// (±1, ±1, ±1)
+ -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, // (0, ±1/φ, ±φ)
+ 0, -r, -t, 0, -r, t, 0, r, -t, 0, r, t, // (±1/φ, ±φ, 0)
+ -r, -t, 0, -r, t, 0, r, -t, 0, r, t, 0, // (±φ, 0, ±1/φ)
+ -t, 0, -r, t, 0, -r, -t, 0, r, t, 0, r];
+ const indices = [3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9];
+ super(vertices, indices, radius, detail);
+ this.type = 'DodecahedronGeometry';
+ this.parameters = {
+ radius: radius,
+ detail: detail
+ };
+ }
+ static fromJSON(data) {
+ return new DodecahedronGeometry(data.radius, data.detail);
+ }
- function inclination(vector) {
- return Math.atan2(-vector.y, Math.sqrt(vector.x * vector.x + vector.z * vector.z));
}
- }
-
- static fromJSON(data) {
- return new PolyhedronGeometry(data.vertices, data.indices, data.radius, data.details);
- }
- }
+ const _v0 = new Vector3();
- class DodecahedronGeometry extends PolyhedronGeometry {
- constructor(radius = 1, detail = 0) {
- const t = (1 + Math.sqrt(5)) / 2;
- const r = 1 / t;
- const vertices = [// (±1, ±1, ±1)
- -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, // (0, ±1/φ, ±φ)
- 0, -r, -t, 0, -r, t, 0, r, -t, 0, r, t, // (±1/φ, ±φ, 0)
- -r, -t, 0, -r, t, 0, r, -t, 0, r, t, 0, // (±φ, 0, ±1/φ)
- -t, 0, -r, t, 0, -r, -t, 0, r, t, 0, r];
- const indices = [3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9];
- super(vertices, indices, radius, detail);
- this.type = 'DodecahedronGeometry';
- this.parameters = {
- radius: radius,
- detail: detail
- };
- }
+ const _v1$1 = new Vector3();
- static fromJSON(data) {
- return new DodecahedronGeometry(data.radius, data.detail);
- }
+ const _normal = new Vector3();
- }
+ const _triangle = new Triangle();
- const _v0 = new Vector3();
+ class EdgesGeometry extends BufferGeometry {
+ constructor(geometry, thresholdAngle) {
+ super();
+ this.type = 'EdgesGeometry';
+ this.parameters = {
+ thresholdAngle: thresholdAngle
+ };
+ thresholdAngle = thresholdAngle !== undefined ? thresholdAngle : 1;
- const _v1$1 = new Vector3();
+ if (geometry.isGeometry === true) {
+ console.error('THREE.EdgesGeometry no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
+ return;
+ }
- const _normal = new Vector3();
+ const precisionPoints = 4;
+ const precision = Math.pow(10, precisionPoints);
+ const thresholdDot = Math.cos(DEG2RAD * thresholdAngle);
+ const indexAttr = geometry.getIndex();
+ const positionAttr = geometry.getAttribute('position');
+ const indexCount = indexAttr ? indexAttr.count : positionAttr.count;
+ const indexArr = [0, 0, 0];
+ const vertKeys = ['a', 'b', 'c'];
+ const hashes = new Array(3);
+ const edgeData = {};
+ const vertices = [];
+
+ for (let i = 0; i < indexCount; i += 3) {
+ if (indexAttr) {
+ indexArr[0] = indexAttr.getX(i);
+ indexArr[1] = indexAttr.getX(i + 1);
+ indexArr[2] = indexAttr.getX(i + 2);
+ } else {
+ indexArr[0] = i;
+ indexArr[1] = i + 1;
+ indexArr[2] = i + 2;
+ }
- const _triangle = new Triangle();
+ const {
+ a,
+ b,
+ c
+ } = _triangle;
+ a.fromBufferAttribute(positionAttr, indexArr[0]);
+ b.fromBufferAttribute(positionAttr, indexArr[1]);
+ c.fromBufferAttribute(positionAttr, indexArr[2]);
- class EdgesGeometry extends BufferGeometry {
- constructor(geometry, thresholdAngle) {
- super();
- this.type = 'EdgesGeometry';
- this.parameters = {
- thresholdAngle: thresholdAngle
- };
- thresholdAngle = thresholdAngle !== undefined ? thresholdAngle : 1;
-
- if (geometry.isGeometry === true) {
- console.error('THREE.EdgesGeometry no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
- return;
- }
-
- const precisionPoints = 4;
- const precision = Math.pow(10, precisionPoints);
- const thresholdDot = Math.cos(DEG2RAD * thresholdAngle);
- const indexAttr = geometry.getIndex();
- const positionAttr = geometry.getAttribute('position');
- const indexCount = indexAttr ? indexAttr.count : positionAttr.count;
- const indexArr = [0, 0, 0];
- const vertKeys = ['a', 'b', 'c'];
- const hashes = new Array(3);
- const edgeData = {};
- const vertices = [];
-
- for (let i = 0; i < indexCount; i += 3) {
- if (indexAttr) {
- indexArr[0] = indexAttr.getX(i);
- indexArr[1] = indexAttr.getX(i + 1);
- indexArr[2] = indexAttr.getX(i + 2);
- } else {
- indexArr[0] = i;
- indexArr[1] = i + 1;
- indexArr[2] = i + 2;
- }
-
- const {
- a,
- b,
- c
- } = _triangle;
- a.fromBufferAttribute(positionAttr, indexArr[0]);
- b.fromBufferAttribute(positionAttr, indexArr[1]);
- c.fromBufferAttribute(positionAttr, indexArr[2]);
-
- _triangle.getNormal(_normal); // create hashes for the edge from the vertices
-
-
- hashes[0] = `${Math.round(a.x * precision)},${Math.round(a.y * precision)},${Math.round(a.z * precision)}`;
- hashes[1] = `${Math.round(b.x * precision)},${Math.round(b.y * precision)},${Math.round(b.z * precision)}`;
- hashes[2] = `${Math.round(c.x * precision)},${Math.round(c.y * precision)},${Math.round(c.z * precision)}`; // skip degenerate triangles
-
- if (hashes[0] === hashes[1] || hashes[1] === hashes[2] || hashes[2] === hashes[0]) {
- continue;
- } // iterate over every edge
-
-
- for (let j = 0; j < 3; j++) {
- // get the first and next vertex making up the edge
- const jNext = (j + 1) % 3;
- const vecHash0 = hashes[j];
- const vecHash1 = hashes[jNext];
- const v0 = _triangle[vertKeys[j]];
- const v1 = _triangle[vertKeys[jNext]];
- const hash = `${vecHash0}_${vecHash1}`;
- const reverseHash = `${vecHash1}_${vecHash0}`;
-
- if (reverseHash in edgeData && edgeData[reverseHash]) {
- // if we found a sibling edge add it into the vertex array if
- // it meets the angle threshold and delete the edge from the map.
- if (_normal.dot(edgeData[reverseHash].normal) <= thresholdDot) {
- vertices.push(v0.x, v0.y, v0.z);
- vertices.push(v1.x, v1.y, v1.z);
- }
-
- edgeData[reverseHash] = null;
- } else if (!(hash in edgeData)) {
- // if we've already got an edge here then skip adding a new one
- edgeData[hash] = {
- index0: indexArr[j],
- index1: indexArr[jNext],
- normal: _normal.clone()
- };
- }
- }
- } // iterate over all remaining, unmatched edges and add them to the vertex array
+ _triangle.getNormal(_normal); // create hashes for the edge from the vertices
- for (const key in edgeData) {
- if (edgeData[key]) {
- const {
- index0,
- index1
- } = edgeData[key];
+ hashes[0] = `${Math.round(a.x * precision)},${Math.round(a.y * precision)},${Math.round(a.z * precision)}`;
+ hashes[1] = `${Math.round(b.x * precision)},${Math.round(b.y * precision)},${Math.round(b.z * precision)}`;
+ hashes[2] = `${Math.round(c.x * precision)},${Math.round(c.y * precision)},${Math.round(c.z * precision)}`; // skip degenerate triangles
- _v0.fromBufferAttribute(positionAttr, index0);
+ if (hashes[0] === hashes[1] || hashes[1] === hashes[2] || hashes[2] === hashes[0]) {
+ continue;
+ } // iterate over every edge
- _v1$1.fromBufferAttribute(positionAttr, index1);
- vertices.push(_v0.x, _v0.y, _v0.z);
- vertices.push(_v1$1.x, _v1$1.y, _v1$1.z);
- }
- }
+ for (let j = 0; j < 3; j++) {
+ // get the first and next vertex making up the edge
+ const jNext = (j + 1) % 3;
+ const vecHash0 = hashes[j];
+ const vecHash1 = hashes[jNext];
+ const v0 = _triangle[vertKeys[j]];
+ const v1 = _triangle[vertKeys[jNext]];
+ const hash = `${vecHash0}_${vecHash1}`;
+ const reverseHash = `${vecHash1}_${vecHash0}`;
+
+ if (reverseHash in edgeData && edgeData[reverseHash]) {
+ // if we found a sibling edge add it into the vertex array if
+ // it meets the angle threshold and delete the edge from the map.
+ if (_normal.dot(edgeData[reverseHash].normal) <= thresholdDot) {
+ vertices.push(v0.x, v0.y, v0.z);
+ vertices.push(v1.x, v1.y, v1.z);
+ }
- this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- }
+ edgeData[reverseHash] = null;
+ } else if (!(hash in edgeData)) {
+ // if we've already got an edge here then skip adding a new one
+ edgeData[hash] = {
+ index0: indexArr[j],
+ index1: indexArr[jNext],
+ normal: _normal.clone()
+ };
+ }
+ }
+ } // iterate over all remaining, unmatched edges and add them to the vertex array
- }
- /**
- * Extensible curve object.
- *
- * Some common of curve methods:
- * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget )
- * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget )
- * .getPoints(), .getSpacedPoints()
- * .getLength()
- * .updateArcLengths()
- *
- * This following curves inherit from THREE.Curve:
- *
- * -- 2D curves --
- * THREE.ArcCurve
- * THREE.CubicBezierCurve
- * THREE.EllipseCurve
- * THREE.LineCurve
- * THREE.QuadraticBezierCurve
- * THREE.SplineCurve
- *
- * -- 3D curves --
- * THREE.CatmullRomCurve3
- * THREE.CubicBezierCurve3
- * THREE.LineCurve3
- * THREE.QuadraticBezierCurve3
- *
- * A series of curves can be represented as a THREE.CurvePath.
- *
- **/
+ for (const key in edgeData) {
+ if (edgeData[key]) {
+ const {
+ index0,
+ index1
+ } = edgeData[key];
- class Curve {
- constructor() {
- this.type = 'Curve';
- this.arcLengthDivisions = 200;
- } // Virtual base class method to overwrite and implement in subclasses
- // - t [0 .. 1]
+ _v0.fromBufferAttribute(positionAttr, index0);
+ _v1$1.fromBufferAttribute(positionAttr, index1);
- getPoint() {
- console.warn('THREE.Curve: .getPoint() not implemented.');
- return null;
- } // Get point at relative position in curve according to arc length
- // - u [0 .. 1]
+ vertices.push(_v0.x, _v0.y, _v0.z);
+ vertices.push(_v1$1.x, _v1$1.y, _v1$1.z);
+ }
+ }
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ }
- getPointAt(u, optionalTarget) {
- const t = this.getUtoTmapping(u);
- return this.getPoint(t, optionalTarget);
- } // Get sequence of points using getPoint( t )
+ }
+ /**
+ * Extensible curve object.
+ *
+ * Some common of curve methods:
+ * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget )
+ * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget )
+ * .getPoints(), .getSpacedPoints()
+ * .getLength()
+ * .updateArcLengths()
+ *
+ * This following curves inherit from THREE.Curve:
+ *
+ * -- 2D curves --
+ * THREE.ArcCurve
+ * THREE.CubicBezierCurve
+ * THREE.EllipseCurve
+ * THREE.LineCurve
+ * THREE.QuadraticBezierCurve
+ * THREE.SplineCurve
+ *
+ * -- 3D curves --
+ * THREE.CatmullRomCurve3
+ * THREE.CubicBezierCurve3
+ * THREE.LineCurve3
+ * THREE.QuadraticBezierCurve3
+ *
+ * A series of curves can be represented as a THREE.CurvePath.
+ *
+ **/
+
+ class Curve {
+ constructor() {
+ this.type = 'Curve';
+ this.arcLengthDivisions = 200;
+ } // Virtual base class method to overwrite and implement in subclasses
+ // - t [0 .. 1]
+
+
+ getPoint() {
+ console.warn('THREE.Curve: .getPoint() not implemented.');
+ return null;
+ } // Get point at relative position in curve according to arc length
+ // - u [0 .. 1]
- getPoints(divisions = 5) {
- const points = [];
- for (let d = 0; d <= divisions; d++) {
- points.push(this.getPoint(d / divisions));
- }
+ getPointAt(u, optionalTarget) {
+ const t = this.getUtoTmapping(u);
+ return this.getPoint(t, optionalTarget);
+ } // Get sequence of points using getPoint( t )
- return points;
- } // Get sequence of points using getPointAt( u )
+ getPoints(divisions = 5) {
+ const points = [];
- getSpacedPoints(divisions = 5) {
- const points = [];
+ for (let d = 0; d <= divisions; d++) {
+ points.push(this.getPoint(d / divisions));
+ }
- for (let d = 0; d <= divisions; d++) {
- points.push(this.getPointAt(d / divisions));
- }
+ return points;
+ } // Get sequence of points using getPointAt( u )
- return points;
- } // Get total curve arc length
+ getSpacedPoints(divisions = 5) {
+ const points = [];
- getLength() {
- const lengths = this.getLengths();
- return lengths[lengths.length - 1];
- } // Get list of cumulative segment lengths
+ for (let d = 0; d <= divisions; d++) {
+ points.push(this.getPointAt(d / divisions));
+ }
+ return points;
+ } // Get total curve arc length
- getLengths(divisions = this.arcLengthDivisions) {
- if (this.cacheArcLengths && this.cacheArcLengths.length === divisions + 1 && !this.needsUpdate) {
- return this.cacheArcLengths;
- }
- this.needsUpdate = false;
- const cache = [];
- let current,
- last = this.getPoint(0);
- let sum = 0;
- cache.push(0);
+ getLength() {
+ const lengths = this.getLengths();
+ return lengths[lengths.length - 1];
+ } // Get list of cumulative segment lengths
- for (let p = 1; p <= divisions; p++) {
- current = this.getPoint(p / divisions);
- sum += current.distanceTo(last);
- cache.push(sum);
- last = current;
- }
- this.cacheArcLengths = cache;
- return cache; // { sums: cache, sum: sum }; Sum is in the last element.
- }
+ getLengths(divisions = this.arcLengthDivisions) {
+ if (this.cacheArcLengths && this.cacheArcLengths.length === divisions + 1 && !this.needsUpdate) {
+ return this.cacheArcLengths;
+ }
- updateArcLengths() {
- this.needsUpdate = true;
- this.getLengths();
- } // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant
+ this.needsUpdate = false;
+ const cache = [];
+ let current,
+ last = this.getPoint(0);
+ let sum = 0;
+ cache.push(0);
+
+ for (let p = 1; p <= divisions; p++) {
+ current = this.getPoint(p / divisions);
+ sum += current.distanceTo(last);
+ cache.push(sum);
+ last = current;
+ }
+ this.cacheArcLengths = cache;
+ return cache; // { sums: cache, sum: sum }; Sum is in the last element.
+ }
- getUtoTmapping(u, distance) {
- const arcLengths = this.getLengths();
- let i = 0;
- const il = arcLengths.length;
- let targetArcLength; // The targeted u distance value to get
+ updateArcLengths() {
+ this.needsUpdate = true;
+ this.getLengths();
+ } // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant
- if (distance) {
- targetArcLength = distance;
- } else {
- targetArcLength = u * arcLengths[il - 1];
- } // binary search for the index with largest value smaller than target u distance
+ getUtoTmapping(u, distance) {
+ const arcLengths = this.getLengths();
+ let i = 0;
+ const il = arcLengths.length;
+ let targetArcLength; // The targeted u distance value to get
- let low = 0,
- high = il - 1,
- comparison;
+ if (distance) {
+ targetArcLength = distance;
+ } else {
+ targetArcLength = u * arcLengths[il - 1];
+ } // binary search for the index with largest value smaller than target u distance
- while (low <= high) {
- i = Math.floor(low + (high - low) / 2); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
- comparison = arcLengths[i] - targetArcLength;
+ let low = 0,
+ high = il - 1,
+ comparison;
- if (comparison < 0) {
- low = i + 1;
- } else if (comparison > 0) {
- high = i - 1;
- } else {
- high = i;
- break; // DONE
- }
- }
+ while (low <= high) {
+ i = Math.floor(low + (high - low) / 2); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
- i = high;
+ comparison = arcLengths[i] - targetArcLength;
- if (arcLengths[i] === targetArcLength) {
- return i / (il - 1);
- } // we could get finer grain at lengths, or use simple interpolation between two points
+ if (comparison < 0) {
+ low = i + 1;
+ } else if (comparison > 0) {
+ high = i - 1;
+ } else {
+ high = i;
+ break; // DONE
+ }
+ }
+ i = high;
- const lengthBefore = arcLengths[i];
- const lengthAfter = arcLengths[i + 1];
- const segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points
+ if (arcLengths[i] === targetArcLength) {
+ return i / (il - 1);
+ } // we could get finer grain at lengths, or use simple interpolation between two points
- const segmentFraction = (targetArcLength - lengthBefore) / segmentLength; // add that fractional amount to t
- const t = (i + segmentFraction) / (il - 1);
- return t;
- } // Returns a unit vector tangent at t
- // In case any sub curve does not implement its tangent derivation,
- // 2 points a small delta apart will be used to find its gradient
- // which seems to give a reasonable approximation
+ const lengthBefore = arcLengths[i];
+ const lengthAfter = arcLengths[i + 1];
+ const segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points
+ const segmentFraction = (targetArcLength - lengthBefore) / segmentLength; // add that fractional amount to t
- getTangent(t, optionalTarget) {
- const delta = 0.0001;
- let t1 = t - delta;
- let t2 = t + delta; // Capping in case of danger
+ const t = (i + segmentFraction) / (il - 1);
+ return t;
+ } // Returns a unit vector tangent at t
+ // In case any sub curve does not implement its tangent derivation,
+ // 2 points a small delta apart will be used to find its gradient
+ // which seems to give a reasonable approximation
- if (t1 < 0) t1 = 0;
- if (t2 > 1) t2 = 1;
- const pt1 = this.getPoint(t1);
- const pt2 = this.getPoint(t2);
- const tangent = optionalTarget || (pt1.isVector2 ? new Vector2() : new Vector3());
- tangent.copy(pt2).sub(pt1).normalize();
- return tangent;
- }
- getTangentAt(u, optionalTarget) {
- const t = this.getUtoTmapping(u);
- return this.getTangent(t, optionalTarget);
- }
+ getTangent(t, optionalTarget) {
+ const delta = 0.0001;
+ let t1 = t - delta;
+ let t2 = t + delta; // Capping in case of danger
- computeFrenetFrames(segments, closed) {
- // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf
- const normal = new Vector3();
- const tangents = [];
- const normals = [];
- const binormals = [];
- const vec = new Vector3();
- const mat = new Matrix4(); // compute the tangent vectors for each segment on the curve
+ if (t1 < 0) t1 = 0;
+ if (t2 > 1) t2 = 1;
+ const pt1 = this.getPoint(t1);
+ const pt2 = this.getPoint(t2);
+ const tangent = optionalTarget || (pt1.isVector2 ? new Vector2() : new Vector3());
+ tangent.copy(pt2).sub(pt1).normalize();
+ return tangent;
+ }
- for (let i = 0; i <= segments; i++) {
- const u = i / segments;
- tangents[i] = this.getTangentAt(u, new Vector3());
- tangents[i].normalize();
- } // select an initial normal vector perpendicular to the first tangent vector,
- // and in the direction of the minimum tangent xyz component
+ getTangentAt(u, optionalTarget) {
+ const t = this.getUtoTmapping(u);
+ return this.getTangent(t, optionalTarget);
+ }
+ computeFrenetFrames(segments, closed) {
+ // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf
+ const normal = new Vector3();
+ const tangents = [];
+ const normals = [];
+ const binormals = [];
+ const vec = new Vector3();
+ const mat = new Matrix4(); // compute the tangent vectors for each segment on the curve
- normals[0] = new Vector3();
- binormals[0] = new Vector3();
- let min = Number.MAX_VALUE;
- const tx = Math.abs(tangents[0].x);
- const ty = Math.abs(tangents[0].y);
- const tz = Math.abs(tangents[0].z);
+ for (let i = 0; i <= segments; i++) {
+ const u = i / segments;
+ tangents[i] = this.getTangentAt(u, new Vector3());
+ tangents[i].normalize();
+ } // select an initial normal vector perpendicular to the first tangent vector,
+ // and in the direction of the minimum tangent xyz component
- if (tx <= min) {
- min = tx;
- normal.set(1, 0, 0);
- }
- if (ty <= min) {
- min = ty;
- normal.set(0, 1, 0);
- }
+ normals[0] = new Vector3();
+ binormals[0] = new Vector3();
+ let min = Number.MAX_VALUE;
+ const tx = Math.abs(tangents[0].x);
+ const ty = Math.abs(tangents[0].y);
+ const tz = Math.abs(tangents[0].z);
- if (tz <= min) {
- normal.set(0, 0, 1);
- }
+ if (tx <= min) {
+ min = tx;
+ normal.set(1, 0, 0);
+ }
- vec.crossVectors(tangents[0], normal).normalize();
- normals[0].crossVectors(tangents[0], vec);
- binormals[0].crossVectors(tangents[0], normals[0]); // compute the slowly-varying normal and binormal vectors for each segment on the curve
+ if (ty <= min) {
+ min = ty;
+ normal.set(0, 1, 0);
+ }
- for (let i = 1; i <= segments; i++) {
- normals[i] = normals[i - 1].clone();
- binormals[i] = binormals[i - 1].clone();
- vec.crossVectors(tangents[i - 1], tangents[i]);
+ if (tz <= min) {
+ normal.set(0, 0, 1);
+ }
- if (vec.length() > Number.EPSILON) {
- vec.normalize();
- const theta = Math.acos(clamp(tangents[i - 1].dot(tangents[i]), -1, 1)); // clamp for floating pt errors
+ vec.crossVectors(tangents[0], normal).normalize();
+ normals[0].crossVectors(tangents[0], vec);
+ binormals[0].crossVectors(tangents[0], normals[0]); // compute the slowly-varying normal and binormal vectors for each segment on the curve
- normals[i].applyMatrix4(mat.makeRotationAxis(vec, theta));
- }
+ for (let i = 1; i <= segments; i++) {
+ normals[i] = normals[i - 1].clone();
+ binormals[i] = binormals[i - 1].clone();
+ vec.crossVectors(tangents[i - 1], tangents[i]);
- binormals[i].crossVectors(tangents[i], normals[i]);
- } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
+ if (vec.length() > Number.EPSILON) {
+ vec.normalize();
+ const theta = Math.acos(clamp(tangents[i - 1].dot(tangents[i]), -1, 1)); // clamp for floating pt errors
+ normals[i].applyMatrix4(mat.makeRotationAxis(vec, theta));
+ }
- if (closed === true) {
- let theta = Math.acos(clamp(normals[0].dot(normals[segments]), -1, 1));
- theta /= segments;
+ binormals[i].crossVectors(tangents[i], normals[i]);
+ } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
- if (tangents[0].dot(vec.crossVectors(normals[0], normals[segments])) > 0) {
- theta = -theta;
- }
- for (let i = 1; i <= segments; i++) {
- // twist a little...
- normals[i].applyMatrix4(mat.makeRotationAxis(tangents[i], theta * i));
- binormals[i].crossVectors(tangents[i], normals[i]);
- }
- }
+ if (closed === true) {
+ let theta = Math.acos(clamp(normals[0].dot(normals[segments]), -1, 1));
+ theta /= segments;
- return {
- tangents: tangents,
- normals: normals,
- binormals: binormals
- };
- }
+ if (tangents[0].dot(vec.crossVectors(normals[0], normals[segments])) > 0) {
+ theta = -theta;
+ }
- clone() {
- return new this.constructor().copy(this);
- }
+ for (let i = 1; i <= segments; i++) {
+ // twist a little...
+ normals[i].applyMatrix4(mat.makeRotationAxis(tangents[i], theta * i));
+ binormals[i].crossVectors(tangents[i], normals[i]);
+ }
+ }
- copy(source) {
- this.arcLengthDivisions = source.arcLengthDivisions;
- return this;
- }
+ return {
+ tangents: tangents,
+ normals: normals,
+ binormals: binormals
+ };
+ }
- toJSON() {
- const data = {
- metadata: {
- version: 4.5,
- type: 'Curve',
- generator: 'Curve.toJSON'
+ clone() {
+ return new this.constructor().copy(this);
}
- };
- data.arcLengthDivisions = this.arcLengthDivisions;
- data.type = this.type;
- return data;
- }
- fromJSON(json) {
- this.arcLengthDivisions = json.arcLengthDivisions;
- return this;
- }
+ copy(source) {
+ this.arcLengthDivisions = source.arcLengthDivisions;
+ return this;
+ }
- }
+ toJSON() {
+ const data = {
+ metadata: {
+ version: 4.5,
+ type: 'Curve',
+ generator: 'Curve.toJSON'
+ }
+ };
+ data.arcLengthDivisions = this.arcLengthDivisions;
+ data.type = this.type;
+ return data;
+ }
- class EllipseCurve extends Curve {
- constructor(aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0) {
- super();
- this.type = 'EllipseCurve';
- this.aX = aX;
- this.aY = aY;
- this.xRadius = xRadius;
- this.yRadius = yRadius;
- this.aStartAngle = aStartAngle;
- this.aEndAngle = aEndAngle;
- this.aClockwise = aClockwise;
- this.aRotation = aRotation;
- }
+ fromJSON(json) {
+ this.arcLengthDivisions = json.arcLengthDivisions;
+ return this;
+ }
- getPoint(t, optionalTarget) {
- const point = optionalTarget || new Vector2();
- const twoPi = Math.PI * 2;
- let deltaAngle = this.aEndAngle - this.aStartAngle;
- const samePoints = Math.abs(deltaAngle) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI
+ }
- while (deltaAngle < 0) deltaAngle += twoPi;
+ class EllipseCurve extends Curve {
+ constructor(aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0) {
+ super();
+ this.type = 'EllipseCurve';
+ this.aX = aX;
+ this.aY = aY;
+ this.xRadius = xRadius;
+ this.yRadius = yRadius;
+ this.aStartAngle = aStartAngle;
+ this.aEndAngle = aEndAngle;
+ this.aClockwise = aClockwise;
+ this.aRotation = aRotation;
+ }
- while (deltaAngle > twoPi) deltaAngle -= twoPi;
+ getPoint(t, optionalTarget) {
+ const point = optionalTarget || new Vector2();
+ const twoPi = Math.PI * 2;
+ let deltaAngle = this.aEndAngle - this.aStartAngle;
+ const samePoints = Math.abs(deltaAngle) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI
- if (deltaAngle < Number.EPSILON) {
- if (samePoints) {
- deltaAngle = 0;
- } else {
- deltaAngle = twoPi;
- }
- }
+ while (deltaAngle < 0) deltaAngle += twoPi;
- if (this.aClockwise === true && !samePoints) {
- if (deltaAngle === twoPi) {
- deltaAngle = -twoPi;
- } else {
- deltaAngle = deltaAngle - twoPi;
- }
- }
+ while (deltaAngle > twoPi) deltaAngle -= twoPi;
+
+ if (deltaAngle < Number.EPSILON) {
+ if (samePoints) {
+ deltaAngle = 0;
+ } else {
+ deltaAngle = twoPi;
+ }
+ }
- const angle = this.aStartAngle + t * deltaAngle;
- let x = this.aX + this.xRadius * Math.cos(angle);
- let y = this.aY + this.yRadius * Math.sin(angle);
+ if (this.aClockwise === true && !samePoints) {
+ if (deltaAngle === twoPi) {
+ deltaAngle = -twoPi;
+ } else {
+ deltaAngle = deltaAngle - twoPi;
+ }
+ }
- if (this.aRotation !== 0) {
- const cos = Math.cos(this.aRotation);
- const sin = Math.sin(this.aRotation);
- const tx = x - this.aX;
- const ty = y - this.aY; // Rotate the point about the center of the ellipse.
+ const angle = this.aStartAngle + t * deltaAngle;
+ let x = this.aX + this.xRadius * Math.cos(angle);
+ let y = this.aY + this.yRadius * Math.sin(angle);
- x = tx * cos - ty * sin + this.aX;
- y = tx * sin + ty * cos + this.aY;
- }
+ if (this.aRotation !== 0) {
+ const cos = Math.cos(this.aRotation);
+ const sin = Math.sin(this.aRotation);
+ const tx = x - this.aX;
+ const ty = y - this.aY; // Rotate the point about the center of the ellipse.
- return point.set(x, y);
- }
+ x = tx * cos - ty * sin + this.aX;
+ y = tx * sin + ty * cos + this.aY;
+ }
- copy(source) {
- super.copy(source);
- this.aX = source.aX;
- this.aY = source.aY;
- this.xRadius = source.xRadius;
- this.yRadius = source.yRadius;
- this.aStartAngle = source.aStartAngle;
- this.aEndAngle = source.aEndAngle;
- this.aClockwise = source.aClockwise;
- this.aRotation = source.aRotation;
- return this;
- }
+ return point.set(x, y);
+ }
- toJSON() {
- const data = super.toJSON();
- data.aX = this.aX;
- data.aY = this.aY;
- data.xRadius = this.xRadius;
- data.yRadius = this.yRadius;
- data.aStartAngle = this.aStartAngle;
- data.aEndAngle = this.aEndAngle;
- data.aClockwise = this.aClockwise;
- data.aRotation = this.aRotation;
- return data;
- }
+ copy(source) {
+ super.copy(source);
+ this.aX = source.aX;
+ this.aY = source.aY;
+ this.xRadius = source.xRadius;
+ this.yRadius = source.yRadius;
+ this.aStartAngle = source.aStartAngle;
+ this.aEndAngle = source.aEndAngle;
+ this.aClockwise = source.aClockwise;
+ this.aRotation = source.aRotation;
+ return this;
+ }
- fromJSON(json) {
- super.fromJSON(json);
- this.aX = json.aX;
- this.aY = json.aY;
- this.xRadius = json.xRadius;
- this.yRadius = json.yRadius;
- this.aStartAngle = json.aStartAngle;
- this.aEndAngle = json.aEndAngle;
- this.aClockwise = json.aClockwise;
- this.aRotation = json.aRotation;
- return this;
- }
+ toJSON() {
+ const data = super.toJSON();
+ data.aX = this.aX;
+ data.aY = this.aY;
+ data.xRadius = this.xRadius;
+ data.yRadius = this.yRadius;
+ data.aStartAngle = this.aStartAngle;
+ data.aEndAngle = this.aEndAngle;
+ data.aClockwise = this.aClockwise;
+ data.aRotation = this.aRotation;
+ return data;
+ }
+
+ fromJSON(json) {
+ super.fromJSON(json);
+ this.aX = json.aX;
+ this.aY = json.aY;
+ this.xRadius = json.xRadius;
+ this.yRadius = json.yRadius;
+ this.aStartAngle = json.aStartAngle;
+ this.aEndAngle = json.aEndAngle;
+ this.aClockwise = json.aClockwise;
+ this.aRotation = json.aRotation;
+ return this;
+ }
- }
+ }
- EllipseCurve.prototype.isEllipseCurve = true;
+ EllipseCurve.prototype.isEllipseCurve = true;
- class ArcCurve extends EllipseCurve {
- constructor(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
- super(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise);
- this.type = 'ArcCurve';
- }
+ class ArcCurve extends EllipseCurve {
+ constructor(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
+ super(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise);
+ this.type = 'ArcCurve';
+ }
- }
+ }
- ArcCurve.prototype.isArcCurve = true;
+ ArcCurve.prototype.isArcCurve = true;
- /**
- * Centripetal CatmullRom Curve - which is useful for avoiding
- * cusps and self-intersections in non-uniform catmull rom curves.
- * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
- *
- * curve.type accepts centripetal(default), chordal and catmullrom
- * curve.tension is used for catmullrom which defaults to 0.5
- */
+ /**
+ * Centripetal CatmullRom Curve - which is useful for avoiding
+ * cusps and self-intersections in non-uniform catmull rom curves.
+ * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
+ *
+ * curve.type accepts centripetal(default), chordal and catmullrom
+ * curve.tension is used for catmullrom which defaults to 0.5
+ */
- /*
+ /*
Based on an optimized c++ solution in
- http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
- http://ideone.com/NoEbVM
which can be placed in CurveUtils.
*/
- function CubicPoly() {
- let c0 = 0,
- c1 = 0,
- c2 = 0,
- c3 = 0;
- /*
+ function CubicPoly() {
+ let c0 = 0,
+ c1 = 0,
+ c2 = 0,
+ c3 = 0;
+
+ /*
* Compute coefficients for a cubic polynomial
* p(s) = c0 + c1*s + c2*s^2 + c3*s^3
* such that
* p'(0) = t0, p'(1) = t1.
*/
- function init(x0, x1, t0, t1) {
- c0 = x0;
- c1 = t0;
- c2 = -3 * x0 + 3 * x1 - 2 * t0 - t1;
- c3 = 2 * x0 - 2 * x1 + t0 + t1;
- }
+ function init(x0, x1, t0, t1) {
+ c0 = x0;
+ c1 = t0;
+ c2 = -3 * x0 + 3 * x1 - 2 * t0 - t1;
+ c3 = 2 * x0 - 2 * x1 + t0 + t1;
+ }
- return {
- initCatmullRom: function (x0, x1, x2, x3, tension) {
- init(x1, x2, tension * (x2 - x0), tension * (x3 - x1));
- },
- initNonuniformCatmullRom: function (x0, x1, x2, x3, dt0, dt1, dt2) {
- // compute tangents when parameterized in [t1,t2]
- let t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1;
- let t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2; // rescale tangents for parametrization in [0,1]
-
- t1 *= dt1;
- t2 *= dt1;
- init(x1, x2, t1, t2);
- },
- calc: function (t) {
- const t2 = t * t;
- const t3 = t2 * t;
- return c0 + c1 * t + c2 * t2 + c3 * t3;
- }
- };
- } //
+ return {
+ initCatmullRom: function (x0, x1, x2, x3, tension) {
+ init(x1, x2, tension * (x2 - x0), tension * (x3 - x1));
+ },
+ initNonuniformCatmullRom: function (x0, x1, x2, x3, dt0, dt1, dt2) {
+ // compute tangents when parameterized in [t1,t2]
+ let t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1;
+ let t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2; // rescale tangents for parametrization in [0,1]
+
+ t1 *= dt1;
+ t2 *= dt1;
+ init(x1, x2, t1, t2);
+ },
+ calc: function (t) {
+ const t2 = t * t;
+ const t3 = t2 * t;
+ return c0 + c1 * t + c2 * t2 + c3 * t3;
+ }
+ };
+ } //
- const tmp = new Vector3();
- const px = new CubicPoly(),
+ const tmp = new Vector3();
+ const px = new CubicPoly(),
py = new CubicPoly(),
pz = new CubicPoly();
- class CatmullRomCurve3 extends Curve {
- constructor(points = [], closed = false, curveType = 'centripetal', tension = 0.5) {
- super();
- this.type = 'CatmullRomCurve3';
- this.points = points;
- this.closed = closed;
- this.curveType = curveType;
- this.tension = tension;
- }
+ class CatmullRomCurve3 extends Curve {
+ constructor(points = [], closed = false, curveType = 'centripetal', tension = 0.5) {
+ super();
+ this.type = 'CatmullRomCurve3';
+ this.points = points;
+ this.closed = closed;
+ this.curveType = curveType;
+ this.tension = tension;
+ }
+
+ getPoint(t, optionalTarget = new Vector3()) {
+ const point = optionalTarget;
+ const points = this.points;
+ const l = points.length;
+ const p = (l - (this.closed ? 0 : 1)) * t;
+ let intPoint = Math.floor(p);
+ let weight = p - intPoint;
+
+ if (this.closed) {
+ intPoint += intPoint > 0 ? 0 : (Math.floor(Math.abs(intPoint) / l) + 1) * l;
+ } else if (weight === 0 && intPoint === l - 1) {
+ intPoint = l - 2;
+ weight = 1;
+ }
- getPoint(t, optionalTarget = new Vector3()) {
- const point = optionalTarget;
- const points = this.points;
- const l = points.length;
- const p = (l - (this.closed ? 0 : 1)) * t;
- let intPoint = Math.floor(p);
- let weight = p - intPoint;
+ let p0, p3; // 4 points (p1 & p2 defined below)
- if (this.closed) {
- intPoint += intPoint > 0 ? 0 : (Math.floor(Math.abs(intPoint) / l) + 1) * l;
- } else if (weight === 0 && intPoint === l - 1) {
- intPoint = l - 2;
- weight = 1;
- }
+ if (this.closed || intPoint > 0) {
+ p0 = points[(intPoint - 1) % l];
+ } else {
+ // extrapolate first point
+ tmp.subVectors(points[0], points[1]).add(points[0]);
+ p0 = tmp;
+ }
- let p0, p3; // 4 points (p1 & p2 defined below)
+ const p1 = points[intPoint % l];
+ const p2 = points[(intPoint + 1) % l];
- if (this.closed || intPoint > 0) {
- p0 = points[(intPoint - 1) % l];
- } else {
- // extrapolate first point
- tmp.subVectors(points[0], points[1]).add(points[0]);
- p0 = tmp;
- }
+ if (this.closed || intPoint + 2 < l) {
+ p3 = points[(intPoint + 2) % l];
+ } else {
+ // extrapolate last point
+ tmp.subVectors(points[l - 1], points[l - 2]).add(points[l - 1]);
+ p3 = tmp;
+ }
- const p1 = points[intPoint % l];
- const p2 = points[(intPoint + 1) % l];
+ if (this.curveType === 'centripetal' || this.curveType === 'chordal') {
+ // init Centripetal / Chordal Catmull-Rom
+ const pow = this.curveType === 'chordal' ? 0.5 : 0.25;
+ let dt0 = Math.pow(p0.distanceToSquared(p1), pow);
+ let dt1 = Math.pow(p1.distanceToSquared(p2), pow);
+ let dt2 = Math.pow(p2.distanceToSquared(p3), pow); // safety check for repeated points
+
+ if (dt1 < 1e-4) dt1 = 1.0;
+ if (dt0 < 1e-4) dt0 = dt1;
+ if (dt2 < 1e-4) dt2 = dt1;
+ px.initNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2);
+ py.initNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2);
+ pz.initNonuniformCatmullRom(p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2);
+ } else if (this.curveType === 'catmullrom') {
+ px.initCatmullRom(p0.x, p1.x, p2.x, p3.x, this.tension);
+ py.initCatmullRom(p0.y, p1.y, p2.y, p3.y, this.tension);
+ pz.initCatmullRom(p0.z, p1.z, p2.z, p3.z, this.tension);
+ }
- if (this.closed || intPoint + 2 < l) {
- p3 = points[(intPoint + 2) % l];
- } else {
- // extrapolate last point
- tmp.subVectors(points[l - 1], points[l - 2]).add(points[l - 1]);
- p3 = tmp;
- }
-
- if (this.curveType === 'centripetal' || this.curveType === 'chordal') {
- // init Centripetal / Chordal Catmull-Rom
- const pow = this.curveType === 'chordal' ? 0.5 : 0.25;
- let dt0 = Math.pow(p0.distanceToSquared(p1), pow);
- let dt1 = Math.pow(p1.distanceToSquared(p2), pow);
- let dt2 = Math.pow(p2.distanceToSquared(p3), pow); // safety check for repeated points
-
- if (dt1 < 1e-4) dt1 = 1.0;
- if (dt0 < 1e-4) dt0 = dt1;
- if (dt2 < 1e-4) dt2 = dt1;
- px.initNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2);
- py.initNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2);
- pz.initNonuniformCatmullRom(p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2);
- } else if (this.curveType === 'catmullrom') {
- px.initCatmullRom(p0.x, p1.x, p2.x, p3.x, this.tension);
- py.initCatmullRom(p0.y, p1.y, p2.y, p3.y, this.tension);
- pz.initCatmullRom(p0.z, p1.z, p2.z, p3.z, this.tension);
- }
-
- point.set(px.calc(weight), py.calc(weight), pz.calc(weight));
- return point;
- }
+ point.set(px.calc(weight), py.calc(weight), pz.calc(weight));
+ return point;
+ }
- copy(source) {
- super.copy(source);
- this.points = [];
+ copy(source) {
+ super.copy(source);
+ this.points = [];
- for (let i = 0, l = source.points.length; i < l; i++) {
- const point = source.points[i];
- this.points.push(point.clone());
- }
+ for (let i = 0, l = source.points.length; i < l; i++) {
+ const point = source.points[i];
+ this.points.push(point.clone());
+ }
- this.closed = source.closed;
- this.curveType = source.curveType;
- this.tension = source.tension;
- return this;
- }
+ this.closed = source.closed;
+ this.curveType = source.curveType;
+ this.tension = source.tension;
+ return this;
+ }
- toJSON() {
- const data = super.toJSON();
- data.points = [];
+ toJSON() {
+ const data = super.toJSON();
+ data.points = [];
- for (let i = 0, l = this.points.length; i < l; i++) {
- const point = this.points[i];
- data.points.push(point.toArray());
- }
+ for (let i = 0, l = this.points.length; i < l; i++) {
+ const point = this.points[i];
+ data.points.push(point.toArray());
+ }
- data.closed = this.closed;
- data.curveType = this.curveType;
- data.tension = this.tension;
- return data;
- }
+ data.closed = this.closed;
+ data.curveType = this.curveType;
+ data.tension = this.tension;
+ return data;
+ }
- fromJSON(json) {
- super.fromJSON(json);
- this.points = [];
+ fromJSON(json) {
+ super.fromJSON(json);
+ this.points = [];
- for (let i = 0, l = json.points.length; i < l; i++) {
- const point = json.points[i];
- this.points.push(new Vector3().fromArray(point));
- }
+ for (let i = 0, l = json.points.length; i < l; i++) {
+ const point = json.points[i];
+ this.points.push(new Vector3().fromArray(point));
+ }
- this.closed = json.closed;
- this.curveType = json.curveType;
- this.tension = json.tension;
- return this;
- }
+ this.closed = json.closed;
+ this.curveType = json.curveType;
+ this.tension = json.tension;
+ return this;
+ }
- }
+ }
- CatmullRomCurve3.prototype.isCatmullRomCurve3 = true;
+ CatmullRomCurve3.prototype.isCatmullRomCurve3 = true;
- /**
- * Bezier Curves formulas obtained from
- * http://en.wikipedia.org/wiki/Bézier_curve
- */
- function CatmullRom(t, p0, p1, p2, p3) {
- const v0 = (p2 - p0) * 0.5;
- const v1 = (p3 - p1) * 0.5;
- const t2 = t * t;
- const t3 = t * t2;
- return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1;
- } //
+ /**
+ * Bezier Curves formulas obtained from
+ * http://en.wikipedia.org/wiki/Bézier_curve
+ */
+ function CatmullRom(t, p0, p1, p2, p3) {
+ const v0 = (p2 - p0) * 0.5;
+ const v1 = (p3 - p1) * 0.5;
+ const t2 = t * t;
+ const t3 = t * t2;
+ return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1;
+ } //
- function QuadraticBezierP0(t, p) {
- const k = 1 - t;
- return k * k * p;
- }
+ function QuadraticBezierP0(t, p) {
+ const k = 1 - t;
+ return k * k * p;
+ }
- function QuadraticBezierP1(t, p) {
- return 2 * (1 - t) * t * p;
- }
+ function QuadraticBezierP1(t, p) {
+ return 2 * (1 - t) * t * p;
+ }
- function QuadraticBezierP2(t, p) {
- return t * t * p;
- }
+ function QuadraticBezierP2(t, p) {
+ return t * t * p;
+ }
- function QuadraticBezier(t, p0, p1, p2) {
- return QuadraticBezierP0(t, p0) + QuadraticBezierP1(t, p1) + QuadraticBezierP2(t, p2);
- } //
+ function QuadraticBezier(t, p0, p1, p2) {
+ return QuadraticBezierP0(t, p0) + QuadraticBezierP1(t, p1) + QuadraticBezierP2(t, p2);
+ } //
- function CubicBezierP0(t, p) {
- const k = 1 - t;
- return k * k * k * p;
- }
+ function CubicBezierP0(t, p) {
+ const k = 1 - t;
+ return k * k * k * p;
+ }
- function CubicBezierP1(t, p) {
- const k = 1 - t;
- return 3 * k * k * t * p;
- }
+ function CubicBezierP1(t, p) {
+ const k = 1 - t;
+ return 3 * k * k * t * p;
+ }
- function CubicBezierP2(t, p) {
- return 3 * (1 - t) * t * t * p;
- }
+ function CubicBezierP2(t, p) {
+ return 3 * (1 - t) * t * t * p;
+ }
- function CubicBezierP3(t, p) {
- return t * t * t * p;
- }
+ function CubicBezierP3(t, p) {
+ return t * t * t * p;
+ }
- function CubicBezier(t, p0, p1, p2, p3) {
- return CubicBezierP0(t, p0) + CubicBezierP1(t, p1) + CubicBezierP2(t, p2) + CubicBezierP3(t, p3);
- }
+ function CubicBezier(t, p0, p1, p2, p3) {
+ return CubicBezierP0(t, p0) + CubicBezierP1(t, p1) + CubicBezierP2(t, p2) + CubicBezierP3(t, p3);
+ }
- class CubicBezierCurve extends Curve {
- constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2()) {
- super();
- this.type = 'CubicBezierCurve';
- this.v0 = v0;
- this.v1 = v1;
- this.v2 = v2;
- this.v3 = v3;
- }
+ class CubicBezierCurve extends Curve {
+ constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2()) {
+ super();
+ this.type = 'CubicBezierCurve';
+ this.v0 = v0;
+ this.v1 = v1;
+ this.v2 = v2;
+ this.v3 = v3;
+ }
- getPoint(t, optionalTarget = new Vector2()) {
- const point = optionalTarget;
- const v0 = this.v0,
+ getPoint(t, optionalTarget = new Vector2()) {
+ const point = optionalTarget;
+ const v0 = this.v0,
v1 = this.v1,
v2 = this.v2,
v3 = this.v3;
- point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y));
- return point;
- }
+ point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y));
+ return point;
+ }
- copy(source) {
- super.copy(source);
- this.v0.copy(source.v0);
- this.v1.copy(source.v1);
- this.v2.copy(source.v2);
- this.v3.copy(source.v3);
- return this;
- }
+ copy(source) {
+ super.copy(source);
+ this.v0.copy(source.v0);
+ this.v1.copy(source.v1);
+ this.v2.copy(source.v2);
+ this.v3.copy(source.v3);
+ return this;
+ }
- toJSON() {
- const data = super.toJSON();
- data.v0 = this.v0.toArray();
- data.v1 = this.v1.toArray();
- data.v2 = this.v2.toArray();
- data.v3 = this.v3.toArray();
- return data;
- }
+ toJSON() {
+ const data = super.toJSON();
+ data.v0 = this.v0.toArray();
+ data.v1 = this.v1.toArray();
+ data.v2 = this.v2.toArray();
+ data.v3 = this.v3.toArray();
+ return data;
+ }
- fromJSON(json) {
- super.fromJSON(json);
- this.v0.fromArray(json.v0);
- this.v1.fromArray(json.v1);
- this.v2.fromArray(json.v2);
- this.v3.fromArray(json.v3);
- return this;
- }
+ fromJSON(json) {
+ super.fromJSON(json);
+ this.v0.fromArray(json.v0);
+ this.v1.fromArray(json.v1);
+ this.v2.fromArray(json.v2);
+ this.v3.fromArray(json.v3);
+ return this;
+ }
- }
+ }
- CubicBezierCurve.prototype.isCubicBezierCurve = true;
+ CubicBezierCurve.prototype.isCubicBezierCurve = true;
- class CubicBezierCurve3 extends Curve {
- constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3()) {
- super();
- this.type = 'CubicBezierCurve3';
- this.v0 = v0;
- this.v1 = v1;
- this.v2 = v2;
- this.v3 = v3;
- }
+ class CubicBezierCurve3 extends Curve {
+ constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3()) {
+ super();
+ this.type = 'CubicBezierCurve3';
+ this.v0 = v0;
+ this.v1 = v1;
+ this.v2 = v2;
+ this.v3 = v3;
+ }
- getPoint(t, optionalTarget = new Vector3()) {
- const point = optionalTarget;
- const v0 = this.v0,
+ getPoint(t, optionalTarget = new Vector3()) {
+ const point = optionalTarget;
+ const v0 = this.v0,
v1 = this.v1,
v2 = this.v2,
v3 = this.v3;
- point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y), CubicBezier(t, v0.z, v1.z, v2.z, v3.z));
- return point;
- }
+ point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y), CubicBezier(t, v0.z, v1.z, v2.z, v3.z));
+ return point;
+ }
- copy(source) {
- super.copy(source);
- this.v0.copy(source.v0);
- this.v1.copy(source.v1);
- this.v2.copy(source.v2);
- this.v3.copy(source.v3);
- return this;
- }
+ copy(source) {
+ super.copy(source);
+ this.v0.copy(source.v0);
+ this.v1.copy(source.v1);
+ this.v2.copy(source.v2);
+ this.v3.copy(source.v3);
+ return this;
+ }
- toJSON() {
- const data = super.toJSON();
- data.v0 = this.v0.toArray();
- data.v1 = this.v1.toArray();
- data.v2 = this.v2.toArray();
- data.v3 = this.v3.toArray();
- return data;
- }
+ toJSON() {
+ const data = super.toJSON();
+ data.v0 = this.v0.toArray();
+ data.v1 = this.v1.toArray();
+ data.v2 = this.v2.toArray();
+ data.v3 = this.v3.toArray();
+ return data;
+ }
- fromJSON(json) {
- super.fromJSON(json);
- this.v0.fromArray(json.v0);
- this.v1.fromArray(json.v1);
- this.v2.fromArray(json.v2);
- this.v3.fromArray(json.v3);
- return this;
- }
+ fromJSON(json) {
+ super.fromJSON(json);
+ this.v0.fromArray(json.v0);
+ this.v1.fromArray(json.v1);
+ this.v2.fromArray(json.v2);
+ this.v3.fromArray(json.v3);
+ return this;
+ }
- }
+ }
- CubicBezierCurve3.prototype.isCubicBezierCurve3 = true;
+ CubicBezierCurve3.prototype.isCubicBezierCurve3 = true;
- class LineCurve extends Curve {
- constructor(v1 = new Vector2(), v2 = new Vector2()) {
- super();
- this.type = 'LineCurve';
- this.v1 = v1;
- this.v2 = v2;
- }
+ class LineCurve extends Curve {
+ constructor(v1 = new Vector2(), v2 = new Vector2()) {
+ super();
+ this.type = 'LineCurve';
+ this.v1 = v1;
+ this.v2 = v2;
+ }
- getPoint(t, optionalTarget = new Vector2()) {
- const point = optionalTarget;
+ getPoint(t, optionalTarget = new Vector2()) {
+ const point = optionalTarget;
- if (t === 1) {
- point.copy(this.v2);
- } else {
- point.copy(this.v2).sub(this.v1);
- point.multiplyScalar(t).add(this.v1);
- }
+ if (t === 1) {
+ point.copy(this.v2);
+ } else {
+ point.copy(this.v2).sub(this.v1);
+ point.multiplyScalar(t).add(this.v1);
+ }
- return point;
- } // Line curve is linear, so we can overwrite default getPointAt
+ return point;
+ } // Line curve is linear, so we can overwrite default getPointAt
- getPointAt(u, optionalTarget) {
- return this.getPoint(u, optionalTarget);
- }
+ getPointAt(u, optionalTarget) {
+ return this.getPoint(u, optionalTarget);
+ }
- getTangent(t, optionalTarget) {
- const tangent = optionalTarget || new Vector2();
- tangent.copy(this.v2).sub(this.v1).normalize();
- return tangent;
- }
+ getTangent(t, optionalTarget) {
+ const tangent = optionalTarget || new Vector2();
+ tangent.copy(this.v2).sub(this.v1).normalize();
+ return tangent;
+ }
- copy(source) {
- super.copy(source);
- this.v1.copy(source.v1);
- this.v2.copy(source.v2);
- return this;
- }
+ copy(source) {
+ super.copy(source);
+ this.v1.copy(source.v1);
+ this.v2.copy(source.v2);
+ return this;
+ }
- toJSON() {
- const data = super.toJSON();
- data.v1 = this.v1.toArray();
- data.v2 = this.v2.toArray();
- return data;
- }
+ toJSON() {
+ const data = super.toJSON();
+ data.v1 = this.v1.toArray();
+ data.v2 = this.v2.toArray();
+ return data;
+ }
- fromJSON(json) {
- super.fromJSON(json);
- this.v1.fromArray(json.v1);
- this.v2.fromArray(json.v2);
- return this;
- }
+ fromJSON(json) {
+ super.fromJSON(json);
+ this.v1.fromArray(json.v1);
+ this.v2.fromArray(json.v2);
+ return this;
+ }
- }
+ }
- LineCurve.prototype.isLineCurve = true;
+ LineCurve.prototype.isLineCurve = true;
- class LineCurve3 extends Curve {
- constructor(v1 = new Vector3(), v2 = new Vector3()) {
- super();
- this.type = 'LineCurve3';
- this.isLineCurve3 = true;
- this.v1 = v1;
- this.v2 = v2;
- }
+ class LineCurve3 extends Curve {
+ constructor(v1 = new Vector3(), v2 = new Vector3()) {
+ super();
+ this.type = 'LineCurve3';
+ this.isLineCurve3 = true;
+ this.v1 = v1;
+ this.v2 = v2;
+ }
- getPoint(t, optionalTarget = new Vector3()) {
- const point = optionalTarget;
+ getPoint(t, optionalTarget = new Vector3()) {
+ const point = optionalTarget;
- if (t === 1) {
- point.copy(this.v2);
- } else {
- point.copy(this.v2).sub(this.v1);
- point.multiplyScalar(t).add(this.v1);
- }
+ if (t === 1) {
+ point.copy(this.v2);
+ } else {
+ point.copy(this.v2).sub(this.v1);
+ point.multiplyScalar(t).add(this.v1);
+ }
- return point;
- } // Line curve is linear, so we can overwrite default getPointAt
+ return point;
+ } // Line curve is linear, so we can overwrite default getPointAt
- getPointAt(u, optionalTarget) {
- return this.getPoint(u, optionalTarget);
- }
+ getPointAt(u, optionalTarget) {
+ return this.getPoint(u, optionalTarget);
+ }
- copy(source) {
- super.copy(source);
- this.v1.copy(source.v1);
- this.v2.copy(source.v2);
- return this;
- }
+ copy(source) {
+ super.copy(source);
+ this.v1.copy(source.v1);
+ this.v2.copy(source.v2);
+ return this;
+ }
- toJSON() {
- const data = super.toJSON();
- data.v1 = this.v1.toArray();
- data.v2 = this.v2.toArray();
- return data;
- }
+ toJSON() {
+ const data = super.toJSON();
+ data.v1 = this.v1.toArray();
+ data.v2 = this.v2.toArray();
+ return data;
+ }
- fromJSON(json) {
- super.fromJSON(json);
- this.v1.fromArray(json.v1);
- this.v2.fromArray(json.v2);
- return this;
- }
+ fromJSON(json) {
+ super.fromJSON(json);
+ this.v1.fromArray(json.v1);
+ this.v2.fromArray(json.v2);
+ return this;
+ }
- }
+ }
- class QuadraticBezierCurve extends Curve {
- constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2()) {
- super();
- this.type = 'QuadraticBezierCurve';
- this.v0 = v0;
- this.v1 = v1;
- this.v2 = v2;
- }
+ class QuadraticBezierCurve extends Curve {
+ constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2()) {
+ super();
+ this.type = 'QuadraticBezierCurve';
+ this.v0 = v0;
+ this.v1 = v1;
+ this.v2 = v2;
+ }
- getPoint(t, optionalTarget = new Vector2()) {
- const point = optionalTarget;
- const v0 = this.v0,
+ getPoint(t, optionalTarget = new Vector2()) {
+ const point = optionalTarget;
+ const v0 = this.v0,
v1 = this.v1,
v2 = this.v2;
- point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y));
- return point;
- }
+ point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y));
+ return point;
+ }
- copy(source) {
- super.copy(source);
- this.v0.copy(source.v0);
- this.v1.copy(source.v1);
- this.v2.copy(source.v2);
- return this;
- }
+ copy(source) {
+ super.copy(source);
+ this.v0.copy(source.v0);
+ this.v1.copy(source.v1);
+ this.v2.copy(source.v2);
+ return this;
+ }
- toJSON() {
- const data = super.toJSON();
- data.v0 = this.v0.toArray();
- data.v1 = this.v1.toArray();
- data.v2 = this.v2.toArray();
- return data;
- }
+ toJSON() {
+ const data = super.toJSON();
+ data.v0 = this.v0.toArray();
+ data.v1 = this.v1.toArray();
+ data.v2 = this.v2.toArray();
+ return data;
+ }
- fromJSON(json) {
- super.fromJSON(json);
- this.v0.fromArray(json.v0);
- this.v1.fromArray(json.v1);
- this.v2.fromArray(json.v2);
- return this;
- }
+ fromJSON(json) {
+ super.fromJSON(json);
+ this.v0.fromArray(json.v0);
+ this.v1.fromArray(json.v1);
+ this.v2.fromArray(json.v2);
+ return this;
+ }
- }
+ }
- QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true;
+ QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true;
- class QuadraticBezierCurve3 extends Curve {
- constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3()) {
- super();
- this.type = 'QuadraticBezierCurve3';
- this.v0 = v0;
- this.v1 = v1;
- this.v2 = v2;
- }
+ class QuadraticBezierCurve3 extends Curve {
+ constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3()) {
+ super();
+ this.type = 'QuadraticBezierCurve3';
+ this.v0 = v0;
+ this.v1 = v1;
+ this.v2 = v2;
+ }
- getPoint(t, optionalTarget = new Vector3()) {
- const point = optionalTarget;
- const v0 = this.v0,
+ getPoint(t, optionalTarget = new Vector3()) {
+ const point = optionalTarget;
+ const v0 = this.v0,
v1 = this.v1,
v2 = this.v2;
- point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y), QuadraticBezier(t, v0.z, v1.z, v2.z));
- return point;
- }
-
- copy(source) {
- super.copy(source);
- this.v0.copy(source.v0);
- this.v1.copy(source.v1);
- this.v2.copy(source.v2);
- return this;
- }
+ point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y), QuadraticBezier(t, v0.z, v1.z, v2.z));
+ return point;
+ }
- toJSON() {
- const data = super.toJSON();
- data.v0 = this.v0.toArray();
- data.v1 = this.v1.toArray();
- data.v2 = this.v2.toArray();
- return data;
- }
+ copy(source) {
+ super.copy(source);
+ this.v0.copy(source.v0);
+ this.v1.copy(source.v1);
+ this.v2.copy(source.v2);
+ return this;
+ }
- fromJSON(json) {
- super.fromJSON(json);
- this.v0.fromArray(json.v0);
- this.v1.fromArray(json.v1);
- this.v2.fromArray(json.v2);
- return this;
- }
+ toJSON() {
+ const data = super.toJSON();
+ data.v0 = this.v0.toArray();
+ data.v1 = this.v1.toArray();
+ data.v2 = this.v2.toArray();
+ return data;
+ }
- }
+ fromJSON(json) {
+ super.fromJSON(json);
+ this.v0.fromArray(json.v0);
+ this.v1.fromArray(json.v1);
+ this.v2.fromArray(json.v2);
+ return this;
+ }
- QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true;
+ }
- class SplineCurve extends Curve {
- constructor(points = []) {
- super();
- this.type = 'SplineCurve';
- this.points = points;
- }
+ QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true;
- getPoint(t, optionalTarget = new Vector2()) {
- const point = optionalTarget;
- const points = this.points;
- const p = (points.length - 1) * t;
- const intPoint = Math.floor(p);
- const weight = p - intPoint;
- const p0 = points[intPoint === 0 ? intPoint : intPoint - 1];
- const p1 = points[intPoint];
- const p2 = points[intPoint > points.length - 2 ? points.length - 1 : intPoint + 1];
- const p3 = points[intPoint > points.length - 3 ? points.length - 1 : intPoint + 2];
- point.set(CatmullRom(weight, p0.x, p1.x, p2.x, p3.x), CatmullRom(weight, p0.y, p1.y, p2.y, p3.y));
- return point;
- }
+ class SplineCurve extends Curve {
+ constructor(points = []) {
+ super();
+ this.type = 'SplineCurve';
+ this.points = points;
+ }
- copy(source) {
- super.copy(source);
- this.points = [];
+ getPoint(t, optionalTarget = new Vector2()) {
+ const point = optionalTarget;
+ const points = this.points;
+ const p = (points.length - 1) * t;
+ const intPoint = Math.floor(p);
+ const weight = p - intPoint;
+ const p0 = points[intPoint === 0 ? intPoint : intPoint - 1];
+ const p1 = points[intPoint];
+ const p2 = points[intPoint > points.length - 2 ? points.length - 1 : intPoint + 1];
+ const p3 = points[intPoint > points.length - 3 ? points.length - 1 : intPoint + 2];
+ point.set(CatmullRom(weight, p0.x, p1.x, p2.x, p3.x), CatmullRom(weight, p0.y, p1.y, p2.y, p3.y));
+ return point;
+ }
- for (let i = 0, l = source.points.length; i < l; i++) {
- const point = source.points[i];
- this.points.push(point.clone());
- }
+ copy(source) {
+ super.copy(source);
+ this.points = [];
- return this;
- }
+ for (let i = 0, l = source.points.length; i < l; i++) {
+ const point = source.points[i];
+ this.points.push(point.clone());
+ }
- toJSON() {
- const data = super.toJSON();
- data.points = [];
+ return this;
+ }
- for (let i = 0, l = this.points.length; i < l; i++) {
- const point = this.points[i];
- data.points.push(point.toArray());
- }
+ toJSON() {
+ const data = super.toJSON();
+ data.points = [];
- return data;
- }
+ for (let i = 0, l = this.points.length; i < l; i++) {
+ const point = this.points[i];
+ data.points.push(point.toArray());
+ }
- fromJSON(json) {
- super.fromJSON(json);
- this.points = [];
+ return data;
+ }
+
+ fromJSON(json) {
+ super.fromJSON(json);
+ this.points = [];
+
+ for (let i = 0, l = json.points.length; i < l; i++) {
+ const point = json.points[i];
+ this.points.push(new Vector2().fromArray(point));
+ }
+
+ return this;
+ }
- for (let i = 0, l = json.points.length; i < l; i++) {
- const point = json.points[i];
- this.points.push(new Vector2().fromArray(point));
}
- return this;
- }
+ SplineCurve.prototype.isSplineCurve = true;
- }
+ var Curves = /*#__PURE__*/Object.freeze({
+ __proto__: null,
+ ArcCurve: ArcCurve,
+ CatmullRomCurve3: CatmullRomCurve3,
+ CubicBezierCurve: CubicBezierCurve,
+ CubicBezierCurve3: CubicBezierCurve3,
+ EllipseCurve: EllipseCurve,
+ LineCurve: LineCurve,
+ LineCurve3: LineCurve3,
+ QuadraticBezierCurve: QuadraticBezierCurve,
+ QuadraticBezierCurve3: QuadraticBezierCurve3,
+ SplineCurve: SplineCurve
+ });
- SplineCurve.prototype.isSplineCurve = true;
-
- var Curves = /*#__PURE__*/Object.freeze({
- __proto__: null,
- ArcCurve: ArcCurve,
- CatmullRomCurve3: CatmullRomCurve3,
- CubicBezierCurve: CubicBezierCurve,
- CubicBezierCurve3: CubicBezierCurve3,
- EllipseCurve: EllipseCurve,
- LineCurve: LineCurve,
- LineCurve3: LineCurve3,
- QuadraticBezierCurve: QuadraticBezierCurve,
- QuadraticBezierCurve3: QuadraticBezierCurve3,
- SplineCurve: SplineCurve
- });
-
- /**
- * Port from https://github.com/mapbox/earcut (v2.2.2)
- */
- const Earcut = {
- triangulate: function (data, holeIndices, dim = 2) {
- const hasHoles = holeIndices && holeIndices.length;
- const outerLen = hasHoles ? holeIndices[0] * dim : data.length;
- let outerNode = linkedList(data, 0, outerLen, dim, true);
- const triangles = [];
- if (!outerNode || outerNode.next === outerNode.prev) return triangles;
- let minX, minY, maxX, maxY, x, y, invSize;
- if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
-
- if (data.length > 80 * dim) {
- minX = maxX = data[0];
- minY = maxY = data[1];
-
- for (let i = dim; i < outerLen; i += dim) {
- x = data[i];
- y = data[i + 1];
- if (x < minX) minX = x;
- if (y < minY) minY = y;
- if (x > maxX) maxX = x;
- if (y > maxY) maxY = y;
- } // minX, minY and invSize are later used to transform coords into integers for z-order calculation
-
-
- invSize = Math.max(maxX - minX, maxY - minY);
- invSize = invSize !== 0 ? 1 / invSize : 0;
- }
-
- earcutLinked(outerNode, triangles, dim, minX, minY, invSize);
- return triangles;
- }
- }; // create a circular doubly linked list from polygon points in the specified winding order
+ /**
+ * Port from https://github.com/mapbox/earcut (v2.2.2)
+ */
+ const Earcut = {
+ triangulate: function (data, holeIndices, dim = 2) {
+ const hasHoles = holeIndices && holeIndices.length;
+ const outerLen = hasHoles ? holeIndices[0] * dim : data.length;
+ let outerNode = linkedList(data, 0, outerLen, dim, true);
+ const triangles = [];
+ if (!outerNode || outerNode.next === outerNode.prev) return triangles;
+ let minX, minY, maxX, maxY, x, y, invSize;
+ if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
+
+ if (data.length > 80 * dim) {
+ minX = maxX = data[0];
+ minY = maxY = data[1];
+
+ for (let i = dim; i < outerLen; i += dim) {
+ x = data[i];
+ y = data[i + 1];
+ if (x < minX) minX = x;
+ if (y < minY) minY = y;
+ if (x > maxX) maxX = x;
+ if (y > maxY) maxY = y;
+ } // minX, minY and invSize are later used to transform coords into integers for z-order calculation
+
+
+ invSize = Math.max(maxX - minX, maxY - minY);
+ invSize = invSize !== 0 ? 1 / invSize : 0;
+ }
- function linkedList(data, start, end, dim, clockwise) {
- let i, last;
+ earcutLinked(outerNode, triangles, dim, minX, minY, invSize);
+ return triangles;
+ }
+ }; // create a circular doubly linked list from polygon points in the specified winding order
- if (clockwise === signedArea(data, start, end, dim) > 0) {
- for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last);
- } else {
- for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last);
- }
+ function linkedList(data, start, end, dim, clockwise) {
+ let i, last;
- if (last && equals(last, last.next)) {
- removeNode(last);
- last = last.next;
- }
+ if (clockwise === signedArea(data, start, end, dim) > 0) {
+ for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last);
+ } else {
+ for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last);
+ }
- return last;
- } // eliminate colinear or duplicate points
+ if (last && equals(last, last.next)) {
+ removeNode(last);
+ last = last.next;
+ }
+ return last;
+ } // eliminate colinear or duplicate points
- function filterPoints(start, end) {
- if (!start) return start;
- if (!end) end = start;
- let p = start,
- again;
- do {
- again = false;
+ function filterPoints(start, end) {
+ if (!start) return start;
+ if (!end) end = start;
+ let p = start,
+ again;
- if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) {
- removeNode(p);
- p = end = p.prev;
- if (p === p.next) break;
- again = true;
- } else {
- p = p.next;
- }
- } while (again || p !== end);
+ do {
+ again = false;
- return end;
- } // main ear slicing loop which triangulates a polygon (given as a linked list)
+ if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) {
+ removeNode(p);
+ p = end = p.prev;
+ if (p === p.next) break;
+ again = true;
+ } else {
+ p = p.next;
+ }
+ } while (again || p !== end);
+ return end;
+ } // main ear slicing loop which triangulates a polygon (given as a linked list)
- function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) {
- if (!ear) return; // interlink polygon nodes in z-order
- if (!pass && invSize) indexCurve(ear, minX, minY, invSize);
- let stop = ear,
- prev,
- next; // iterate through ears, slicing them one by one
+ function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) {
+ if (!ear) return; // interlink polygon nodes in z-order
- while (ear.prev !== ear.next) {
- prev = ear.prev;
- next = ear.next;
+ if (!pass && invSize) indexCurve(ear, minX, minY, invSize);
+ let stop = ear,
+ prev,
+ next; // iterate through ears, slicing them one by one
- if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) {
- // cut off the triangle
- triangles.push(prev.i / dim);
- triangles.push(ear.i / dim);
- triangles.push(next.i / dim);
- removeNode(ear); // skipping the next vertex leads to less sliver triangles
+ while (ear.prev !== ear.next) {
+ prev = ear.prev;
+ next = ear.next;
- ear = next.next;
- stop = next.next;
- continue;
- }
+ if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) {
+ // cut off the triangle
+ triangles.push(prev.i / dim);
+ triangles.push(ear.i / dim);
+ triangles.push(next.i / dim);
+ removeNode(ear); // skipping the next vertex leads to less sliver triangles
- ear = next; // if we looped through the whole remaining polygon and can't find any more ears
+ ear = next.next;
+ stop = next.next;
+ continue;
+ }
- if (ear === stop) {
- // try filtering points and slicing again
- if (!pass) {
- earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); // if this didn't work, try curing all small self-intersections locally
- } else if (pass === 1) {
- ear = cureLocalIntersections(filterPoints(ear), triangles, dim);
- earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); // as a last resort, try splitting the remaining polygon into two
- } else if (pass === 2) {
- splitEarcut(ear, triangles, dim, minX, minY, invSize);
- }
+ ear = next; // if we looped through the whole remaining polygon and can't find any more ears
+
+ if (ear === stop) {
+ // try filtering points and slicing again
+ if (!pass) {
+ earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); // if this didn't work, try curing all small self-intersections locally
+ } else if (pass === 1) {
+ ear = cureLocalIntersections(filterPoints(ear), triangles, dim);
+ earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); // as a last resort, try splitting the remaining polygon into two
+ } else if (pass === 2) {
+ splitEarcut(ear, triangles, dim, minX, minY, invSize);
+ }
- break;
- }
- }
- } // check whether a polygon node forms a valid ear with adjacent nodes
+ break;
+ }
+ }
+ } // check whether a polygon node forms a valid ear with adjacent nodes
- function isEar(ear) {
- const a = ear.prev,
+ function isEar(ear) {
+ const a = ear.prev,
b = ear,
c = ear.next;
- if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
- // now make sure we don't have other points inside the potential ear
+ if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
+ // now make sure we don't have other points inside the potential ear
- let p = ear.next.next;
+ let p = ear.next.next;
- while (p !== ear.prev) {
- if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
- p = p.next;
- }
+ while (p !== ear.prev) {
+ if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
+ p = p.next;
+ }
- return true;
- }
+ return true;
+ }
- function isEarHashed(ear, minX, minY, invSize) {
- const a = ear.prev,
+ function isEarHashed(ear, minX, minY, invSize) {
+ const a = ear.prev,
b = ear,
c = ear.next;
- if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
- // triangle bbox; min & max are calculated like this for speed
+ if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
+ // triangle bbox; min & max are calculated like this for speed
- const minTX = a.x < b.x ? a.x < c.x ? a.x : c.x : b.x < c.x ? b.x : c.x,
+ const minTX = a.x < b.x ? a.x < c.x ? a.x : c.x : b.x < c.x ? b.x : c.x,
minTY = a.y < b.y ? a.y < c.y ? a.y : c.y : b.y < c.y ? b.y : c.y,
maxTX = a.x > b.x ? a.x > c.x ? a.x : c.x : b.x > c.x ? b.x : c.x,
maxTY = a.y > b.y ? a.y > c.y ? a.y : c.y : b.y > c.y ? b.y : c.y; // z-order range for the current triangle bbox;
- const minZ = zOrder(minTX, minTY, minX, minY, invSize),
+ const minZ = zOrder(minTX, minTY, minX, minY, invSize),
maxZ = zOrder(maxTX, maxTY, minX, minY, invSize);
- let p = ear.prevZ,
- n = ear.nextZ; // look for points inside the triangle in both directions
+ let p = ear.prevZ,
+ n = ear.nextZ; // look for points inside the triangle in both directions
- while (p && p.z >= minZ && n && n.z <= maxZ) {
- if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
- p = p.prevZ;
- if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;
- n = n.nextZ;
- } // look for remaining points in decreasing z-order
+ while (p && p.z >= minZ && n && n.z <= maxZ) {
+ if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
+ p = p.prevZ;
+ if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;
+ n = n.nextZ;
+ } // look for remaining points in decreasing z-order
- while (p && p.z >= minZ) {
- if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
- p = p.prevZ;
- } // look for remaining points in increasing z-order
+ while (p && p.z >= minZ) {
+ if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
+ p = p.prevZ;
+ } // look for remaining points in increasing z-order
- while (n && n.z <= maxZ) {
- if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;
- n = n.nextZ;
- }
+ while (n && n.z <= maxZ) {
+ if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;
+ n = n.nextZ;
+ }
- return true;
- } // go through all polygon nodes and cure small local self-intersections
+ return true;
+ } // go through all polygon nodes and cure small local self-intersections
- function cureLocalIntersections(start, triangles, dim) {
- let p = start;
+ function cureLocalIntersections(start, triangles, dim) {
+ let p = start;
- do {
- const a = p.prev,
+ do {
+ const a = p.prev,
b = p.next.next;
- if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) {
- triangles.push(a.i / dim);
- triangles.push(p.i / dim);
- triangles.push(b.i / dim); // remove two nodes involved
+ if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) {
+ triangles.push(a.i / dim);
+ triangles.push(p.i / dim);
+ triangles.push(b.i / dim); // remove two nodes involved
- removeNode(p);
- removeNode(p.next);
- p = start = b;
- }
+ removeNode(p);
+ removeNode(p.next);
+ p = start = b;
+ }
- p = p.next;
- } while (p !== start);
+ p = p.next;
+ } while (p !== start);
- return filterPoints(p);
- } // try splitting polygon into two and triangulate them independently
+ return filterPoints(p);
+ } // try splitting polygon into two and triangulate them independently
- function splitEarcut(start, triangles, dim, minX, minY, invSize) {
- // look for a valid diagonal that divides the polygon into two
- let a = start;
+ function splitEarcut(start, triangles, dim, minX, minY, invSize) {
+ // look for a valid diagonal that divides the polygon into two
+ let a = start;
- do {
- let b = a.next.next;
+ do {
+ let b = a.next.next;
- while (b !== a.prev) {
- if (a.i !== b.i && isValidDiagonal(a, b)) {
- // split the polygon in two by the diagonal
- let c = splitPolygon(a, b); // filter colinear points around the cuts
+ while (b !== a.prev) {
+ if (a.i !== b.i && isValidDiagonal(a, b)) {
+ // split the polygon in two by the diagonal
+ let c = splitPolygon(a, b); // filter colinear points around the cuts
- a = filterPoints(a, a.next);
- c = filterPoints(c, c.next); // run earcut on each half
+ a = filterPoints(a, a.next);
+ c = filterPoints(c, c.next); // run earcut on each half
- earcutLinked(a, triangles, dim, minX, minY, invSize);
- earcutLinked(c, triangles, dim, minX, minY, invSize);
- return;
- }
+ earcutLinked(a, triangles, dim, minX, minY, invSize);
+ earcutLinked(c, triangles, dim, minX, minY, invSize);
+ return;
+ }
- b = b.next;
- }
+ b = b.next;
+ }
- a = a.next;
- } while (a !== start);
- } // link every hole into the outer loop, producing a single-ring polygon without holes
+ a = a.next;
+ } while (a !== start);
+ } // link every hole into the outer loop, producing a single-ring polygon without holes
- function eliminateHoles(data, holeIndices, outerNode, dim) {
- const queue = [];
- let i, len, start, end, list;
+ function eliminateHoles(data, holeIndices, outerNode, dim) {
+ const queue = [];
+ let i, len, start, end, list;
- for (i = 0, len = holeIndices.length; i < len; i++) {
- start = holeIndices[i] * dim;
- end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
- list = linkedList(data, start, end, dim, false);
- if (list === list.next) list.steiner = true;
- queue.push(getLeftmost(list));
- }
+ for (i = 0, len = holeIndices.length; i < len; i++) {
+ start = holeIndices[i] * dim;
+ end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
+ list = linkedList(data, start, end, dim, false);
+ if (list === list.next) list.steiner = true;
+ queue.push(getLeftmost(list));
+ }
- queue.sort(compareX); // process holes from left to right
+ queue.sort(compareX); // process holes from left to right
- for (i = 0; i < queue.length; i++) {
- eliminateHole(queue[i], outerNode);
- outerNode = filterPoints(outerNode, outerNode.next);
- }
+ for (i = 0; i < queue.length; i++) {
+ eliminateHole(queue[i], outerNode);
+ outerNode = filterPoints(outerNode, outerNode.next);
+ }
- return outerNode;
- }
+ return outerNode;
+ }
- function compareX(a, b) {
- return a.x - b.x;
- } // find a bridge between vertices that connects hole with an outer ring and and link it
+ function compareX(a, b) {
+ return a.x - b.x;
+ } // find a bridge between vertices that connects hole with an outer ring and and link it
- function eliminateHole(hole, outerNode) {
- outerNode = findHoleBridge(hole, outerNode);
+ function eliminateHole(hole, outerNode) {
+ outerNode = findHoleBridge(hole, outerNode);
- if (outerNode) {
- const b = splitPolygon(outerNode, hole); // filter collinear points around the cuts
+ if (outerNode) {
+ const b = splitPolygon(outerNode, hole); // filter collinear points around the cuts
- filterPoints(outerNode, outerNode.next);
- filterPoints(b, b.next);
- }
- } // David Eberly's algorithm for finding a bridge between hole and outer polygon
+ filterPoints(outerNode, outerNode.next);
+ filterPoints(b, b.next);
+ }
+ } // David Eberly's algorithm for finding a bridge between hole and outer polygon
- function findHoleBridge(hole, outerNode) {
- let p = outerNode;
- const hx = hole.x;
- const hy = hole.y;
- let qx = -Infinity,
- m; // find a segment intersected by a ray from the hole's leftmost point to the left;
- // segment's endpoint with lesser x will be potential connection point
+ function findHoleBridge(hole, outerNode) {
+ let p = outerNode;
+ const hx = hole.x;
+ const hy = hole.y;
+ let qx = -Infinity,
+ m; // find a segment intersected by a ray from the hole's leftmost point to the left;
+ // segment's endpoint with lesser x will be potential connection point
- do {
- if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) {
- const x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y);
+ do {
+ if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) {
+ const x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y);
- if (x <= hx && x > qx) {
- qx = x;
+ if (x <= hx && x > qx) {
+ qx = x;
- if (x === hx) {
- if (hy === p.y) return p;
- if (hy === p.next.y) return p.next;
- }
+ if (x === hx) {
+ if (hy === p.y) return p;
+ if (hy === p.next.y) return p.next;
+ }
- m = p.x < p.next.x ? p : p.next;
- }
- }
+ m = p.x < p.next.x ? p : p.next;
+ }
+ }
- p = p.next;
- } while (p !== outerNode);
+ p = p.next;
+ } while (p !== outerNode);
- if (!m) return null;
- if (hx === qx) return m; // hole touches outer segment; pick leftmost endpoint
- // look for points inside the triangle of hole point, segment intersection and endpoint;
- // if there are no points found, we have a valid connection;
- // otherwise choose the point of the minimum angle with the ray as connection point
+ if (!m) return null;
+ if (hx === qx) return m; // hole touches outer segment; pick leftmost endpoint
+ // look for points inside the triangle of hole point, segment intersection and endpoint;
+ // if there are no points found, we have a valid connection;
+ // otherwise choose the point of the minimum angle with the ray as connection point
- const stop = m,
+ const stop = m,
mx = m.x,
my = m.y;
- let tanMin = Infinity,
- tan;
- p = m;
-
- do {
- if (hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) {
- tan = Math.abs(hy - p.y) / (hx - p.x); // tangential
-
- if (locallyInside(p, hole) && (tan < tanMin || tan === tanMin && (p.x > m.x || p.x === m.x && sectorContainsSector(m, p)))) {
- m = p;
- tanMin = tan;
- }
- }
+ let tanMin = Infinity,
+ tan;
+ p = m;
- p = p.next;
- } while (p !== stop);
-
- return m;
- } // whether sector in vertex m contains sector in vertex p in the same coordinates
+ do {
+ if (hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) {
+ tan = Math.abs(hy - p.y) / (hx - p.x); // tangential
+ if (locallyInside(p, hole) && (tan < tanMin || tan === tanMin && (p.x > m.x || p.x === m.x && sectorContainsSector(m, p)))) {
+ m = p;
+ tanMin = tan;
+ }
+ }
- function sectorContainsSector(m, p) {
- return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0;
- } // interlink polygon nodes in z-order
+ p = p.next;
+ } while (p !== stop);
+ return m;
+ } // whether sector in vertex m contains sector in vertex p in the same coordinates
- function indexCurve(start, minX, minY, invSize) {
- let p = start;
- do {
- if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize);
- p.prevZ = p.prev;
- p.nextZ = p.next;
- p = p.next;
- } while (p !== start);
+ function sectorContainsSector(m, p) {
+ return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0;
+ } // interlink polygon nodes in z-order
- p.prevZ.nextZ = null;
- p.prevZ = null;
- sortLinked(p);
- } // Simon Tatham's linked list merge sort algorithm
- // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
+ function indexCurve(start, minX, minY, invSize) {
+ let p = start;
- function sortLinked(list) {
- let i,
- p,
- q,
- e,
- tail,
- numMerges,
- pSize,
- qSize,
- inSize = 1;
+ do {
+ if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize);
+ p.prevZ = p.prev;
+ p.nextZ = p.next;
+ p = p.next;
+ } while (p !== start);
+
+ p.prevZ.nextZ = null;
+ p.prevZ = null;
+ sortLinked(p);
+ } // Simon Tatham's linked list merge sort algorithm
+ // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
+
+
+ function sortLinked(list) {
+ let i,
+ p,
+ q,
+ e,
+ tail,
+ numMerges,
+ pSize,
+ qSize,
+ inSize = 1;
- do {
- p = list;
- list = null;
- tail = null;
- numMerges = 0;
+ do {
+ p = list;
+ list = null;
+ tail = null;
+ numMerges = 0;
+
+ while (p) {
+ numMerges++;
+ q = p;
+ pSize = 0;
+
+ for (i = 0; i < inSize; i++) {
+ pSize++;
+ q = q.nextZ;
+ if (!q) break;
+ }
- while (p) {
- numMerges++;
- q = p;
- pSize = 0;
+ qSize = inSize;
- for (i = 0; i < inSize; i++) {
- pSize++;
- q = q.nextZ;
- if (!q) break;
- }
+ while (pSize > 0 || qSize > 0 && q) {
+ if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) {
+ e = p;
+ p = p.nextZ;
+ pSize--;
+ } else {
+ e = q;
+ q = q.nextZ;
+ qSize--;
+ }
- qSize = inSize;
+ if (tail) tail.nextZ = e; else list = e;
+ e.prevZ = tail;
+ tail = e;
+ }
- while (pSize > 0 || qSize > 0 && q) {
- if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) {
- e = p;
- p = p.nextZ;
- pSize--;
- } else {
- e = q;
- q = q.nextZ;
- qSize--;
+ p = q;
}
- if (tail) tail.nextZ = e;else list = e;
- e.prevZ = tail;
- tail = e;
- }
-
- p = q;
- }
-
- tail.nextZ = null;
- inSize *= 2;
- } while (numMerges > 1);
+ tail.nextZ = null;
+ inSize *= 2;
+ } while (numMerges > 1);
- return list;
- } // z-order of a point given coords and inverse of the longer side of data bbox
+ return list;
+ } // z-order of a point given coords and inverse of the longer side of data bbox
- function zOrder(x, y, minX, minY, invSize) {
- // coords are transformed into non-negative 15-bit integer range
- x = 32767 * (x - minX) * invSize;
- y = 32767 * (y - minY) * invSize;
- x = (x | x << 8) & 0x00FF00FF;
- x = (x | x << 4) & 0x0F0F0F0F;
- x = (x | x << 2) & 0x33333333;
- x = (x | x << 1) & 0x55555555;
- y = (y | y << 8) & 0x00FF00FF;
- y = (y | y << 4) & 0x0F0F0F0F;
- y = (y | y << 2) & 0x33333333;
- y = (y | y << 1) & 0x55555555;
- return x | y << 1;
- } // find the leftmost node of a polygon ring
+ function zOrder(x, y, minX, minY, invSize) {
+ // coords are transformed into non-negative 15-bit integer range
+ x = 32767 * (x - minX) * invSize;
+ y = 32767 * (y - minY) * invSize;
+ x = (x | x << 8) & 0x00FF00FF;
+ x = (x | x << 4) & 0x0F0F0F0F;
+ x = (x | x << 2) & 0x33333333;
+ x = (x | x << 1) & 0x55555555;
+ y = (y | y << 8) & 0x00FF00FF;
+ y = (y | y << 4) & 0x0F0F0F0F;
+ y = (y | y << 2) & 0x33333333;
+ y = (y | y << 1) & 0x55555555;
+ return x | y << 1;
+ } // find the leftmost node of a polygon ring
- function getLeftmost(start) {
- let p = start,
- leftmost = start;
+ function getLeftmost(start) {
+ let p = start,
+ leftmost = start;
- do {
- if (p.x < leftmost.x || p.x === leftmost.x && p.y < leftmost.y) leftmost = p;
- p = p.next;
- } while (p !== start);
+ do {
+ if (p.x < leftmost.x || p.x === leftmost.x && p.y < leftmost.y) leftmost = p;
+ p = p.next;
+ } while (p !== start);
- return leftmost;
- } // check if a point lies within a convex triangle
+ return leftmost;
+ } // check if a point lies within a convex triangle
- function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) {
- return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
- } // check if a diagonal between two polygon nodes is valid (lies in polygon interior)
+ function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) {
+ return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
+ } // check if a diagonal between two polygon nodes is valid (lies in polygon interior)
- function isValidDiagonal(a, b) {
- return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && (locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && (area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors
- equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case
- } // signed area of a triangle
+ function isValidDiagonal(a, b) {
+ return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && (locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && (area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors
+ equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case
+ } // signed area of a triangle
- function area(p, q, r) {
- return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
- } // check if two points are equal
+ function area(p, q, r) {
+ return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
+ } // check if two points are equal
- function equals(p1, p2) {
- return p1.x === p2.x && p1.y === p2.y;
- } // check if two segments intersect
+ function equals(p1, p2) {
+ return p1.x === p2.x && p1.y === p2.y;
+ } // check if two segments intersect
- function intersects(p1, q1, p2, q2) {
- const o1 = sign(area(p1, q1, p2));
- const o2 = sign(area(p1, q1, q2));
- const o3 = sign(area(p2, q2, p1));
- const o4 = sign(area(p2, q2, q1));
- if (o1 !== o2 && o3 !== o4) return true; // general case
+ function intersects(p1, q1, p2, q2) {
+ const o1 = sign(area(p1, q1, p2));
+ const o2 = sign(area(p1, q1, q2));
+ const o3 = sign(area(p2, q2, p1));
+ const o4 = sign(area(p2, q2, q1));
+ if (o1 !== o2 && o3 !== o4) return true; // general case
- if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
+ if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
- if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
+ if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
- if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
+ if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
- if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
+ if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
- return false;
- } // for collinear points p, q, r, check if point q lies on segment pr
+ return false;
+ } // for collinear points p, q, r, check if point q lies on segment pr
- function onSegment(p, q, r) {
- return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y);
- }
+ function onSegment(p, q, r) {
+ return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y);
+ }
- function sign(num) {
- return num > 0 ? 1 : num < 0 ? -1 : 0;
- } // check if a polygon diagonal intersects any polygon segments
+ function sign(num) {
+ return num > 0 ? 1 : num < 0 ? -1 : 0;
+ } // check if a polygon diagonal intersects any polygon segments
- function intersectsPolygon(a, b) {
- let p = a;
+ function intersectsPolygon(a, b) {
+ let p = a;
- do {
- if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b)) return true;
- p = p.next;
- } while (p !== a);
+ do {
+ if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b)) return true;
+ p = p.next;
+ } while (p !== a);
- return false;
- } // check if a polygon diagonal is locally inside the polygon
+ return false;
+ } // check if a polygon diagonal is locally inside the polygon
- function locallyInside(a, b) {
- return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0;
- } // check if the middle point of a polygon diagonal is inside the polygon
+ function locallyInside(a, b) {
+ return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0;
+ } // check if the middle point of a polygon diagonal is inside the polygon
- function middleInside(a, b) {
- let p = a,
- inside = false;
- const px = (a.x + b.x) / 2,
+ function middleInside(a, b) {
+ let p = a,
+ inside = false;
+ const px = (a.x + b.x) / 2,
py = (a.y + b.y) / 2;
- do {
- if (p.y > py !== p.next.y > py && p.next.y !== p.y && px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x) inside = !inside;
- p = p.next;
- } while (p !== a);
+ do {
+ if (p.y > py !== p.next.y > py && p.next.y !== p.y && px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x) inside = !inside;
+ p = p.next;
+ } while (p !== a);
- return inside;
- } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
- // if one belongs to the outer ring and another to a hole, it merges it into a single ring
+ return inside;
+ } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
+ // if one belongs to the outer ring and another to a hole, it merges it into a single ring
- function splitPolygon(a, b) {
- const a2 = new Node(a.i, a.x, a.y),
+ function splitPolygon(a, b) {
+ const a2 = new Node(a.i, a.x, a.y),
b2 = new Node(b.i, b.x, b.y),
an = a.next,
bp = b.prev;
- a.next = b;
- b.prev = a;
- a2.next = an;
- an.prev = a2;
- b2.next = a2;
- a2.prev = b2;
- bp.next = b2;
- b2.prev = bp;
- return b2;
- } // create a node and optionally link it with previous one (in a circular doubly linked list)
-
-
- function insertNode(i, x, y, last) {
- const p = new Node(i, x, y);
-
- if (!last) {
- p.prev = p;
- p.next = p;
- } else {
- p.next = last.next;
- p.prev = last;
- last.next.prev = p;
- last.next = p;
- }
+ a.next = b;
+ b.prev = a;
+ a2.next = an;
+ an.prev = a2;
+ b2.next = a2;
+ a2.prev = b2;
+ bp.next = b2;
+ b2.prev = bp;
+ return b2;
+ } // create a node and optionally link it with previous one (in a circular doubly linked list)
+
+
+ function insertNode(i, x, y, last) {
+ const p = new Node(i, x, y);
+
+ if (!last) {
+ p.prev = p;
+ p.next = p;
+ } else {
+ p.next = last.next;
+ p.prev = last;
+ last.next.prev = p;
+ last.next = p;
+ }
- return p;
- }
+ return p;
+ }
- function removeNode(p) {
- p.next.prev = p.prev;
- p.prev.next = p.next;
- if (p.prevZ) p.prevZ.nextZ = p.nextZ;
- if (p.nextZ) p.nextZ.prevZ = p.prevZ;
- }
+ function removeNode(p) {
+ p.next.prev = p.prev;
+ p.prev.next = p.next;
+ if (p.prevZ) p.prevZ.nextZ = p.nextZ;
+ if (p.nextZ) p.nextZ.prevZ = p.prevZ;
+ }
- function Node(i, x, y) {
- // vertex index in coordinates array
- this.i = i; // vertex coordinates
+ function Node(i, x, y) {
+ // vertex index in coordinates array
+ this.i = i; // vertex coordinates
- this.x = x;
- this.y = y; // previous and next vertex nodes in a polygon ring
+ this.x = x;
+ this.y = y; // previous and next vertex nodes in a polygon ring
- this.prev = null;
- this.next = null; // z-order curve value
+ this.prev = null;
+ this.next = null; // z-order curve value
- this.z = null; // previous and next nodes in z-order
+ this.z = null; // previous and next nodes in z-order
- this.prevZ = null;
- this.nextZ = null; // indicates whether this is a steiner point
+ this.prevZ = null;
+ this.nextZ = null; // indicates whether this is a steiner point
- this.steiner = false;
- }
+ this.steiner = false;
+ }
- function signedArea(data, start, end, dim) {
- let sum = 0;
+ function signedArea(data, start, end, dim) {
+ let sum = 0;
- for (let i = start, j = end - dim; i < end; i += dim) {
- sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]);
- j = i;
- }
+ for (let i = start, j = end - dim; i < end; i += dim) {
+ sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]);
+ j = i;
+ }
- return sum;
- }
+ return sum;
+ }
- class ShapeUtils {
- // calculate area of the contour polygon
- static area(contour) {
- const n = contour.length;
- let a = 0.0;
+ class ShapeUtils {
+ // calculate area of the contour polygon
+ static area(contour) {
+ const n = contour.length;
+ let a = 0.0;
- for (let p = n - 1, q = 0; q < n; p = q++) {
- a += contour[p].x * contour[q].y - contour[q].x * contour[p].y;
- }
+ for (let p = n - 1, q = 0; q < n; p = q++) {
+ a += contour[p].x * contour[q].y - contour[q].x * contour[p].y;
+ }
- return a * 0.5;
- }
+ return a * 0.5;
+ }
- static isClockWise(pts) {
- return ShapeUtils.area(pts) < 0;
- }
+ static isClockWise(pts) {
+ return ShapeUtils.area(pts) < 0;
+ }
- static triangulateShape(contour, holes) {
- const vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ]
+ static triangulateShape(contour, holes) {
+ const vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ]
- const holeIndices = []; // array of hole indices
+ const holeIndices = []; // array of hole indices
- const faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ]
+ const faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ]
- removeDupEndPts(contour);
- addContour(vertices, contour); //
+ removeDupEndPts(contour);
+ addContour(vertices, contour); //
- let holeIndex = contour.length;
- holes.forEach(removeDupEndPts);
+ let holeIndex = contour.length;
+ holes.forEach(removeDupEndPts);
- for (let i = 0; i < holes.length; i++) {
- holeIndices.push(holeIndex);
- holeIndex += holes[i].length;
- addContour(vertices, holes[i]);
- } //
+ for (let i = 0; i < holes.length; i++) {
+ holeIndices.push(holeIndex);
+ holeIndex += holes[i].length;
+ addContour(vertices, holes[i]);
+ } //
- const triangles = Earcut.triangulate(vertices, holeIndices); //
+ const triangles = Earcut.triangulate(vertices, holeIndices); //
+
+ for (let i = 0; i < triangles.length; i += 3) {
+ faces.push(triangles.slice(i, i + 3));
+ }
+
+ return faces;
+ }
- for (let i = 0; i < triangles.length; i += 3) {
- faces.push(triangles.slice(i, i + 3));
}
- return faces;
- }
+ function removeDupEndPts(points) {
+ const l = points.length;
- }
+ if (l > 2 && points[l - 1].equals(points[0])) {
+ points.pop();
+ }
+ }
- function removeDupEndPts(points) {
- const l = points.length;
+ function addContour(vertices, contour) {
+ for (let i = 0; i < contour.length; i++) {
+ vertices.push(contour[i].x);
+ vertices.push(contour[i].y);
+ }
+ }
- if (l > 2 && points[l - 1].equals(points[0])) {
- points.pop();
- }
- }
+ /**
+ * Creates extruded geometry from a path shape.
+ *
+ * parameters = {
+ *
+ * curveSegments: <int>, // number of points on the curves
+ * steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too
+ * depth: <float>, // Depth to extrude the shape
+ *
+ * bevelEnabled: <bool>, // turn on bevel
+ * bevelThickness: <float>, // how deep into the original shape bevel goes
+ * bevelSize: <float>, // how far from shape outline (including bevelOffset) is bevel
+ * bevelOffset: <float>, // how far from shape outline does bevel start
+ * bevelSegments: <int>, // number of bevel layers
+ *
+ * extrudePath: <THREE.Curve> // curve to extrude shape along
+ *
+ * UVGenerator: <Object> // object that provides UV generator functions
+ *
+ * }
+ */
- function addContour(vertices, contour) {
- for (let i = 0; i < contour.length; i++) {
- vertices.push(contour[i].x);
- vertices.push(contour[i].y);
- }
- }
+ class ExtrudeGeometry extends BufferGeometry {
+ constructor(shapes, options) {
+ super();
+ this.type = 'ExtrudeGeometry';
+ this.parameters = {
+ shapes: shapes,
+ options: options
+ };
+ shapes = Array.isArray(shapes) ? shapes : [shapes];
+ const scope = this;
+ const verticesArray = [];
+ const uvArray = [];
+
+ for (let i = 0, l = shapes.length; i < l; i++) {
+ const shape = shapes[i];
+ addShape(shape);
+ } // build geometry
- /**
- * Creates extruded geometry from a path shape.
- *
- * parameters = {
- *
- * curveSegments: <int>, // number of points on the curves
- * steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too
- * depth: <float>, // Depth to extrude the shape
- *
- * bevelEnabled: <bool>, // turn on bevel
- * bevelThickness: <float>, // how deep into the original shape bevel goes
- * bevelSize: <float>, // how far from shape outline (including bevelOffset) is bevel
- * bevelOffset: <float>, // how far from shape outline does bevel start
- * bevelSegments: <int>, // number of bevel layers
- *
- * extrudePath: <THREE.Curve> // curve to extrude shape along
- *
- * UVGenerator: <Object> // object that provides UV generator functions
- *
- * }
- */
-
- class ExtrudeGeometry extends BufferGeometry {
- constructor(shapes, options) {
- super();
- this.type = 'ExtrudeGeometry';
- this.parameters = {
- shapes: shapes,
- options: options
- };
- shapes = Array.isArray(shapes) ? shapes : [shapes];
- const scope = this;
- const verticesArray = [];
- const uvArray = [];
-
- for (let i = 0, l = shapes.length; i < l; i++) {
- const shape = shapes[i];
- addShape(shape);
- } // build geometry
-
-
- this.setAttribute('position', new Float32BufferAttribute(verticesArray, 3));
- this.setAttribute('uv', new Float32BufferAttribute(uvArray, 2));
- this.computeVertexNormals(); // functions
-
- function addShape(shape) {
- const placeholder = []; // options
-
- const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
- const steps = options.steps !== undefined ? options.steps : 1;
- let depth = options.depth !== undefined ? options.depth : 100;
- let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true;
- let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6;
- let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2;
- let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0;
- let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;
- const extrudePath = options.extrudePath;
- const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; // deprecated options
-
- if (options.amount !== undefined) {
- console.warn('THREE.ExtrudeBufferGeometry: amount has been renamed to depth.');
- depth = options.amount;
- } //
+ this.setAttribute('position', new Float32BufferAttribute(verticesArray, 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvArray, 2));
+ this.computeVertexNormals(); // functions
- let extrudePts,
- extrudeByPath = false;
- let splineTube, binormal, normal, position2;
+ function addShape(shape) {
+ const placeholder = []; // options
- if (extrudePath) {
- extrudePts = extrudePath.getSpacedPoints(steps);
- extrudeByPath = true;
- bevelEnabled = false; // bevels not supported for path extrusion
- // SETUP TNB variables
- // TODO1 - have a .isClosed in spline?
+ const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
+ const steps = options.steps !== undefined ? options.steps : 1;
+ let depth = options.depth !== undefined ? options.depth : 100;
+ let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true;
+ let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6;
+ let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2;
+ let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0;
+ let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;
+ const extrudePath = options.extrudePath;
+ const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; // deprecated options
- splineTube = extrudePath.computeFrenetFrames(steps, false); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);
+ if (options.amount !== undefined) {
+ console.warn('THREE.ExtrudeBufferGeometry: amount has been renamed to depth.');
+ depth = options.amount;
+ } //
- binormal = new Vector3();
- normal = new Vector3();
- position2 = new Vector3();
- } // Safeguards if bevels are not enabled
+ let extrudePts,
+ extrudeByPath = false;
+ let splineTube, binormal, normal, position2;
- if (!bevelEnabled) {
- bevelSegments = 0;
- bevelThickness = 0;
- bevelSize = 0;
- bevelOffset = 0;
- } // Variables initialization
+ if (extrudePath) {
+ extrudePts = extrudePath.getSpacedPoints(steps);
+ extrudeByPath = true;
+ bevelEnabled = false; // bevels not supported for path extrusion
+ // SETUP TNB variables
+ // TODO1 - have a .isClosed in spline?
+ splineTube = extrudePath.computeFrenetFrames(steps, false); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);
- const shapePoints = shape.extractPoints(curveSegments);
- let vertices = shapePoints.shape;
- const holes = shapePoints.holes;
- const reverse = !ShapeUtils.isClockWise(vertices);
+ binormal = new Vector3();
+ normal = new Vector3();
+ position2 = new Vector3();
+ } // Safeguards if bevels are not enabled
- if (reverse) {
- vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ...
- for (let h = 0, hl = holes.length; h < hl; h++) {
- const ahole = holes[h];
+ if (!bevelEnabled) {
+ bevelSegments = 0;
+ bevelThickness = 0;
+ bevelSize = 0;
+ bevelOffset = 0;
+ } // Variables initialization
- if (ShapeUtils.isClockWise(ahole)) {
- holes[h] = ahole.reverse();
+
+ const shapePoints = shape.extractPoints(curveSegments);
+ let vertices = shapePoints.shape;
+ const holes = shapePoints.holes;
+ const reverse = !ShapeUtils.isClockWise(vertices);
+
+ if (reverse) {
+ vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ...
+
+ for (let h = 0, hl = holes.length; h < hl; h++) {
+ const ahole = holes[h];
+
+ if (ShapeUtils.isClockWise(ahole)) {
+ holes[h] = ahole.reverse();
+ }
+ }
}
- }
- }
- const faces = ShapeUtils.triangulateShape(vertices, holes);
- /* Vertices */
+ const faces = ShapeUtils.triangulateShape(vertices, holes);
+ /* Vertices */
- const contour = vertices; // vertices has all points but contour has only points of circumference
+ const contour = vertices; // vertices has all points but contour has only points of circumference
- for (let h = 0, hl = holes.length; h < hl; h++) {
- const ahole = holes[h];
- vertices = vertices.concat(ahole);
- }
+ for (let h = 0, hl = holes.length; h < hl; h++) {
+ const ahole = holes[h];
+ vertices = vertices.concat(ahole);
+ }
- function scalePt2(pt, vec, size) {
- if (!vec) console.error('THREE.ExtrudeGeometry: vec does not exist');
- return vec.clone().multiplyScalar(size).add(pt);
- }
+ function scalePt2(pt, vec, size) {
+ if (!vec) console.error('THREE.ExtrudeGeometry: vec does not exist');
+ return vec.clone().multiplyScalar(size).add(pt);
+ }
- const vlen = vertices.length,
+ const vlen = vertices.length,
flen = faces.length; // Find directions for point movement
- function getBevelVec(inPt, inPrev, inNext) {
- // computes for inPt the corresponding point inPt' on a new contour
- // shifted by 1 unit (length of normalized vector) to the left
- // if we walk along contour clockwise, this new contour is outside the old one
- //
- // inPt' is the intersection of the two lines parallel to the two
- // adjacent edges of inPt at a distance of 1 unit on the left side.
- let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt
- // good reading for geometry algorithms (here: line-line intersection)
- // http://geomalgorithms.com/a05-_intersect-1.html
-
- const v_prev_x = inPt.x - inPrev.x,
+ function getBevelVec(inPt, inPrev, inNext) {
+ // computes for inPt the corresponding point inPt' on a new contour
+ // shifted by 1 unit (length of normalized vector) to the left
+ // if we walk along contour clockwise, this new contour is outside the old one
+ //
+ // inPt' is the intersection of the two lines parallel to the two
+ // adjacent edges of inPt at a distance of 1 unit on the left side.
+ let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt
+ // good reading for geometry algorithms (here: line-line intersection)
+ // http://geomalgorithms.com/a05-_intersect-1.html
+
+ const v_prev_x = inPt.x - inPrev.x,
v_prev_y = inPt.y - inPrev.y;
- const v_next_x = inNext.x - inPt.x,
+ const v_next_x = inNext.x - inPt.x,
v_next_y = inNext.y - inPt.y;
- const v_prev_lensq = v_prev_x * v_prev_x + v_prev_y * v_prev_y; // check for collinear edges
+ const v_prev_lensq = v_prev_x * v_prev_x + v_prev_y * v_prev_y; // check for collinear edges
- const collinear0 = v_prev_x * v_next_y - v_prev_y * v_next_x;
+ const collinear0 = v_prev_x * v_next_y - v_prev_y * v_next_x;
- if (Math.abs(collinear0) > Number.EPSILON) {
- // not collinear
- // length of vectors for normalizing
- const v_prev_len = Math.sqrt(v_prev_lensq);
- const v_next_len = Math.sqrt(v_next_x * v_next_x + v_next_y * v_next_y); // shift adjacent points by unit vectors to the left
+ if (Math.abs(collinear0) > Number.EPSILON) {
+ // not collinear
+ // length of vectors for normalizing
+ const v_prev_len = Math.sqrt(v_prev_lensq);
+ const v_next_len = Math.sqrt(v_next_x * v_next_x + v_next_y * v_next_y); // shift adjacent points by unit vectors to the left
- const ptPrevShift_x = inPrev.x - v_prev_y / v_prev_len;
- const ptPrevShift_y = inPrev.y + v_prev_x / v_prev_len;
- const ptNextShift_x = inNext.x - v_next_y / v_next_len;
- const ptNextShift_y = inNext.y + v_next_x / v_next_len; // scaling factor for v_prev to intersection point
+ const ptPrevShift_x = inPrev.x - v_prev_y / v_prev_len;
+ const ptPrevShift_y = inPrev.y + v_prev_x / v_prev_len;
+ const ptNextShift_x = inNext.x - v_next_y / v_next_len;
+ const ptNextShift_y = inNext.y + v_next_x / v_next_len; // scaling factor for v_prev to intersection point
- const sf = ((ptNextShift_x - ptPrevShift_x) * v_next_y - (ptNextShift_y - ptPrevShift_y) * v_next_x) / (v_prev_x * v_next_y - v_prev_y * v_next_x); // vector from inPt to intersection point
+ const sf = ((ptNextShift_x - ptPrevShift_x) * v_next_y - (ptNextShift_y - ptPrevShift_y) * v_next_x) / (v_prev_x * v_next_y - v_prev_y * v_next_x); // vector from inPt to intersection point
- v_trans_x = ptPrevShift_x + v_prev_x * sf - inPt.x;
- v_trans_y = ptPrevShift_y + v_prev_y * sf - inPt.y; // Don't normalize!, otherwise sharp corners become ugly
- // but prevent crazy spikes
+ v_trans_x = ptPrevShift_x + v_prev_x * sf - inPt.x;
+ v_trans_y = ptPrevShift_y + v_prev_y * sf - inPt.y; // Don't normalize!, otherwise sharp corners become ugly
+ // but prevent crazy spikes
- const v_trans_lensq = v_trans_x * v_trans_x + v_trans_y * v_trans_y;
-
- if (v_trans_lensq <= 2) {
- return new Vector2(v_trans_x, v_trans_y);
- } else {
- shrink_by = Math.sqrt(v_trans_lensq / 2);
- }
- } else {
- // handle special case of collinear edges
- let direction_eq = false; // assumes: opposite
+ const v_trans_lensq = v_trans_x * v_trans_x + v_trans_y * v_trans_y;
- if (v_prev_x > Number.EPSILON) {
- if (v_next_x > Number.EPSILON) {
- direction_eq = true;
- }
- } else {
- if (v_prev_x < -Number.EPSILON) {
- if (v_next_x < -Number.EPSILON) {
- direction_eq = true;
+ if (v_trans_lensq <= 2) {
+ return new Vector2(v_trans_x, v_trans_y);
+ } else {
+ shrink_by = Math.sqrt(v_trans_lensq / 2);
}
} else {
- if (Math.sign(v_prev_y) === Math.sign(v_next_y)) {
- direction_eq = true;
+ // handle special case of collinear edges
+ let direction_eq = false; // assumes: opposite
+
+ if (v_prev_x > Number.EPSILON) {
+ if (v_next_x > Number.EPSILON) {
+ direction_eq = true;
+ }
+ } else {
+ if (v_prev_x < -Number.EPSILON) {
+ if (v_next_x < -Number.EPSILON) {
+ direction_eq = true;
+ }
+ } else {
+ if (Math.sign(v_prev_y) === Math.sign(v_next_y)) {
+ direction_eq = true;
+ }
+ }
+ }
+
+ if (direction_eq) {
+ // console.log("Warning: lines are a straight sequence");
+ v_trans_x = -v_prev_y;
+ v_trans_y = v_prev_x;
+ shrink_by = Math.sqrt(v_prev_lensq);
+ } else {
+ // console.log("Warning: lines are a straight spike");
+ v_trans_x = v_prev_x;
+ v_trans_y = v_prev_y;
+ shrink_by = Math.sqrt(v_prev_lensq / 2);
}
}
- }
- if (direction_eq) {
- // console.log("Warning: lines are a straight sequence");
- v_trans_x = -v_prev_y;
- v_trans_y = v_prev_x;
- shrink_by = Math.sqrt(v_prev_lensq);
- } else {
- // console.log("Warning: lines are a straight spike");
- v_trans_x = v_prev_x;
- v_trans_y = v_prev_y;
- shrink_by = Math.sqrt(v_prev_lensq / 2);
+ return new Vector2(v_trans_x / shrink_by, v_trans_y / shrink_by);
}
- }
-
- return new Vector2(v_trans_x / shrink_by, v_trans_y / shrink_by);
- }
- const contourMovements = [];
+ const contourMovements = [];
- for (let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) {
- if (j === il) j = 0;
- if (k === il) k = 0; // (j)---(i)---(k)
- // console.log('i,j,k', i, j , k)
+ for (let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) {
+ if (j === il) j = 0;
+ if (k === il) k = 0; // (j)---(i)---(k)
+ // console.log('i,j,k', i, j , k)
- contourMovements[i] = getBevelVec(contour[i], contour[j], contour[k]);
- }
+ contourMovements[i] = getBevelVec(contour[i], contour[j], contour[k]);
+ }
- const holesMovements = [];
- let oneHoleMovements,
- verticesMovements = contourMovements.concat();
+ const holesMovements = [];
+ let oneHoleMovements,
+ verticesMovements = contourMovements.concat();
- for (let h = 0, hl = holes.length; h < hl; h++) {
- const ahole = holes[h];
- oneHoleMovements = [];
+ for (let h = 0, hl = holes.length; h < hl; h++) {
+ const ahole = holes[h];
+ oneHoleMovements = [];
- for (let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) {
- if (j === il) j = 0;
- if (k === il) k = 0; // (j)---(i)---(k)
+ for (let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) {
+ if (j === il) j = 0;
+ if (k === il) k = 0; // (j)---(i)---(k)
- oneHoleMovements[i] = getBevelVec(ahole[i], ahole[j], ahole[k]);
- }
+ oneHoleMovements[i] = getBevelVec(ahole[i], ahole[j], ahole[k]);
+ }
- holesMovements.push(oneHoleMovements);
- verticesMovements = verticesMovements.concat(oneHoleMovements);
- } // Loop bevelSegments, 1 for the front, 1 for the back
+ holesMovements.push(oneHoleMovements);
+ verticesMovements = verticesMovements.concat(oneHoleMovements);
+ } // Loop bevelSegments, 1 for the front, 1 for the back
- for (let b = 0; b < bevelSegments; b++) {
- //for ( b = bevelSegments; b > 0; b -- ) {
- const t = b / bevelSegments;
- const z = bevelThickness * Math.cos(t * Math.PI / 2);
- const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape
+ for (let b = 0; b < bevelSegments; b++) {
+ //for ( b = bevelSegments; b > 0; b -- ) {
+ const t = b / bevelSegments;
+ const z = bevelThickness * Math.cos(t * Math.PI / 2);
+ const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape
- for (let i = 0, il = contour.length; i < il; i++) {
- const vert = scalePt2(contour[i], contourMovements[i], bs);
- v(vert.x, vert.y, -z);
- } // expand holes
+ for (let i = 0, il = contour.length; i < il; i++) {
+ const vert = scalePt2(contour[i], contourMovements[i], bs);
+ v(vert.x, vert.y, -z);
+ } // expand holes
- for (let h = 0, hl = holes.length; h < hl; h++) {
- const ahole = holes[h];
- oneHoleMovements = holesMovements[h];
+ for (let h = 0, hl = holes.length; h < hl; h++) {
+ const ahole = holes[h];
+ oneHoleMovements = holesMovements[h];
- for (let i = 0, il = ahole.length; i < il; i++) {
- const vert = scalePt2(ahole[i], oneHoleMovements[i], bs);
- v(vert.x, vert.y, -z);
+ for (let i = 0, il = ahole.length; i < il; i++) {
+ const vert = scalePt2(ahole[i], oneHoleMovements[i], bs);
+ v(vert.x, vert.y, -z);
+ }
+ }
}
- }
- }
- const bs = bevelSize + bevelOffset; // Back facing vertices
+ const bs = bevelSize + bevelOffset; // Back facing vertices
- for (let i = 0; i < vlen; i++) {
- const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i];
+ for (let i = 0; i < vlen; i++) {
+ const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i];
- if (!extrudeByPath) {
- v(vert.x, vert.y, 0);
- } else {
- // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );
- normal.copy(splineTube.normals[0]).multiplyScalar(vert.x);
- binormal.copy(splineTube.binormals[0]).multiplyScalar(vert.y);
- position2.copy(extrudePts[0]).add(normal).add(binormal);
- v(position2.x, position2.y, position2.z);
- }
- } // Add stepped vertices...
- // Including front facing vertices
+ if (!extrudeByPath) {
+ v(vert.x, vert.y, 0);
+ } else {
+ // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );
+ normal.copy(splineTube.normals[0]).multiplyScalar(vert.x);
+ binormal.copy(splineTube.binormals[0]).multiplyScalar(vert.y);
+ position2.copy(extrudePts[0]).add(normal).add(binormal);
+ v(position2.x, position2.y, position2.z);
+ }
+ } // Add stepped vertices...
+ // Including front facing vertices
- for (let s = 1; s <= steps; s++) {
- for (let i = 0; i < vlen; i++) {
- const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i];
+ for (let s = 1; s <= steps; s++) {
+ for (let i = 0; i < vlen; i++) {
+ const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i];
- if (!extrudeByPath) {
- v(vert.x, vert.y, depth / steps * s);
- } else {
- // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );
- normal.copy(splineTube.normals[s]).multiplyScalar(vert.x);
- binormal.copy(splineTube.binormals[s]).multiplyScalar(vert.y);
- position2.copy(extrudePts[s]).add(normal).add(binormal);
- v(position2.x, position2.y, position2.z);
- }
- }
- } // Add bevel segments planes
- //for ( b = 1; b <= bevelSegments; b ++ ) {
+ if (!extrudeByPath) {
+ v(vert.x, vert.y, depth / steps * s);
+ } else {
+ // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );
+ normal.copy(splineTube.normals[s]).multiplyScalar(vert.x);
+ binormal.copy(splineTube.binormals[s]).multiplyScalar(vert.y);
+ position2.copy(extrudePts[s]).add(normal).add(binormal);
+ v(position2.x, position2.y, position2.z);
+ }
+ }
+ } // Add bevel segments planes
+ //for ( b = 1; b <= bevelSegments; b ++ ) {
- for (let b = bevelSegments - 1; b >= 0; b--) {
- const t = b / bevelSegments;
- const z = bevelThickness * Math.cos(t * Math.PI / 2);
- const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape
+ for (let b = bevelSegments - 1; b >= 0; b--) {
+ const t = b / bevelSegments;
+ const z = bevelThickness * Math.cos(t * Math.PI / 2);
+ const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape
- for (let i = 0, il = contour.length; i < il; i++) {
- const vert = scalePt2(contour[i], contourMovements[i], bs);
- v(vert.x, vert.y, depth + z);
- } // expand holes
+ for (let i = 0, il = contour.length; i < il; i++) {
+ const vert = scalePt2(contour[i], contourMovements[i], bs);
+ v(vert.x, vert.y, depth + z);
+ } // expand holes
- for (let h = 0, hl = holes.length; h < hl; h++) {
- const ahole = holes[h];
- oneHoleMovements = holesMovements[h];
+ for (let h = 0, hl = holes.length; h < hl; h++) {
+ const ahole = holes[h];
+ oneHoleMovements = holesMovements[h];
- for (let i = 0, il = ahole.length; i < il; i++) {
- const vert = scalePt2(ahole[i], oneHoleMovements[i], bs);
+ for (let i = 0, il = ahole.length; i < il; i++) {
+ const vert = scalePt2(ahole[i], oneHoleMovements[i], bs);
- if (!extrudeByPath) {
- v(vert.x, vert.y, depth + z);
- } else {
- v(vert.x, vert.y + extrudePts[steps - 1].y, extrudePts[steps - 1].x + z);
+ if (!extrudeByPath) {
+ v(vert.x, vert.y, depth + z);
+ } else {
+ v(vert.x, vert.y + extrudePts[steps - 1].y, extrudePts[steps - 1].x + z);
+ }
+ }
}
}
- }
- }
- /* Faces */
- // Top and bottom faces
+ /* Faces */
+ // Top and bottom faces
- buildLidFaces(); // Sides faces
+ buildLidFaces(); // Sides faces
- buildSideFaces(); ///// Internal functions
+ buildSideFaces(); ///// Internal functions
- function buildLidFaces() {
- const start = verticesArray.length / 3;
+ function buildLidFaces() {
+ const start = verticesArray.length / 3;
- if (bevelEnabled) {
- let layer = 0; // steps + 1
+ if (bevelEnabled) {
+ let layer = 0; // steps + 1
- let offset = vlen * layer; // Bottom faces
+ let offset = vlen * layer; // Bottom faces
- for (let i = 0; i < flen; i++) {
- const face = faces[i];
- f3(face[2] + offset, face[1] + offset, face[0] + offset);
- }
+ for (let i = 0; i < flen; i++) {
+ const face = faces[i];
+ f3(face[2] + offset, face[1] + offset, face[0] + offset);
+ }
- layer = steps + bevelSegments * 2;
- offset = vlen * layer; // Top faces
+ layer = steps + bevelSegments * 2;
+ offset = vlen * layer; // Top faces
- for (let i = 0; i < flen; i++) {
- const face = faces[i];
- f3(face[0] + offset, face[1] + offset, face[2] + offset);
- }
- } else {
- // Bottom faces
- for (let i = 0; i < flen; i++) {
- const face = faces[i];
- f3(face[2], face[1], face[0]);
- } // Top faces
+ for (let i = 0; i < flen; i++) {
+ const face = faces[i];
+ f3(face[0] + offset, face[1] + offset, face[2] + offset);
+ }
+ } else {
+ // Bottom faces
+ for (let i = 0; i < flen; i++) {
+ const face = faces[i];
+ f3(face[2], face[1], face[0]);
+ } // Top faces
- for (let i = 0; i < flen; i++) {
- const face = faces[i];
- f3(face[0] + vlen * steps, face[1] + vlen * steps, face[2] + vlen * steps);
- }
- }
+ for (let i = 0; i < flen; i++) {
+ const face = faces[i];
+ f3(face[0] + vlen * steps, face[1] + vlen * steps, face[2] + vlen * steps);
+ }
+ }
- scope.addGroup(start, verticesArray.length / 3 - start, 0);
- } // Create faces for the z-sides of the shape
+ scope.addGroup(start, verticesArray.length / 3 - start, 0);
+ } // Create faces for the z-sides of the shape
- function buildSideFaces() {
- const start = verticesArray.length / 3;
- let layeroffset = 0;
- sidewalls(contour, layeroffset);
- layeroffset += contour.length;
+ function buildSideFaces() {
+ const start = verticesArray.length / 3;
+ let layeroffset = 0;
+ sidewalls(contour, layeroffset);
+ layeroffset += contour.length;
- for (let h = 0, hl = holes.length; h < hl; h++) {
- const ahole = holes[h];
- sidewalls(ahole, layeroffset); //, true
+ for (let h = 0, hl = holes.length; h < hl; h++) {
+ const ahole = holes[h];
+ sidewalls(ahole, layeroffset); //, true
- layeroffset += ahole.length;
- }
+ layeroffset += ahole.length;
+ }
- scope.addGroup(start, verticesArray.length / 3 - start, 1);
- }
+ scope.addGroup(start, verticesArray.length / 3 - start, 1);
+ }
- function sidewalls(contour, layeroffset) {
- let i = contour.length;
+ function sidewalls(contour, layeroffset) {
+ let i = contour.length;
- while (--i >= 0) {
- const j = i;
- let k = i - 1;
- if (k < 0) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length);
+ while (--i >= 0) {
+ const j = i;
+ let k = i - 1;
+ if (k < 0) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length);
- for (let s = 0, sl = steps + bevelSegments * 2; s < sl; s++) {
- const slen1 = vlen * s;
- const slen2 = vlen * (s + 1);
- const a = layeroffset + j + slen1,
+ for (let s = 0, sl = steps + bevelSegments * 2; s < sl; s++) {
+ const slen1 = vlen * s;
+ const slen2 = vlen * (s + 1);
+ const a = layeroffset + j + slen1,
b = layeroffset + k + slen1,
c = layeroffset + k + slen2,
d = layeroffset + j + slen2;
- f4(a, b, c, d);
+ f4(a, b, c, d);
+ }
+ }
}
- }
- }
- function v(x, y, z) {
- placeholder.push(x);
- placeholder.push(y);
- placeholder.push(z);
- }
+ function v(x, y, z) {
+ placeholder.push(x);
+ placeholder.push(y);
+ placeholder.push(z);
+ }
- function f3(a, b, c) {
- addVertex(a);
- addVertex(b);
- addVertex(c);
- const nextIndex = verticesArray.length / 3;
- const uvs = uvgen.generateTopUV(scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1);
- addUV(uvs[0]);
- addUV(uvs[1]);
- addUV(uvs[2]);
- }
+ function f3(a, b, c) {
+ addVertex(a);
+ addVertex(b);
+ addVertex(c);
+ const nextIndex = verticesArray.length / 3;
+ const uvs = uvgen.generateTopUV(scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1);
+ addUV(uvs[0]);
+ addUV(uvs[1]);
+ addUV(uvs[2]);
+ }
- function f4(a, b, c, d) {
- addVertex(a);
- addVertex(b);
- addVertex(d);
- addVertex(b);
- addVertex(c);
- addVertex(d);
- const nextIndex = verticesArray.length / 3;
- const uvs = uvgen.generateSideWallUV(scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1);
- addUV(uvs[0]);
- addUV(uvs[1]);
- addUV(uvs[3]);
- addUV(uvs[1]);
- addUV(uvs[2]);
- addUV(uvs[3]);
- }
+ function f4(a, b, c, d) {
+ addVertex(a);
+ addVertex(b);
+ addVertex(d);
+ addVertex(b);
+ addVertex(c);
+ addVertex(d);
+ const nextIndex = verticesArray.length / 3;
+ const uvs = uvgen.generateSideWallUV(scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1);
+ addUV(uvs[0]);
+ addUV(uvs[1]);
+ addUV(uvs[3]);
+ addUV(uvs[1]);
+ addUV(uvs[2]);
+ addUV(uvs[3]);
+ }
+
+ function addVertex(index) {
+ verticesArray.push(placeholder[index * 3 + 0]);
+ verticesArray.push(placeholder[index * 3 + 1]);
+ verticesArray.push(placeholder[index * 3 + 2]);
+ }
- function addVertex(index) {
- verticesArray.push(placeholder[index * 3 + 0]);
- verticesArray.push(placeholder[index * 3 + 1]);
- verticesArray.push(placeholder[index * 3 + 2]);
+ function addUV(vector2) {
+ uvArray.push(vector2.x);
+ uvArray.push(vector2.y);
+ }
+ }
}
- function addUV(vector2) {
- uvArray.push(vector2.x);
- uvArray.push(vector2.y);
+ toJSON() {
+ const data = super.toJSON();
+ const shapes = this.parameters.shapes;
+ const options = this.parameters.options;
+ return toJSON$1(shapes, options, data);
}
- }
- }
- toJSON() {
- const data = super.toJSON();
- const shapes = this.parameters.shapes;
- const options = this.parameters.options;
- return toJSON$1(shapes, options, data);
- }
+ static fromJSON(data, shapes) {
+ const geometryShapes = [];
- static fromJSON(data, shapes) {
- const geometryShapes = [];
+ for (let j = 0, jl = data.shapes.length; j < jl; j++) {
+ const shape = shapes[data.shapes[j]];
+ geometryShapes.push(shape);
+ }
- for (let j = 0, jl = data.shapes.length; j < jl; j++) {
- const shape = shapes[data.shapes[j]];
- geometryShapes.push(shape);
- }
+ const extrudePath = data.options.extrudePath;
+
+ if (extrudePath !== undefined) {
+ data.options.extrudePath = new Curves[extrudePath.type]().fromJSON(extrudePath);
+ }
- const extrudePath = data.options.extrudePath;
+ return new ExtrudeGeometry(geometryShapes, data.options);
+ }
- if (extrudePath !== undefined) {
- data.options.extrudePath = new Curves[extrudePath.type]().fromJSON(extrudePath);
}
- return new ExtrudeGeometry(geometryShapes, data.options);
- }
+ const WorldUVGenerator = {
+ generateTopUV: function (geometry, vertices, indexA, indexB, indexC) {
+ const a_x = vertices[indexA * 3];
+ const a_y = vertices[indexA * 3 + 1];
+ const b_x = vertices[indexB * 3];
+ const b_y = vertices[indexB * 3 + 1];
+ const c_x = vertices[indexC * 3];
+ const c_y = vertices[indexC * 3 + 1];
+ return [new Vector2(a_x, a_y), new Vector2(b_x, b_y), new Vector2(c_x, c_y)];
+ },
+ generateSideWallUV: function (geometry, vertices, indexA, indexB, indexC, indexD) {
+ const a_x = vertices[indexA * 3];
+ const a_y = vertices[indexA * 3 + 1];
+ const a_z = vertices[indexA * 3 + 2];
+ const b_x = vertices[indexB * 3];
+ const b_y = vertices[indexB * 3 + 1];
+ const b_z = vertices[indexB * 3 + 2];
+ const c_x = vertices[indexC * 3];
+ const c_y = vertices[indexC * 3 + 1];
+ const c_z = vertices[indexC * 3 + 2];
+ const d_x = vertices[indexD * 3];
+ const d_y = vertices[indexD * 3 + 1];
+ const d_z = vertices[indexD * 3 + 2];
+
+ if (Math.abs(a_y - b_y) < Math.abs(a_x - b_x)) {
+ return [new Vector2(a_x, 1 - a_z), new Vector2(b_x, 1 - b_z), new Vector2(c_x, 1 - c_z), new Vector2(d_x, 1 - d_z)];
+ } else {
+ return [new Vector2(a_y, 1 - a_z), new Vector2(b_y, 1 - b_z), new Vector2(c_y, 1 - c_z), new Vector2(d_y, 1 - d_z)];
+ }
+ }
+ };
- }
+ function toJSON$1(shapes, options, data) {
+ data.shapes = [];
- const WorldUVGenerator = {
- generateTopUV: function (geometry, vertices, indexA, indexB, indexC) {
- const a_x = vertices[indexA * 3];
- const a_y = vertices[indexA * 3 + 1];
- const b_x = vertices[indexB * 3];
- const b_y = vertices[indexB * 3 + 1];
- const c_x = vertices[indexC * 3];
- const c_y = vertices[indexC * 3 + 1];
- return [new Vector2(a_x, a_y), new Vector2(b_x, b_y), new Vector2(c_x, c_y)];
- },
- generateSideWallUV: function (geometry, vertices, indexA, indexB, indexC, indexD) {
- const a_x = vertices[indexA * 3];
- const a_y = vertices[indexA * 3 + 1];
- const a_z = vertices[indexA * 3 + 2];
- const b_x = vertices[indexB * 3];
- const b_y = vertices[indexB * 3 + 1];
- const b_z = vertices[indexB * 3 + 2];
- const c_x = vertices[indexC * 3];
- const c_y = vertices[indexC * 3 + 1];
- const c_z = vertices[indexC * 3 + 2];
- const d_x = vertices[indexD * 3];
- const d_y = vertices[indexD * 3 + 1];
- const d_z = vertices[indexD * 3 + 2];
-
- if (Math.abs(a_y - b_y) < Math.abs(a_x - b_x)) {
- return [new Vector2(a_x, 1 - a_z), new Vector2(b_x, 1 - b_z), new Vector2(c_x, 1 - c_z), new Vector2(d_x, 1 - d_z)];
- } else {
- return [new Vector2(a_y, 1 - a_z), new Vector2(b_y, 1 - b_z), new Vector2(c_y, 1 - c_z), new Vector2(d_y, 1 - d_z)];
- }
- }
- };
-
- function toJSON$1(shapes, options, data) {
- data.shapes = [];
+ if (Array.isArray(shapes)) {
+ for (let i = 0, l = shapes.length; i < l; i++) {
+ const shape = shapes[i];
+ data.shapes.push(shape.uuid);
+ }
+ } else {
+ data.shapes.push(shapes.uuid);
+ }
- if (Array.isArray(shapes)) {
- for (let i = 0, l = shapes.length; i < l; i++) {
- const shape = shapes[i];
- data.shapes.push(shape.uuid);
+ if (options.extrudePath !== undefined) data.options.extrudePath = options.extrudePath.toJSON();
+ return data;
}
- } else {
- data.shapes.push(shapes.uuid);
- }
- if (options.extrudePath !== undefined) data.options.extrudePath = options.extrudePath.toJSON();
- return data;
- }
+ class IcosahedronGeometry extends PolyhedronGeometry {
+ constructor(radius = 1, detail = 0) {
+ const t = (1 + Math.sqrt(5)) / 2;
+ const vertices = [-1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, 0, 0, -1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, t, 0, -1, t, 0, 1, -t, 0, -1, -t, 0, 1];
+ const indices = [0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1];
+ super(vertices, indices, radius, detail);
+ this.type = 'IcosahedronGeometry';
+ this.parameters = {
+ radius: radius,
+ detail: detail
+ };
+ }
- class IcosahedronGeometry extends PolyhedronGeometry {
- constructor(radius = 1, detail = 0) {
- const t = (1 + Math.sqrt(5)) / 2;
- const vertices = [-1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, 0, 0, -1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, t, 0, -1, t, 0, 1, -t, 0, -1, -t, 0, 1];
- const indices = [0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1];
- super(vertices, indices, radius, detail);
- this.type = 'IcosahedronGeometry';
- this.parameters = {
- radius: radius,
- detail: detail
- };
- }
+ static fromJSON(data) {
+ return new IcosahedronGeometry(data.radius, data.detail);
+ }
- static fromJSON(data) {
- return new IcosahedronGeometry(data.radius, data.detail);
- }
+ }
- }
+ class LatheGeometry extends BufferGeometry {
+ constructor(points, segments = 12, phiStart = 0, phiLength = Math.PI * 2) {
+ super();
+ this.type = 'LatheGeometry';
+ this.parameters = {
+ points: points,
+ segments: segments,
+ phiStart: phiStart,
+ phiLength: phiLength
+ };
+ segments = Math.floor(segments); // clamp phiLength so it's in range of [ 0, 2PI ]
- class LatheGeometry extends BufferGeometry {
- constructor(points, segments = 12, phiStart = 0, phiLength = Math.PI * 2) {
- super();
- this.type = 'LatheGeometry';
- this.parameters = {
- points: points,
- segments: segments,
- phiStart: phiStart,
- phiLength: phiLength
- };
- segments = Math.floor(segments); // clamp phiLength so it's in range of [ 0, 2PI ]
+ phiLength = clamp(phiLength, 0, Math.PI * 2); // buffers
- phiLength = clamp(phiLength, 0, Math.PI * 2); // buffers
+ const indices = [];
+ const vertices = [];
+ const uvs = []; // helper variables
- const indices = [];
- const vertices = [];
- const uvs = []; // helper variables
+ const inverseSegments = 1.0 / segments;
+ const vertex = new Vector3();
+ const uv = new Vector2(); // generate vertices and uvs
- const inverseSegments = 1.0 / segments;
- const vertex = new Vector3();
- const uv = new Vector2(); // generate vertices and uvs
+ for (let i = 0; i <= segments; i++) {
+ const phi = phiStart + i * inverseSegments * phiLength;
+ const sin = Math.sin(phi);
+ const cos = Math.cos(phi);
- for (let i = 0; i <= segments; i++) {
- const phi = phiStart + i * inverseSegments * phiLength;
- const sin = Math.sin(phi);
- const cos = Math.cos(phi);
+ for (let j = 0; j <= points.length - 1; j++) {
+ // vertex
+ vertex.x = points[j].x * sin;
+ vertex.y = points[j].y;
+ vertex.z = points[j].x * cos;
+ vertices.push(vertex.x, vertex.y, vertex.z); // uv
- for (let j = 0; j <= points.length - 1; j++) {
- // vertex
- vertex.x = points[j].x * sin;
- vertex.y = points[j].y;
- vertex.z = points[j].x * cos;
- vertices.push(vertex.x, vertex.y, vertex.z); // uv
+ uv.x = i / segments;
+ uv.y = j / (points.length - 1);
+ uvs.push(uv.x, uv.y);
+ }
+ } // indices
- uv.x = i / segments;
- uv.y = j / (points.length - 1);
- uvs.push(uv.x, uv.y);
- }
- } // indices
+ for (let i = 0; i < segments; i++) {
+ for (let j = 0; j < points.length - 1; j++) {
+ const base = j + i * points.length;
+ const a = base;
+ const b = base + points.length;
+ const c = base + points.length + 1;
+ const d = base + 1; // faces
- for (let i = 0; i < segments; i++) {
- for (let j = 0; j < points.length - 1; j++) {
- const base = j + i * points.length;
- const a = base;
- const b = base + points.length;
- const c = base + points.length + 1;
- const d = base + 1; // faces
+ indices.push(a, b, d);
+ indices.push(b, c, d);
+ }
+ } // build geometry
- indices.push(a, b, d);
- indices.push(b, c, d);
- }
- } // build geometry
+ this.setIndex(indices);
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // generate normals
- this.setIndex(indices);
- this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // generate normals
+ this.computeVertexNormals(); // if the geometry is closed, we need to average the normals along the seam.
+ // because the corresponding vertices are identical (but still have different UVs).
- this.computeVertexNormals(); // if the geometry is closed, we need to average the normals along the seam.
- // because the corresponding vertices are identical (but still have different UVs).
+ if (phiLength === Math.PI * 2) {
+ const normals = this.attributes.normal.array;
+ const n1 = new Vector3();
+ const n2 = new Vector3();
+ const n = new Vector3(); // this is the buffer offset for the last line of vertices
- if (phiLength === Math.PI * 2) {
- const normals = this.attributes.normal.array;
- const n1 = new Vector3();
- const n2 = new Vector3();
- const n = new Vector3(); // this is the buffer offset for the last line of vertices
+ const base = segments * points.length * 3;
- const base = segments * points.length * 3;
+ for (let i = 0, j = 0; i < points.length; i++, j += 3) {
+ // select the normal of the vertex in the first line
+ n1.x = normals[j + 0];
+ n1.y = normals[j + 1];
+ n1.z = normals[j + 2]; // select the normal of the vertex in the last line
- for (let i = 0, j = 0; i < points.length; i++, j += 3) {
- // select the normal of the vertex in the first line
- n1.x = normals[j + 0];
- n1.y = normals[j + 1];
- n1.z = normals[j + 2]; // select the normal of the vertex in the last line
+ n2.x = normals[base + j + 0];
+ n2.y = normals[base + j + 1];
+ n2.z = normals[base + j + 2]; // average normals
- n2.x = normals[base + j + 0];
- n2.y = normals[base + j + 1];
- n2.z = normals[base + j + 2]; // average normals
+ n.addVectors(n1, n2).normalize(); // assign the new values to both normals
- n.addVectors(n1, n2).normalize(); // assign the new values to both normals
+ normals[j + 0] = normals[base + j + 0] = n.x;
+ normals[j + 1] = normals[base + j + 1] = n.y;
+ normals[j + 2] = normals[base + j + 2] = n.z;
+ }
+ }
+ }
- normals[j + 0] = normals[base + j + 0] = n.x;
- normals[j + 1] = normals[base + j + 1] = n.y;
- normals[j + 2] = normals[base + j + 2] = n.z;
+ static fromJSON(data) {
+ return new LatheGeometry(data.points, data.segments, data.phiStart, data.phiLength);
}
- }
- }
- static fromJSON(data) {
- return new LatheGeometry(data.points, data.segments, data.phiStart, data.phiLength);
- }
+ }
- }
+ class OctahedronGeometry extends PolyhedronGeometry {
+ constructor(radius = 1, detail = 0) {
+ const vertices = [1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1];
+ const indices = [0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2];
+ super(vertices, indices, radius, detail);
+ this.type = 'OctahedronGeometry';
+ this.parameters = {
+ radius: radius,
+ detail: detail
+ };
+ }
- class OctahedronGeometry extends PolyhedronGeometry {
- constructor(radius = 1, detail = 0) {
- const vertices = [1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1];
- const indices = [0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2];
- super(vertices, indices, radius, detail);
- this.type = 'OctahedronGeometry';
- this.parameters = {
- radius: radius,
- detail: detail
- };
- }
+ static fromJSON(data) {
+ return new OctahedronGeometry(data.radius, data.detail);
+ }
- static fromJSON(data) {
- return new OctahedronGeometry(data.radius, data.detail);
- }
+ }
- }
+ /**
+ * Parametric Surfaces Geometry
+ * based on the brilliant article by @prideout https://prideout.net/blog/old/blog/index.html@p=44.html
+ */
- /**
- * Parametric Surfaces Geometry
- * based on the brilliant article by @prideout https://prideout.net/blog/old/blog/index.html@p=44.html
- */
-
- class ParametricGeometry extends BufferGeometry {
- constructor(func, slices, stacks) {
- super();
- this.type = 'ParametricGeometry';
- this.parameters = {
- func: func,
- slices: slices,
- stacks: stacks
- }; // buffers
-
- const indices = [];
- const vertices = [];
- const normals = [];
- const uvs = [];
- const EPS = 0.00001;
- const normal = new Vector3();
- const p0 = new Vector3(),
+ class ParametricGeometry extends BufferGeometry {
+ constructor(func, slices, stacks) {
+ super();
+ this.type = 'ParametricGeometry';
+ this.parameters = {
+ func: func,
+ slices: slices,
+ stacks: stacks
+ }; // buffers
+
+ const indices = [];
+ const vertices = [];
+ const normals = [];
+ const uvs = [];
+ const EPS = 0.00001;
+ const normal = new Vector3();
+ const p0 = new Vector3(),
p1 = new Vector3();
- const pu = new Vector3(),
+ const pu = new Vector3(),
pv = new Vector3();
- if (func.length < 3) {
- console.error('THREE.ParametricGeometry: Function must now modify a Vector3 as third parameter.');
- } // generate vertices, normals and uvs
+ if (func.length < 3) {
+ console.error('THREE.ParametricGeometry: Function must now modify a Vector3 as third parameter.');
+ } // generate vertices, normals and uvs
- const sliceCount = slices + 1;
+ const sliceCount = slices + 1;
- for (let i = 0; i <= stacks; i++) {
- const v = i / stacks;
+ for (let i = 0; i <= stacks; i++) {
+ const v = i / stacks;
- for (let j = 0; j <= slices; j++) {
- const u = j / slices; // vertex
+ for (let j = 0; j <= slices; j++) {
+ const u = j / slices; // vertex
- func(u, v, p0);
- vertices.push(p0.x, p0.y, p0.z); // normal
- // approximate tangent vectors via finite differences
+ func(u, v, p0);
+ vertices.push(p0.x, p0.y, p0.z); // normal
+ // approximate tangent vectors via finite differences
- if (u - EPS >= 0) {
- func(u - EPS, v, p1);
- pu.subVectors(p0, p1);
- } else {
- func(u + EPS, v, p1);
- pu.subVectors(p1, p0);
- }
+ if (u - EPS >= 0) {
+ func(u - EPS, v, p1);
+ pu.subVectors(p0, p1);
+ } else {
+ func(u + EPS, v, p1);
+ pu.subVectors(p1, p0);
+ }
- if (v - EPS >= 0) {
- func(u, v - EPS, p1);
- pv.subVectors(p0, p1);
- } else {
- func(u, v + EPS, p1);
- pv.subVectors(p1, p0);
- } // cross product of tangent vectors returns surface normal
+ if (v - EPS >= 0) {
+ func(u, v - EPS, p1);
+ pv.subVectors(p0, p1);
+ } else {
+ func(u, v + EPS, p1);
+ pv.subVectors(p1, p0);
+ } // cross product of tangent vectors returns surface normal
- normal.crossVectors(pu, pv).normalize();
- normals.push(normal.x, normal.y, normal.z); // uv
+ normal.crossVectors(pu, pv).normalize();
+ normals.push(normal.x, normal.y, normal.z); // uv
- uvs.push(u, v);
- }
- } // generate indices
+ uvs.push(u, v);
+ }
+ } // generate indices
+
+
+ for (let i = 0; i < stacks; i++) {
+ for (let j = 0; j < slices; j++) {
+ const a = i * sliceCount + j;
+ const b = i * sliceCount + j + 1;
+ const c = (i + 1) * sliceCount + j + 1;
+ const d = (i + 1) * sliceCount + j; // faces one and two
+ indices.push(a, b, d);
+ indices.push(b, c, d);
+ }
+ } // build geometry
- for (let i = 0; i < stacks; i++) {
- for (let j = 0; j < slices; j++) {
- const a = i * sliceCount + j;
- const b = i * sliceCount + j + 1;
- const c = (i + 1) * sliceCount + j + 1;
- const d = (i + 1) * sliceCount + j; // faces one and two
- indices.push(a, b, d);
- indices.push(b, c, d);
+ this.setIndex(indices);
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
}
- } // build geometry
+ }
- this.setIndex(indices);
- this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
- this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
- }
+ class RingGeometry extends BufferGeometry {
+ constructor(innerRadius = 0.5, outerRadius = 1, thetaSegments = 8, phiSegments = 1, thetaStart = 0, thetaLength = Math.PI * 2) {
+ super();
+ this.type = 'RingGeometry';
+ this.parameters = {
+ innerRadius: innerRadius,
+ outerRadius: outerRadius,
+ thetaSegments: thetaSegments,
+ phiSegments: phiSegments,
+ thetaStart: thetaStart,
+ thetaLength: thetaLength
+ };
+ thetaSegments = Math.max(3, thetaSegments);
+ phiSegments = Math.max(1, phiSegments); // buffers
- }
+ const indices = [];
+ const vertices = [];
+ const normals = [];
+ const uvs = []; // some helper variables
- class RingGeometry extends BufferGeometry {
- constructor(innerRadius = 0.5, outerRadius = 1, thetaSegments = 8, phiSegments = 1, thetaStart = 0, thetaLength = Math.PI * 2) {
- super();
- this.type = 'RingGeometry';
- this.parameters = {
- innerRadius: innerRadius,
- outerRadius: outerRadius,
- thetaSegments: thetaSegments,
- phiSegments: phiSegments,
- thetaStart: thetaStart,
- thetaLength: thetaLength
- };
- thetaSegments = Math.max(3, thetaSegments);
- phiSegments = Math.max(1, phiSegments); // buffers
+ let radius = innerRadius;
+ const radiusStep = (outerRadius - innerRadius) / phiSegments;
+ const vertex = new Vector3();
+ const uv = new Vector2(); // generate vertices, normals and uvs
- const indices = [];
- const vertices = [];
- const normals = [];
- const uvs = []; // some helper variables
+ for (let j = 0; j <= phiSegments; j++) {
+ for (let i = 0; i <= thetaSegments; i++) {
+ // values are generate from the inside of the ring to the outside
+ const segment = thetaStart + i / thetaSegments * thetaLength; // vertex
- let radius = innerRadius;
- const radiusStep = (outerRadius - innerRadius) / phiSegments;
- const vertex = new Vector3();
- const uv = new Vector2(); // generate vertices, normals and uvs
+ vertex.x = radius * Math.cos(segment);
+ vertex.y = radius * Math.sin(segment);
+ vertices.push(vertex.x, vertex.y, vertex.z); // normal
- for (let j = 0; j <= phiSegments; j++) {
- for (let i = 0; i <= thetaSegments; i++) {
- // values are generate from the inside of the ring to the outside
- const segment = thetaStart + i / thetaSegments * thetaLength; // vertex
+ normals.push(0, 0, 1); // uv
- vertex.x = radius * Math.cos(segment);
- vertex.y = radius * Math.sin(segment);
- vertices.push(vertex.x, vertex.y, vertex.z); // normal
+ uv.x = (vertex.x / outerRadius + 1) / 2;
+ uv.y = (vertex.y / outerRadius + 1) / 2;
+ uvs.push(uv.x, uv.y);
+ } // increase the radius for next row of vertices
- normals.push(0, 0, 1); // uv
- uv.x = (vertex.x / outerRadius + 1) / 2;
- uv.y = (vertex.y / outerRadius + 1) / 2;
- uvs.push(uv.x, uv.y);
- } // increase the radius for next row of vertices
+ radius += radiusStep;
+ } // indices
- radius += radiusStep;
- } // indices
+ for (let j = 0; j < phiSegments; j++) {
+ const thetaSegmentLevel = j * (thetaSegments + 1);
+ for (let i = 0; i < thetaSegments; i++) {
+ const segment = i + thetaSegmentLevel;
+ const a = segment;
+ const b = segment + thetaSegments + 1;
+ const c = segment + thetaSegments + 2;
+ const d = segment + 1; // faces
- for (let j = 0; j < phiSegments; j++) {
- const thetaSegmentLevel = j * (thetaSegments + 1);
+ indices.push(a, b, d);
+ indices.push(b, c, d);
+ }
+ } // build geometry
- for (let i = 0; i < thetaSegments; i++) {
- const segment = i + thetaSegmentLevel;
- const a = segment;
- const b = segment + thetaSegments + 1;
- const c = segment + thetaSegments + 2;
- const d = segment + 1; // faces
- indices.push(a, b, d);
- indices.push(b, c, d);
+ this.setIndex(indices);
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
}
- } // build geometry
+ static fromJSON(data) {
+ return new RingGeometry(data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength);
+ }
- this.setIndex(indices);
- this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
- this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
- }
+ }
- static fromJSON(data) {
- return new RingGeometry(data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength);
- }
+ class ShapeGeometry extends BufferGeometry {
+ constructor(shapes, curveSegments = 12) {
+ super();
+ this.type = 'ShapeGeometry';
+ this.parameters = {
+ shapes: shapes,
+ curveSegments: curveSegments
+ }; // buffers
- }
+ const indices = [];
+ const vertices = [];
+ const normals = [];
+ const uvs = []; // helper variables
- class ShapeGeometry extends BufferGeometry {
- constructor(shapes, curveSegments = 12) {
- super();
- this.type = 'ShapeGeometry';
- this.parameters = {
- shapes: shapes,
- curveSegments: curveSegments
- }; // buffers
-
- const indices = [];
- const vertices = [];
- const normals = [];
- const uvs = []; // helper variables
-
- let groupStart = 0;
- let groupCount = 0; // allow single and array values for "shapes" parameter
-
- if (Array.isArray(shapes) === false) {
- addShape(shapes);
- } else {
- for (let i = 0; i < shapes.length; i++) {
- addShape(shapes[i]);
- this.addGroup(groupStart, groupCount, i); // enables MultiMaterial support
+ let groupStart = 0;
+ let groupCount = 0; // allow single and array values for "shapes" parameter
- groupStart += groupCount;
- groupCount = 0;
- }
- } // build geometry
+ if (Array.isArray(shapes) === false) {
+ addShape(shapes);
+ } else {
+ for (let i = 0; i < shapes.length; i++) {
+ addShape(shapes[i]);
+ this.addGroup(groupStart, groupCount, i); // enables MultiMaterial support
+ groupStart += groupCount;
+ groupCount = 0;
+ }
+ } // build geometry
- this.setIndex(indices);
- this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
- this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // helper functions
- function addShape(shape) {
- const indexOffset = vertices.length / 3;
- const points = shape.extractPoints(curveSegments);
- let shapeVertices = points.shape;
- const shapeHoles = points.holes; // check direction of vertices
+ this.setIndex(indices);
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // helper functions
- if (ShapeUtils.isClockWise(shapeVertices) === false) {
- shapeVertices = shapeVertices.reverse();
- }
+ function addShape(shape) {
+ const indexOffset = vertices.length / 3;
+ const points = shape.extractPoints(curveSegments);
+ let shapeVertices = points.shape;
+ const shapeHoles = points.holes; // check direction of vertices
- for (let i = 0, l = shapeHoles.length; i < l; i++) {
- const shapeHole = shapeHoles[i];
+ if (ShapeUtils.isClockWise(shapeVertices) === false) {
+ shapeVertices = shapeVertices.reverse();
+ }
- if (ShapeUtils.isClockWise(shapeHole) === true) {
- shapeHoles[i] = shapeHole.reverse();
- }
- }
+ for (let i = 0, l = shapeHoles.length; i < l; i++) {
+ const shapeHole = shapeHoles[i];
- const faces = ShapeUtils.triangulateShape(shapeVertices, shapeHoles); // join vertices of inner and outer paths to a single array
+ if (ShapeUtils.isClockWise(shapeHole) === true) {
+ shapeHoles[i] = shapeHole.reverse();
+ }
+ }
- for (let i = 0, l = shapeHoles.length; i < l; i++) {
- const shapeHole = shapeHoles[i];
- shapeVertices = shapeVertices.concat(shapeHole);
- } // vertices, normals, uvs
+ const faces = ShapeUtils.triangulateShape(shapeVertices, shapeHoles); // join vertices of inner and outer paths to a single array
+ for (let i = 0, l = shapeHoles.length; i < l; i++) {
+ const shapeHole = shapeHoles[i];
+ shapeVertices = shapeVertices.concat(shapeHole);
+ } // vertices, normals, uvs
- for (let i = 0, l = shapeVertices.length; i < l; i++) {
- const vertex = shapeVertices[i];
- vertices.push(vertex.x, vertex.y, 0);
- normals.push(0, 0, 1);
- uvs.push(vertex.x, vertex.y); // world uvs
- } // incides
+
+ for (let i = 0, l = shapeVertices.length; i < l; i++) {
+ const vertex = shapeVertices[i];
+ vertices.push(vertex.x, vertex.y, 0);
+ normals.push(0, 0, 1);
+ uvs.push(vertex.x, vertex.y); // world uvs
+ } // incides
- for (let i = 0, l = faces.length; i < l; i++) {
- const face = faces[i];
- const a = face[0] + indexOffset;
- const b = face[1] + indexOffset;
- const c = face[2] + indexOffset;
- indices.push(a, b, c);
- groupCount += 3;
+ for (let i = 0, l = faces.length; i < l; i++) {
+ const face = faces[i];
+ const a = face[0] + indexOffset;
+ const b = face[1] + indexOffset;
+ const c = face[2] + indexOffset;
+ indices.push(a, b, c);
+ groupCount += 3;
+ }
+ }
}
- }
- }
- toJSON() {
- const data = super.toJSON();
- const shapes = this.parameters.shapes;
- return toJSON(shapes, data);
- }
+ toJSON() {
+ const data = super.toJSON();
+ const shapes = this.parameters.shapes;
+ return toJSON(shapes, data);
+ }
- static fromJSON(data, shapes) {
- const geometryShapes = [];
+ static fromJSON(data, shapes) {
+ const geometryShapes = [];
- for (let j = 0, jl = data.shapes.length; j < jl; j++) {
- const shape = shapes[data.shapes[j]];
- geometryShapes.push(shape);
- }
+ for (let j = 0, jl = data.shapes.length; j < jl; j++) {
+ const shape = shapes[data.shapes[j]];
+ geometryShapes.push(shape);
+ }
- return new ShapeGeometry(geometryShapes, data.curveSegments);
- }
+ return new ShapeGeometry(geometryShapes, data.curveSegments);
+ }
- }
+ }
+
+ function toJSON(shapes, data) {
+ data.shapes = [];
- function toJSON(shapes, data) {
- data.shapes = [];
+ if (Array.isArray(shapes)) {
+ for (let i = 0, l = shapes.length; i < l; i++) {
+ const shape = shapes[i];
+ data.shapes.push(shape.uuid);
+ }
+ } else {
+ data.shapes.push(shapes.uuid);
+ }
- if (Array.isArray(shapes)) {
- for (let i = 0, l = shapes.length; i < l; i++) {
- const shape = shapes[i];
- data.shapes.push(shape.uuid);
+ return data;
}
- } else {
- data.shapes.push(shapes.uuid);
- }
- return data;
- }
+ class SphereGeometry extends BufferGeometry {
+ constructor(radius = 1, widthSegments = 32, heightSegments = 16, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI) {
+ super();
+ this.type = 'SphereGeometry';
+ this.parameters = {
+ radius: radius,
+ widthSegments: widthSegments,
+ heightSegments: heightSegments,
+ phiStart: phiStart,
+ phiLength: phiLength,
+ thetaStart: thetaStart,
+ thetaLength: thetaLength
+ };
+ widthSegments = Math.max(3, Math.floor(widthSegments));
+ heightSegments = Math.max(2, Math.floor(heightSegments));
+ const thetaEnd = Math.min(thetaStart + thetaLength, Math.PI);
+ let index = 0;
+ const grid = [];
+ const vertex = new Vector3();
+ const normal = new Vector3(); // buffers
+
+ const indices = [];
+ const vertices = [];
+ const normals = [];
+ const uvs = []; // generate vertices, normals and uvs
+
+ for (let iy = 0; iy <= heightSegments; iy++) {
+ const verticesRow = [];
+ const v = iy / heightSegments; // special case for the poles
+
+ let uOffset = 0;
+
+ if (iy == 0 && thetaStart == 0) {
+ uOffset = 0.5 / widthSegments;
+ } else if (iy == heightSegments && thetaEnd == Math.PI) {
+ uOffset = -0.5 / widthSegments;
+ }
- class SphereGeometry extends BufferGeometry {
- constructor(radius = 1, widthSegments = 32, heightSegments = 16, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI) {
- super();
- this.type = 'SphereGeometry';
- this.parameters = {
- radius: radius,
- widthSegments: widthSegments,
- heightSegments: heightSegments,
- phiStart: phiStart,
- phiLength: phiLength,
- thetaStart: thetaStart,
- thetaLength: thetaLength
- };
- widthSegments = Math.max(3, Math.floor(widthSegments));
- heightSegments = Math.max(2, Math.floor(heightSegments));
- const thetaEnd = Math.min(thetaStart + thetaLength, Math.PI);
- let index = 0;
- const grid = [];
- const vertex = new Vector3();
- const normal = new Vector3(); // buffers
+ for (let ix = 0; ix <= widthSegments; ix++) {
+ const u = ix / widthSegments; // vertex
- const indices = [];
- const vertices = [];
- const normals = [];
- const uvs = []; // generate vertices, normals and uvs
+ vertex.x = -radius * Math.cos(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength);
+ vertex.y = radius * Math.cos(thetaStart + v * thetaLength);
+ vertex.z = radius * Math.sin(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength);
+ vertices.push(vertex.x, vertex.y, vertex.z); // normal
- for (let iy = 0; iy <= heightSegments; iy++) {
- const verticesRow = [];
- const v = iy / heightSegments; // special case for the poles
+ normal.copy(vertex).normalize();
+ normals.push(normal.x, normal.y, normal.z); // uv
- let uOffset = 0;
+ uvs.push(u + uOffset, 1 - v);
+ verticesRow.push(index++);
+ }
- if (iy == 0 && thetaStart == 0) {
- uOffset = 0.5 / widthSegments;
- } else if (iy == heightSegments && thetaEnd == Math.PI) {
- uOffset = -0.5 / widthSegments;
- }
+ grid.push(verticesRow);
+ } // indices
- for (let ix = 0; ix <= widthSegments; ix++) {
- const u = ix / widthSegments; // vertex
- vertex.x = -radius * Math.cos(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength);
- vertex.y = radius * Math.cos(thetaStart + v * thetaLength);
- vertex.z = radius * Math.sin(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength);
- vertices.push(vertex.x, vertex.y, vertex.z); // normal
+ for (let iy = 0; iy < heightSegments; iy++) {
+ for (let ix = 0; ix < widthSegments; ix++) {
+ const a = grid[iy][ix + 1];
+ const b = grid[iy][ix];
+ const c = grid[iy + 1][ix];
+ const d = grid[iy + 1][ix + 1];
+ if (iy !== 0 || thetaStart > 0) indices.push(a, b, d);
+ if (iy !== heightSegments - 1 || thetaEnd < Math.PI) indices.push(b, c, d);
+ }
+ } // build geometry
- normal.copy(vertex).normalize();
- normals.push(normal.x, normal.y, normal.z); // uv
- uvs.push(u + uOffset, 1 - v);
- verticesRow.push(index++);
+ this.setIndex(indices);
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
}
- grid.push(verticesRow);
- } // indices
+ static fromJSON(data) {
+ return new SphereGeometry(data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength);
+ }
+ }
- for (let iy = 0; iy < heightSegments; iy++) {
- for (let ix = 0; ix < widthSegments; ix++) {
- const a = grid[iy][ix + 1];
- const b = grid[iy][ix];
- const c = grid[iy + 1][ix];
- const d = grid[iy + 1][ix + 1];
- if (iy !== 0 || thetaStart > 0) indices.push(a, b, d);
- if (iy !== heightSegments - 1 || thetaEnd < Math.PI) indices.push(b, c, d);
+ class TetrahedronGeometry extends PolyhedronGeometry {
+ constructor(radius = 1, detail = 0) {
+ const vertices = [1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1];
+ const indices = [2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1];
+ super(vertices, indices, radius, detail);
+ this.type = 'TetrahedronGeometry';
+ this.parameters = {
+ radius: radius,
+ detail: detail
+ };
}
- } // build geometry
+ static fromJSON(data) {
+ return new TetrahedronGeometry(data.radius, data.detail);
+ }
- this.setIndex(indices);
- this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
- this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
- }
+ }
- static fromJSON(data) {
- return new SphereGeometry(data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength);
- }
+ /**
+ * Text = 3D Text
+ *
+ * parameters = {
+ * font: <THREE.Font>, // font
+ *
+ * size: <float>, // size of the text
+ * height: <float>, // thickness to extrude text
+ * curveSegments: <int>, // number of points on the curves
+ *
+ * bevelEnabled: <bool>, // turn on bevel
+ * bevelThickness: <float>, // how deep into text bevel goes
+ * bevelSize: <float>, // how far from text outline (including bevelOffset) is bevel
+ * bevelOffset: <float> // how far from text outline does bevel start
+ * }
+ */
- }
+ class TextGeometry extends ExtrudeGeometry {
+ constructor(text, parameters = {}) {
+ const font = parameters.font;
- class TetrahedronGeometry extends PolyhedronGeometry {
- constructor(radius = 1, detail = 0) {
- const vertices = [1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1];
- const indices = [2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1];
- super(vertices, indices, radius, detail);
- this.type = 'TetrahedronGeometry';
- this.parameters = {
- radius: radius,
- detail: detail
- };
- }
+ if (!(font && font.isFont)) {
+ console.error('THREE.TextGeometry: font parameter is not an instance of THREE.Font.');
+ return new BufferGeometry();
+ }
- static fromJSON(data) {
- return new TetrahedronGeometry(data.radius, data.detail);
- }
+ const shapes = font.generateShapes(text, parameters.size); // translate parameters to ExtrudeGeometry API
- }
+ parameters.depth = parameters.height !== undefined ? parameters.height : 50; // defaults
- /**
- * Text = 3D Text
- *
- * parameters = {
- * font: <THREE.Font>, // font
- *
- * size: <float>, // size of the text
- * height: <float>, // thickness to extrude text
- * curveSegments: <int>, // number of points on the curves
- *
- * bevelEnabled: <bool>, // turn on bevel
- * bevelThickness: <float>, // how deep into text bevel goes
- * bevelSize: <float>, // how far from text outline (including bevelOffset) is bevel
- * bevelOffset: <float> // how far from text outline does bevel start
- * }
- */
-
- class TextGeometry extends ExtrudeGeometry {
- constructor(text, parameters = {}) {
- const font = parameters.font;
-
- if (!(font && font.isFont)) {
- console.error('THREE.TextGeometry: font parameter is not an instance of THREE.Font.');
- return new BufferGeometry();
- }
-
- const shapes = font.generateShapes(text, parameters.size); // translate parameters to ExtrudeGeometry API
-
- parameters.depth = parameters.height !== undefined ? parameters.height : 50; // defaults
-
- if (parameters.bevelThickness === undefined) parameters.bevelThickness = 10;
- if (parameters.bevelSize === undefined) parameters.bevelSize = 8;
- if (parameters.bevelEnabled === undefined) parameters.bevelEnabled = false;
- super(shapes, parameters);
- this.type = 'TextGeometry';
- }
+ if (parameters.bevelThickness === undefined) parameters.bevelThickness = 10;
+ if (parameters.bevelSize === undefined) parameters.bevelSize = 8;
+ if (parameters.bevelEnabled === undefined) parameters.bevelEnabled = false;
+ super(shapes, parameters);
+ this.type = 'TextGeometry';
+ }
- }
+ }
- class TorusGeometry extends BufferGeometry {
- constructor(radius = 1, tube = 0.4, radialSegments = 8, tubularSegments = 6, arc = Math.PI * 2) {
- super();
- this.type = 'TorusGeometry';
- this.parameters = {
- radius: radius,
- tube: tube,
- radialSegments: radialSegments,
- tubularSegments: tubularSegments,
- arc: arc
- };
- radialSegments = Math.floor(radialSegments);
- tubularSegments = Math.floor(tubularSegments); // buffers
+ class TorusGeometry extends BufferGeometry {
+ constructor(radius = 1, tube = 0.4, radialSegments = 8, tubularSegments = 6, arc = Math.PI * 2) {
+ super();
+ this.type = 'TorusGeometry';
+ this.parameters = {
+ radius: radius,
+ tube: tube,
+ radialSegments: radialSegments,
+ tubularSegments: tubularSegments,
+ arc: arc
+ };
+ radialSegments = Math.floor(radialSegments);
+ tubularSegments = Math.floor(tubularSegments); // buffers
- const indices = [];
- const vertices = [];
- const normals = [];
- const uvs = []; // helper variables
+ const indices = [];
+ const vertices = [];
+ const normals = [];
+ const uvs = []; // helper variables
- const center = new Vector3();
- const vertex = new Vector3();
- const normal = new Vector3(); // generate vertices, normals and uvs
+ const center = new Vector3();
+ const vertex = new Vector3();
+ const normal = new Vector3(); // generate vertices, normals and uvs
- for (let j = 0; j <= radialSegments; j++) {
- for (let i = 0; i <= tubularSegments; i++) {
- const u = i / tubularSegments * arc;
- const v = j / radialSegments * Math.PI * 2; // vertex
+ for (let j = 0; j <= radialSegments; j++) {
+ for (let i = 0; i <= tubularSegments; i++) {
+ const u = i / tubularSegments * arc;
+ const v = j / radialSegments * Math.PI * 2; // vertex
+
+ vertex.x = (radius + tube * Math.cos(v)) * Math.cos(u);
+ vertex.y = (radius + tube * Math.cos(v)) * Math.sin(u);
+ vertex.z = tube * Math.sin(v);
+ vertices.push(vertex.x, vertex.y, vertex.z); // normal
+
+ center.x = radius * Math.cos(u);
+ center.y = radius * Math.sin(u);
+ normal.subVectors(vertex, center).normalize();
+ normals.push(normal.x, normal.y, normal.z); // uv
+
+ uvs.push(i / tubularSegments);
+ uvs.push(j / radialSegments);
+ }
+ } // generate indices
- vertex.x = (radius + tube * Math.cos(v)) * Math.cos(u);
- vertex.y = (radius + tube * Math.cos(v)) * Math.sin(u);
- vertex.z = tube * Math.sin(v);
- vertices.push(vertex.x, vertex.y, vertex.z); // normal
- center.x = radius * Math.cos(u);
- center.y = radius * Math.sin(u);
- normal.subVectors(vertex, center).normalize();
- normals.push(normal.x, normal.y, normal.z); // uv
+ for (let j = 1; j <= radialSegments; j++) {
+ for (let i = 1; i <= tubularSegments; i++) {
+ // indices
+ const a = (tubularSegments + 1) * j + i - 1;
+ const b = (tubularSegments + 1) * (j - 1) + i - 1;
+ const c = (tubularSegments + 1) * (j - 1) + i;
+ const d = (tubularSegments + 1) * j + i; // faces
- uvs.push(i / tubularSegments);
- uvs.push(j / radialSegments);
- }
- } // generate indices
+ indices.push(a, b, d);
+ indices.push(b, c, d);
+ }
+ } // build geometry
- for (let j = 1; j <= radialSegments; j++) {
- for (let i = 1; i <= tubularSegments; i++) {
- // indices
- const a = (tubularSegments + 1) * j + i - 1;
- const b = (tubularSegments + 1) * (j - 1) + i - 1;
- const c = (tubularSegments + 1) * (j - 1) + i;
- const d = (tubularSegments + 1) * j + i; // faces
+ this.setIndex(indices);
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
+ }
- indices.push(a, b, d);
- indices.push(b, c, d);
+ static fromJSON(data) {
+ return new TorusGeometry(data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc);
}
- } // build geometry
+ }
- this.setIndex(indices);
- this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
- this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
- }
+ class TorusKnotGeometry extends BufferGeometry {
+ constructor(radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3) {
+ super();
+ this.type = 'TorusKnotGeometry';
+ this.parameters = {
+ radius: radius,
+ tube: tube,
+ tubularSegments: tubularSegments,
+ radialSegments: radialSegments,
+ p: p,
+ q: q
+ };
+ tubularSegments = Math.floor(tubularSegments);
+ radialSegments = Math.floor(radialSegments); // buffers
+
+ const indices = [];
+ const vertices = [];
+ const normals = [];
+ const uvs = []; // helper variables
+
+ const vertex = new Vector3();
+ const normal = new Vector3();
+ const P1 = new Vector3();
+ const P2 = new Vector3();
+ const B = new Vector3();
+ const T = new Vector3();
+ const N = new Vector3(); // generate vertices, normals and uvs
+
+ for (let i = 0; i <= tubularSegments; ++i) {
+ // the radian "u" is used to calculate the position on the torus curve of the current tubular segement
+ const u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
+ // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
+
+ calculatePositionOnCurve(u, p, q, radius, P1);
+ calculatePositionOnCurve(u + 0.01, p, q, radius, P2); // calculate orthonormal basis
+
+ T.subVectors(P2, P1);
+ N.addVectors(P2, P1);
+ B.crossVectors(T, N);
+ N.crossVectors(B, T); // normalize B, N. T can be ignored, we don't use it
+
+ B.normalize();
+ N.normalize();
+
+ for (let j = 0; j <= radialSegments; ++j) {
+ // now calculate the vertices. they are nothing more than an extrusion of the torus curve.
+ // because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
+ const v = j / radialSegments * Math.PI * 2;
+ const cx = -tube * Math.cos(v);
+ const cy = tube * Math.sin(v); // now calculate the final vertex position.
+ // first we orient the extrusion with our basis vectos, then we add it to the current position on the curve
+
+ vertex.x = P1.x + (cx * N.x + cy * B.x);
+ vertex.y = P1.y + (cx * N.y + cy * B.y);
+ vertex.z = P1.z + (cx * N.z + cy * B.z);
+ vertices.push(vertex.x, vertex.y, vertex.z); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
+
+ normal.subVectors(vertex, P1).normalize();
+ normals.push(normal.x, normal.y, normal.z); // uv
+
+ uvs.push(i / tubularSegments);
+ uvs.push(j / radialSegments);
+ }
+ } // generate indices
- static fromJSON(data) {
- return new TorusGeometry(data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc);
- }
- }
+ for (let j = 1; j <= tubularSegments; j++) {
+ for (let i = 1; i <= radialSegments; i++) {
+ // indices
+ const a = (radialSegments + 1) * (j - 1) + (i - 1);
+ const b = (radialSegments + 1) * j + (i - 1);
+ const c = (radialSegments + 1) * j + i;
+ const d = (radialSegments + 1) * (j - 1) + i; // faces
+
+ indices.push(a, b, d);
+ indices.push(b, c, d);
+ }
+ } // build geometry
+
+
+ this.setIndex(indices);
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // this function calculates the current position on the torus curve
+
+ function calculatePositionOnCurve(u, p, q, radius, position) {
+ const cu = Math.cos(u);
+ const su = Math.sin(u);
+ const quOverP = q / p * u;
+ const cs = Math.cos(quOverP);
+ position.x = radius * (2 + cs) * 0.5 * cu;
+ position.y = radius * (2 + cs) * su * 0.5;
+ position.z = radius * Math.sin(quOverP) * 0.5;
+ }
+ }
+
+ static fromJSON(data) {
+ return new TorusKnotGeometry(data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q);
+ }
- class TorusKnotGeometry extends BufferGeometry {
- constructor(radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3) {
- super();
- this.type = 'TorusKnotGeometry';
- this.parameters = {
- radius: radius,
- tube: tube,
- tubularSegments: tubularSegments,
- radialSegments: radialSegments,
- p: p,
- q: q
- };
- tubularSegments = Math.floor(tubularSegments);
- radialSegments = Math.floor(radialSegments); // buffers
-
- const indices = [];
- const vertices = [];
- const normals = [];
- const uvs = []; // helper variables
-
- const vertex = new Vector3();
- const normal = new Vector3();
- const P1 = new Vector3();
- const P2 = new Vector3();
- const B = new Vector3();
- const T = new Vector3();
- const N = new Vector3(); // generate vertices, normals and uvs
-
- for (let i = 0; i <= tubularSegments; ++i) {
- // the radian "u" is used to calculate the position on the torus curve of the current tubular segement
- const u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
- // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
-
- calculatePositionOnCurve(u, p, q, radius, P1);
- calculatePositionOnCurve(u + 0.01, p, q, radius, P2); // calculate orthonormal basis
-
- T.subVectors(P2, P1);
- N.addVectors(P2, P1);
- B.crossVectors(T, N);
- N.crossVectors(B, T); // normalize B, N. T can be ignored, we don't use it
-
- B.normalize();
- N.normalize();
-
- for (let j = 0; j <= radialSegments; ++j) {
- // now calculate the vertices. they are nothing more than an extrusion of the torus curve.
- // because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
- const v = j / radialSegments * Math.PI * 2;
- const cx = -tube * Math.cos(v);
- const cy = tube * Math.sin(v); // now calculate the final vertex position.
- // first we orient the extrusion with our basis vectos, then we add it to the current position on the curve
-
- vertex.x = P1.x + (cx * N.x + cy * B.x);
- vertex.y = P1.y + (cx * N.y + cy * B.y);
- vertex.z = P1.z + (cx * N.z + cy * B.z);
- vertices.push(vertex.x, vertex.y, vertex.z); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
-
- normal.subVectors(vertex, P1).normalize();
- normals.push(normal.x, normal.y, normal.z); // uv
-
- uvs.push(i / tubularSegments);
- uvs.push(j / radialSegments);
- }
- } // generate indices
-
-
- for (let j = 1; j <= tubularSegments; j++) {
- for (let i = 1; i <= radialSegments; i++) {
- // indices
- const a = (radialSegments + 1) * (j - 1) + (i - 1);
- const b = (radialSegments + 1) * j + (i - 1);
- const c = (radialSegments + 1) * j + i;
- const d = (radialSegments + 1) * (j - 1) + i; // faces
-
- indices.push(a, b, d);
- indices.push(b, c, d);
- }
- } // build geometry
-
-
- this.setIndex(indices);
- this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
- this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // this function calculates the current position on the torus curve
-
- function calculatePositionOnCurve(u, p, q, radius, position) {
- const cu = Math.cos(u);
- const su = Math.sin(u);
- const quOverP = q / p * u;
- const cs = Math.cos(quOverP);
- position.x = radius * (2 + cs) * 0.5 * cu;
- position.y = radius * (2 + cs) * su * 0.5;
- position.z = radius * Math.sin(quOverP) * 0.5;
}
- }
- static fromJSON(data) {
- return new TorusKnotGeometry(data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q);
- }
+ class TubeGeometry extends BufferGeometry {
+ constructor(path, tubularSegments = 64, radius = 1, radialSegments = 8, closed = false) {
+ super();
+ this.type = 'TubeGeometry';
+ this.parameters = {
+ path: path,
+ tubularSegments: tubularSegments,
+ radius: radius,
+ radialSegments: radialSegments,
+ closed: closed
+ };
+ const frames = path.computeFrenetFrames(tubularSegments, closed); // expose internals
- }
+ this.tangents = frames.tangents;
+ this.normals = frames.normals;
+ this.binormals = frames.binormals; // helper variables
- class TubeGeometry extends BufferGeometry {
- constructor(path, tubularSegments = 64, radius = 1, radialSegments = 8, closed = false) {
- super();
- this.type = 'TubeGeometry';
- this.parameters = {
- path: path,
- tubularSegments: tubularSegments,
- radius: radius,
- radialSegments: radialSegments,
- closed: closed
- };
- const frames = path.computeFrenetFrames(tubularSegments, closed); // expose internals
+ const vertex = new Vector3();
+ const normal = new Vector3();
+ const uv = new Vector2();
+ let P = new Vector3(); // buffer
- this.tangents = frames.tangents;
- this.normals = frames.normals;
- this.binormals = frames.binormals; // helper variables
+ const vertices = [];
+ const normals = [];
+ const uvs = [];
+ const indices = []; // create buffer data
- const vertex = new Vector3();
- const normal = new Vector3();
- const uv = new Vector2();
- let P = new Vector3(); // buffer
+ generateBufferData(); // build geometry
- const vertices = [];
- const normals = [];
- const uvs = [];
- const indices = []; // create buffer data
+ this.setIndex(indices);
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // functions
- generateBufferData(); // build geometry
+ function generateBufferData() {
+ for (let i = 0; i < tubularSegments; i++) {
+ generateSegment(i);
+ } // if the geometry is not closed, generate the last row of vertices and normals
+ // at the regular position on the given path
+ //
+ // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)
- this.setIndex(indices);
- this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
- this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // functions
- function generateBufferData() {
- for (let i = 0; i < tubularSegments; i++) {
- generateSegment(i);
- } // if the geometry is not closed, generate the last row of vertices and normals
- // at the regular position on the given path
- //
- // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)
+ generateSegment(closed === false ? tubularSegments : 0); // uvs are generated in a separate function.
+ // this makes it easy compute correct values for closed geometries
+ generateUVs(); // finally create faces
- generateSegment(closed === false ? tubularSegments : 0); // uvs are generated in a separate function.
- // this makes it easy compute correct values for closed geometries
+ generateIndices();
+ }
- generateUVs(); // finally create faces
+ function generateSegment(i) {
+ // we use getPointAt to sample evenly distributed points from the given path
+ P = path.getPointAt(i / tubularSegments, P); // retrieve corresponding normal and binormal
- generateIndices();
- }
+ const N = frames.normals[i];
+ const B = frames.binormals[i]; // generate normals and vertices for the current segment
- function generateSegment(i) {
- // we use getPointAt to sample evenly distributed points from the given path
- P = path.getPointAt(i / tubularSegments, P); // retrieve corresponding normal and binormal
+ for (let j = 0; j <= radialSegments; j++) {
+ const v = j / radialSegments * Math.PI * 2;
+ const sin = Math.sin(v);
+ const cos = -Math.cos(v); // normal
- const N = frames.normals[i];
- const B = frames.binormals[i]; // generate normals and vertices for the current segment
+ normal.x = cos * N.x + sin * B.x;
+ normal.y = cos * N.y + sin * B.y;
+ normal.z = cos * N.z + sin * B.z;
+ normal.normalize();
+ normals.push(normal.x, normal.y, normal.z); // vertex
- for (let j = 0; j <= radialSegments; j++) {
- const v = j / radialSegments * Math.PI * 2;
- const sin = Math.sin(v);
- const cos = -Math.cos(v); // normal
+ vertex.x = P.x + radius * normal.x;
+ vertex.y = P.y + radius * normal.y;
+ vertex.z = P.z + radius * normal.z;
+ vertices.push(vertex.x, vertex.y, vertex.z);
+ }
+ }
- normal.x = cos * N.x + sin * B.x;
- normal.y = cos * N.y + sin * B.y;
- normal.z = cos * N.z + sin * B.z;
- normal.normalize();
- normals.push(normal.x, normal.y, normal.z); // vertex
+ function generateIndices() {
+ for (let j = 1; j <= tubularSegments; j++) {
+ for (let i = 1; i <= radialSegments; i++) {
+ const a = (radialSegments + 1) * (j - 1) + (i - 1);
+ const b = (radialSegments + 1) * j + (i - 1);
+ const c = (radialSegments + 1) * j + i;
+ const d = (radialSegments + 1) * (j - 1) + i; // faces
+
+ indices.push(a, b, d);
+ indices.push(b, c, d);
+ }
+ }
+ }
- vertex.x = P.x + radius * normal.x;
- vertex.y = P.y + radius * normal.y;
- vertex.z = P.z + radius * normal.z;
- vertices.push(vertex.x, vertex.y, vertex.z);
+ function generateUVs() {
+ for (let i = 0; i <= tubularSegments; i++) {
+ for (let j = 0; j <= radialSegments; j++) {
+ uv.x = i / tubularSegments;
+ uv.y = j / radialSegments;
+ uvs.push(uv.x, uv.y);
+ }
+ }
+ }
}
- }
- function generateIndices() {
- for (let j = 1; j <= tubularSegments; j++) {
- for (let i = 1; i <= radialSegments; i++) {
- const a = (radialSegments + 1) * (j - 1) + (i - 1);
- const b = (radialSegments + 1) * j + (i - 1);
- const c = (radialSegments + 1) * j + i;
- const d = (radialSegments + 1) * (j - 1) + i; // faces
+ toJSON() {
+ const data = super.toJSON();
+ data.path = this.parameters.path.toJSON();
+ return data;
+ }
- indices.push(a, b, d);
- indices.push(b, c, d);
- }
+ static fromJSON(data) {
+ // This only works for built-in curves (e.g. CatmullRomCurve3).
+ // User defined curves or instances of CurvePath will not be deserialized.
+ return new TubeGeometry(new Curves[data.path.type]().fromJSON(data.path), data.tubularSegments, data.radius, data.radialSegments, data.closed);
}
+
}
- function generateUVs() {
- for (let i = 0; i <= tubularSegments; i++) {
- for (let j = 0; j <= radialSegments; j++) {
- uv.x = i / tubularSegments;
- uv.y = j / radialSegments;
- uvs.push(uv.x, uv.y);
- }
+ class WireframeGeometry extends BufferGeometry {
+ constructor(geometry) {
+ super();
+ this.type = 'WireframeGeometry';
+
+ if (geometry.isGeometry === true) {
+ console.error('THREE.WireframeGeometry no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
+ return;
+ } // buffer
+
+
+ const vertices = [];
+ const edges = new Set(); // helper variables
+
+ const start = new Vector3();
+ const end = new Vector3();
+
+ if (geometry.index !== null) {
+ // indexed BufferGeometry
+ const position = geometry.attributes.position;
+ const indices = geometry.index;
+ let groups = geometry.groups;
+
+ if (groups.length === 0) {
+ groups = [{
+ start: 0,
+ count: indices.count,
+ materialIndex: 0
+ }];
+ } // create a data structure that contains all eges without duplicates
+
+
+ for (let o = 0, ol = groups.length; o < ol; ++o) {
+ const group = groups[o];
+ const groupStart = group.start;
+ const groupCount = group.count;
+
+ for (let i = groupStart, l = groupStart + groupCount; i < l; i += 3) {
+ for (let j = 0; j < 3; j++) {
+ const index1 = indices.getX(i + j);
+ const index2 = indices.getX(i + (j + 1) % 3);
+ start.fromBufferAttribute(position, index1);
+ end.fromBufferAttribute(position, index2);
+
+ if (isUniqueEdge(start, end, edges) === true) {
+ vertices.push(start.x, start.y, start.z);
+ vertices.push(end.x, end.y, end.z);
+ }
+ }
+ }
+ }
+ } else {
+ // non-indexed BufferGeometry
+ const position = geometry.attributes.position;
+
+ for (let i = 0, l = position.count / 3; i < l; i++) {
+ for (let j = 0; j < 3; j++) {
+ // three edges per triangle, an edge is represented as (index1, index2)
+ // e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)
+ const index1 = 3 * i + j;
+ const index2 = 3 * i + (j + 1) % 3;
+ start.fromBufferAttribute(position, index1);
+ end.fromBufferAttribute(position, index2);
+
+ if (isUniqueEdge(start, end, edges) === true) {
+ vertices.push(start.x, start.y, start.z);
+ vertices.push(end.x, end.y, end.z);
+ }
+ }
+ }
+ } // build geometry
+
+
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
}
+
}
- }
- toJSON() {
- const data = super.toJSON();
- data.path = this.parameters.path.toJSON();
- return data;
- }
+ function isUniqueEdge(start, end, edges) {
+ const hash1 = `${start.x},${start.y},${start.z}-${end.x},${end.y},${end.z}`;
+ const hash2 = `${end.x},${end.y},${end.z}-${start.x},${start.y},${start.z}`; // coincident edge
- static fromJSON(data) {
- // This only works for built-in curves (e.g. CatmullRomCurve3).
- // User defined curves or instances of CurvePath will not be deserialized.
- return new TubeGeometry(new Curves[data.path.type]().fromJSON(data.path), data.tubularSegments, data.radius, data.radialSegments, data.closed);
- }
+ if (edges.has(hash1) === true || edges.has(hash2) === true) {
+ return false;
+ } else {
+ edges.add(hash1, hash2);
+ return true;
+ }
+ }
+
+ var Geometries = /*#__PURE__*/Object.freeze({
+ __proto__: null,
+ BoxGeometry: BoxGeometry,
+ BoxBufferGeometry: BoxGeometry,
+ CircleGeometry: CircleGeometry,
+ CircleBufferGeometry: CircleGeometry,
+ ConeGeometry: ConeGeometry,
+ ConeBufferGeometry: ConeGeometry,
+ CylinderGeometry: CylinderGeometry,
+ CylinderBufferGeometry: CylinderGeometry,
+ DodecahedronGeometry: DodecahedronGeometry,
+ DodecahedronBufferGeometry: DodecahedronGeometry,
+ EdgesGeometry: EdgesGeometry,
+ ExtrudeGeometry: ExtrudeGeometry,
+ ExtrudeBufferGeometry: ExtrudeGeometry,
+ IcosahedronGeometry: IcosahedronGeometry,
+ IcosahedronBufferGeometry: IcosahedronGeometry,
+ LatheGeometry: LatheGeometry,
+ LatheBufferGeometry: LatheGeometry,
+ OctahedronGeometry: OctahedronGeometry,
+ OctahedronBufferGeometry: OctahedronGeometry,
+ ParametricGeometry: ParametricGeometry,
+ ParametricBufferGeometry: ParametricGeometry,
+ PlaneGeometry: PlaneGeometry,
+ PlaneBufferGeometry: PlaneGeometry,
+ PolyhedronGeometry: PolyhedronGeometry,
+ PolyhedronBufferGeometry: PolyhedronGeometry,
+ RingGeometry: RingGeometry,
+ RingBufferGeometry: RingGeometry,
+ ShapeGeometry: ShapeGeometry,
+ ShapeBufferGeometry: ShapeGeometry,
+ SphereGeometry: SphereGeometry,
+ SphereBufferGeometry: SphereGeometry,
+ TetrahedronGeometry: TetrahedronGeometry,
+ TetrahedronBufferGeometry: TetrahedronGeometry,
+ TextGeometry: TextGeometry,
+ TextBufferGeometry: TextGeometry,
+ TorusGeometry: TorusGeometry,
+ TorusBufferGeometry: TorusGeometry,
+ TorusKnotGeometry: TorusKnotGeometry,
+ TorusKnotBufferGeometry: TorusKnotGeometry,
+ TubeGeometry: TubeGeometry,
+ TubeBufferGeometry: TubeGeometry,
+ WireframeGeometry: WireframeGeometry
+ });
- }
+ /**
+ * parameters = {
+ * color: <THREE.Color>
+ * }
+ */
- class WireframeGeometry extends BufferGeometry {
- constructor(geometry) {
- super();
- this.type = 'WireframeGeometry';
+ class ShadowMaterial extends Material {
+ constructor(parameters) {
+ super();
+ this.type = 'ShadowMaterial';
+ this.color = new Color(0x000000);
+ this.transparent = true;
+ this.setValues(parameters);
+ }
- if (geometry.isGeometry === true) {
- console.error('THREE.WireframeGeometry no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
- return;
- } // buffer
+ copy(source) {
+ super.copy(source);
+ this.color.copy(source.color);
+ return this;
+ }
+ }
- const vertices = [];
- const edges = new Set(); // helper variables
+ ShadowMaterial.prototype.isShadowMaterial = true;
- const start = new Vector3();
- const end = new Vector3();
+ /**
+ * parameters = {
+ * color: <hex>,
+ * roughness: <float>,
+ * metalness: <float>,
+ * opacity: <float>,
+ *
+ * map: new THREE.Texture( <Image> ),
+ *
+ * lightMap: new THREE.Texture( <Image> ),
+ * lightMapIntensity: <float>
+ *
+ * aoMap: new THREE.Texture( <Image> ),
+ * aoMapIntensity: <float>
+ *
+ * emissive: <hex>,
+ * emissiveIntensity: <float>
+ * emissiveMap: new THREE.Texture( <Image> ),
+ *
+ * bumpMap: new THREE.Texture( <Image> ),
+ * bumpScale: <float>,
+ *
+ * normalMap: new THREE.Texture( <Image> ),
+ * normalMapType: THREE.TangentSpaceNormalMap,
+ * normalScale: <Vector2>,
+ *
+ * displacementMap: new THREE.Texture( <Image> ),
+ * displacementScale: <float>,
+ * displacementBias: <float>,
+ *
+ * roughnessMap: new THREE.Texture( <Image> ),
+ *
+ * metalnessMap: new THREE.Texture( <Image> ),
+ *
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
+ * envMapIntensity: <float>
+ *
+ * refractionRatio: <float>,
+ *
+ * wireframe: <boolean>,
+ * wireframeLinewidth: <float>,
+ *
+ * flatShading: <bool>
+ * }
+ */
- if (geometry.index !== null) {
- // indexed BufferGeometry
- const position = geometry.attributes.position;
- const indices = geometry.index;
- let groups = geometry.groups;
+ class MeshStandardMaterial extends Material {
+ constructor(parameters) {
+ super();
+ this.defines = {
+ 'STANDARD': ''
+ };
+ this.type = 'MeshStandardMaterial';
+ this.color = new Color(0xffffff); // diffuse
+
+ this.roughness = 1.0;
+ this.metalness = 0.0;
+ this.map = null;
+ this.lightMap = null;
+ this.lightMapIntensity = 1.0;
+ this.aoMap = null;
+ this.aoMapIntensity = 1.0;
+ this.emissive = new Color(0x000000);
+ this.emissiveIntensity = 1.0;
+ this.emissiveMap = null;
+ this.bumpMap = null;
+ this.bumpScale = 1;
+ this.normalMap = null;
+ this.normalMapType = TangentSpaceNormalMap;
+ this.normalScale = new Vector2(1, 1);
+ this.displacementMap = null;
+ this.displacementScale = 1;
+ this.displacementBias = 0;
+ this.roughnessMap = null;
+ this.metalnessMap = null;
+ this.alphaMap = null;
+ this.envMap = null;
+ this.envMapIntensity = 1.0;
+ this.refractionRatio = 0.98;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.wireframeLinecap = 'round';
+ this.wireframeLinejoin = 'round';
+ this.flatShading = false;
+ this.setValues(parameters);
+ }
+
+ copy(source) {
+ super.copy(source);
+ this.defines = {
+ 'STANDARD': ''
+ };
+ this.color.copy(source.color);
+ this.roughness = source.roughness;
+ this.metalness = source.metalness;
+ this.map = source.map;
+ this.lightMap = source.lightMap;
+ this.lightMapIntensity = source.lightMapIntensity;
+ this.aoMap = source.aoMap;
+ this.aoMapIntensity = source.aoMapIntensity;
+ this.emissive.copy(source.emissive);
+ this.emissiveMap = source.emissiveMap;
+ this.emissiveIntensity = source.emissiveIntensity;
+ this.bumpMap = source.bumpMap;
+ this.bumpScale = source.bumpScale;
+ this.normalMap = source.normalMap;
+ this.normalMapType = source.normalMapType;
+ this.normalScale.copy(source.normalScale);
+ this.displacementMap = source.displacementMap;
+ this.displacementScale = source.displacementScale;
+ this.displacementBias = source.displacementBias;
+ this.roughnessMap = source.roughnessMap;
+ this.metalnessMap = source.metalnessMap;
+ this.alphaMap = source.alphaMap;
+ this.envMap = source.envMap;
+ this.envMapIntensity = source.envMapIntensity;
+ this.refractionRatio = source.refractionRatio;
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ this.wireframeLinecap = source.wireframeLinecap;
+ this.wireframeLinejoin = source.wireframeLinejoin;
+ this.flatShading = source.flatShading;
+ return this;
+ }
- if (groups.length === 0) {
- groups = [{
- start: 0,
- count: indices.count,
- materialIndex: 0
- }];
- } // create a data structure that contains all eges without duplicates
+ }
+ MeshStandardMaterial.prototype.isMeshStandardMaterial = true;
- for (let o = 0, ol = groups.length; o < ol; ++o) {
- const group = groups[o];
- const groupStart = group.start;
- const groupCount = group.count;
+ /**
+ * parameters = {
+ * clearcoat: <float>,
+ * clearcoatMap: new THREE.Texture( <Image> ),
+ * clearcoatRoughness: <float>,
+ * clearcoatRoughnessMap: new THREE.Texture( <Image> ),
+ * clearcoatNormalScale: <Vector2>,
+ * clearcoatNormalMap: new THREE.Texture( <Image> ),
+ *
+ * ior: <float>,
+ * reflectivity: <float>,
+ *
+ * sheenTint: <Color>,
+ *
+ * transmission: <float>,
+ * transmissionMap: new THREE.Texture( <Image> ),
+ *
+ * thickness: <float>,
+ * thicknessMap: new THREE.Texture( <Image> ),
+ * attenuationDistance: <float>,
+ * attenuationTint: <Color>,
+ *
+ * specularIntensity: <float>,
+ * specularIntensityhMap: new THREE.Texture( <Image> ),
+ * specularTint: <Color>,
+ * specularTintMap: new THREE.Texture( <Image> )
+ * }
+ */
- for (let i = groupStart, l = groupStart + groupCount; i < l; i += 3) {
- for (let j = 0; j < 3; j++) {
- const index1 = indices.getX(i + j);
- const index2 = indices.getX(i + (j + 1) % 3);
- start.fromBufferAttribute(position, index1);
- end.fromBufferAttribute(position, index2);
-
- if (isUniqueEdge(start, end, edges) === true) {
- vertices.push(start.x, start.y, start.z);
- vertices.push(end.x, end.y, end.z);
- }
+ class MeshPhysicalMaterial extends MeshStandardMaterial {
+ constructor(parameters) {
+ super();
+ this.defines = {
+ 'STANDARD': '',
+ 'PHYSICAL': ''
+ };
+ this.type = 'MeshPhysicalMaterial';
+ this.clearcoatMap = null;
+ this.clearcoatRoughness = 0.0;
+ this.clearcoatRoughnessMap = null;
+ this.clearcoatNormalScale = new Vector2(1, 1);
+ this.clearcoatNormalMap = null;
+ this.ior = 1.5;
+ Object.defineProperty(this, 'reflectivity', {
+ get: function () {
+ return clamp(2.5 * (this.ior - 1) / (this.ior + 1), 0, 1);
+ },
+ set: function (reflectivity) {
+ this.ior = (1 + 0.4 * reflectivity) / (1 - 0.4 * reflectivity);
}
+ });
+ this.sheenTint = new Color(0x000000);
+ this.transmission = 0.0;
+ this.transmissionMap = null;
+ this.thickness = 0.01;
+ this.thicknessMap = null;
+ this.attenuationDistance = 0.0;
+ this.attenuationTint = new Color(1, 1, 1);
+ this.specularIntensity = 1.0;
+ this.specularIntensityMap = null;
+ this.specularTint = new Color(1, 1, 1);
+ this.specularTintMap = null;
+ this._clearcoat = 0;
+ this._transmission = 0;
+ this.setValues(parameters);
+ }
+
+ get clearcoat() {
+ return this._clearcoat;
+ }
+
+ set clearcoat(value) {
+ if (this._clearcoat > 0 !== value > 0) {
+ this.version++;
}
+
+ this._clearcoat = value;
}
- } else {
- // non-indexed BufferGeometry
- const position = geometry.attributes.position;
- for (let i = 0, l = position.count / 3; i < l; i++) {
- for (let j = 0; j < 3; j++) {
- // three edges per triangle, an edge is represented as (index1, index2)
- // e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)
- const index1 = 3 * i + j;
- const index2 = 3 * i + (j + 1) % 3;
- start.fromBufferAttribute(position, index1);
- end.fromBufferAttribute(position, index2);
+ get transmission() {
+ return this._transmission;
+ }
- if (isUniqueEdge(start, end, edges) === true) {
- vertices.push(start.x, start.y, start.z);
- vertices.push(end.x, end.y, end.z);
- }
+ set transmission(value) {
+ if (this._transmission > 0 !== value > 0) {
+ this.version++;
}
+
+ this._transmission = value;
}
- } // build geometry
+ copy(source) {
+ super.copy(source);
+ this.defines = {
+ 'STANDARD': '',
+ 'PHYSICAL': ''
+ };
+ this.clearcoat = source.clearcoat;
+ this.clearcoatMap = source.clearcoatMap;
+ this.clearcoatRoughness = source.clearcoatRoughness;
+ this.clearcoatRoughnessMap = source.clearcoatRoughnessMap;
+ this.clearcoatNormalMap = source.clearcoatNormalMap;
+ this.clearcoatNormalScale.copy(source.clearcoatNormalScale);
+ this.ior = source.ior;
+ this.sheenTint.copy(source.sheenTint);
+ this.transmission = source.transmission;
+ this.transmissionMap = source.transmissionMap;
+ this.thickness = source.thickness;
+ this.thicknessMap = source.thicknessMap;
+ this.attenuationDistance = source.attenuationDistance;
+ this.attenuationTint.copy(source.attenuationTint);
+ this.specularIntensity = source.specularIntensity;
+ this.specularIntensityMap = source.specularIntensityMap;
+ this.specularTint.copy(source.specularTint);
+ this.specularTintMap = source.specularTintMap;
+ return this;
+ }
- this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- }
+ }
- }
+ MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true;
- function isUniqueEdge(start, end, edges) {
- const hash1 = `${start.x},${start.y},${start.z}-${end.x},${end.y},${end.z}`;
- const hash2 = `${end.x},${end.y},${end.z}-${start.x},${start.y},${start.z}`; // coincident edge
+ /**
+ * parameters = {
+ * color: <hex>,
+ * specular: <hex>,
+ * shininess: <float>,
+ * opacity: <float>,
+ *
+ * map: new THREE.Texture( <Image> ),
+ *
+ * lightMap: new THREE.Texture( <Image> ),
+ * lightMapIntensity: <float>
+ *
+ * aoMap: new THREE.Texture( <Image> ),
+ * aoMapIntensity: <float>
+ *
+ * emissive: <hex>,
+ * emissiveIntensity: <float>
+ * emissiveMap: new THREE.Texture( <Image> ),
+ *
+ * bumpMap: new THREE.Texture( <Image> ),
+ * bumpScale: <float>,
+ *
+ * normalMap: new THREE.Texture( <Image> ),
+ * normalMapType: THREE.TangentSpaceNormalMap,
+ * normalScale: <Vector2>,
+ *
+ * displacementMap: new THREE.Texture( <Image> ),
+ * displacementScale: <float>,
+ * displacementBias: <float>,
+ *
+ * specularMap: new THREE.Texture( <Image> ),
+ *
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
+ * combine: THREE.MultiplyOperation,
+ * reflectivity: <float>,
+ * refractionRatio: <float>,
+ *
+ * wireframe: <boolean>,
+ * wireframeLinewidth: <float>,
+ *
+ * flatShading: <bool>
+ * }
+ */
- if (edges.has(hash1) === true || edges.has(hash2) === true) {
- return false;
- } else {
- edges.add(hash1, hash2);
- return true;
- }
- }
+ class MeshPhongMaterial extends Material {
+ constructor(parameters) {
+ super();
+ this.type = 'MeshPhongMaterial';
+ this.color = new Color(0xffffff); // diffuse
+
+ this.specular = new Color(0x111111);
+ this.shininess = 30;
+ this.map = null;
+ this.lightMap = null;
+ this.lightMapIntensity = 1.0;
+ this.aoMap = null;
+ this.aoMapIntensity = 1.0;
+ this.emissive = new Color(0x000000);
+ this.emissiveIntensity = 1.0;
+ this.emissiveMap = null;
+ this.bumpMap = null;
+ this.bumpScale = 1;
+ this.normalMap = null;
+ this.normalMapType = TangentSpaceNormalMap;
+ this.normalScale = new Vector2(1, 1);
+ this.displacementMap = null;
+ this.displacementScale = 1;
+ this.displacementBias = 0;
+ this.specularMap = null;
+ this.alphaMap = null;
+ this.envMap = null;
+ this.combine = MultiplyOperation;
+ this.reflectivity = 1;
+ this.refractionRatio = 0.98;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.wireframeLinecap = 'round';
+ this.wireframeLinejoin = 'round';
+ this.flatShading = false;
+ this.setValues(parameters);
+ }
+
+ copy(source) {
+ super.copy(source);
+ this.color.copy(source.color);
+ this.specular.copy(source.specular);
+ this.shininess = source.shininess;
+ this.map = source.map;
+ this.lightMap = source.lightMap;
+ this.lightMapIntensity = source.lightMapIntensity;
+ this.aoMap = source.aoMap;
+ this.aoMapIntensity = source.aoMapIntensity;
+ this.emissive.copy(source.emissive);
+ this.emissiveMap = source.emissiveMap;
+ this.emissiveIntensity = source.emissiveIntensity;
+ this.bumpMap = source.bumpMap;
+ this.bumpScale = source.bumpScale;
+ this.normalMap = source.normalMap;
+ this.normalMapType = source.normalMapType;
+ this.normalScale.copy(source.normalScale);
+ this.displacementMap = source.displacementMap;
+ this.displacementScale = source.displacementScale;
+ this.displacementBias = source.displacementBias;
+ this.specularMap = source.specularMap;
+ this.alphaMap = source.alphaMap;
+ this.envMap = source.envMap;
+ this.combine = source.combine;
+ this.reflectivity = source.reflectivity;
+ this.refractionRatio = source.refractionRatio;
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ this.wireframeLinecap = source.wireframeLinecap;
+ this.wireframeLinejoin = source.wireframeLinejoin;
+ this.flatShading = source.flatShading;
+ return this;
+ }
- var Geometries = /*#__PURE__*/Object.freeze({
- __proto__: null,
- BoxGeometry: BoxGeometry,
- BoxBufferGeometry: BoxGeometry,
- CircleGeometry: CircleGeometry,
- CircleBufferGeometry: CircleGeometry,
- ConeGeometry: ConeGeometry,
- ConeBufferGeometry: ConeGeometry,
- CylinderGeometry: CylinderGeometry,
- CylinderBufferGeometry: CylinderGeometry,
- DodecahedronGeometry: DodecahedronGeometry,
- DodecahedronBufferGeometry: DodecahedronGeometry,
- EdgesGeometry: EdgesGeometry,
- ExtrudeGeometry: ExtrudeGeometry,
- ExtrudeBufferGeometry: ExtrudeGeometry,
- IcosahedronGeometry: IcosahedronGeometry,
- IcosahedronBufferGeometry: IcosahedronGeometry,
- LatheGeometry: LatheGeometry,
- LatheBufferGeometry: LatheGeometry,
- OctahedronGeometry: OctahedronGeometry,
- OctahedronBufferGeometry: OctahedronGeometry,
- ParametricGeometry: ParametricGeometry,
- ParametricBufferGeometry: ParametricGeometry,
- PlaneGeometry: PlaneGeometry,
- PlaneBufferGeometry: PlaneGeometry,
- PolyhedronGeometry: PolyhedronGeometry,
- PolyhedronBufferGeometry: PolyhedronGeometry,
- RingGeometry: RingGeometry,
- RingBufferGeometry: RingGeometry,
- ShapeGeometry: ShapeGeometry,
- ShapeBufferGeometry: ShapeGeometry,
- SphereGeometry: SphereGeometry,
- SphereBufferGeometry: SphereGeometry,
- TetrahedronGeometry: TetrahedronGeometry,
- TetrahedronBufferGeometry: TetrahedronGeometry,
- TextGeometry: TextGeometry,
- TextBufferGeometry: TextGeometry,
- TorusGeometry: TorusGeometry,
- TorusBufferGeometry: TorusGeometry,
- TorusKnotGeometry: TorusKnotGeometry,
- TorusKnotBufferGeometry: TorusKnotGeometry,
- TubeGeometry: TubeGeometry,
- TubeBufferGeometry: TubeGeometry,
- WireframeGeometry: WireframeGeometry
- });
-
- /**
- * parameters = {
- * color: <THREE.Color>
- * }
- */
-
- class ShadowMaterial extends Material {
- constructor(parameters) {
- super();
- this.type = 'ShadowMaterial';
- this.color = new Color(0x000000);
- this.transparent = true;
- this.setValues(parameters);
- }
+ }
- copy(source) {
- super.copy(source);
- this.color.copy(source.color);
- return this;
- }
+ MeshPhongMaterial.prototype.isMeshPhongMaterial = true;
- }
+ /**
+ * parameters = {
+ * color: <hex>,
+ *
+ * map: new THREE.Texture( <Image> ),
+ * gradientMap: new THREE.Texture( <Image> ),
+ *
+ * lightMap: new THREE.Texture( <Image> ),
+ * lightMapIntensity: <float>
+ *
+ * aoMap: new THREE.Texture( <Image> ),
+ * aoMapIntensity: <float>
+ *
+ * emissive: <hex>,
+ * emissiveIntensity: <float>
+ * emissiveMap: new THREE.Texture( <Image> ),
+ *
+ * bumpMap: new THREE.Texture( <Image> ),
+ * bumpScale: <float>,
+ *
+ * normalMap: new THREE.Texture( <Image> ),
+ * normalMapType: THREE.TangentSpaceNormalMap,
+ * normalScale: <Vector2>,
+ *
+ * displacementMap: new THREE.Texture( <Image> ),
+ * displacementScale: <float>,
+ * displacementBias: <float>,
+ *
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * wireframe: <boolean>,
+ * wireframeLinewidth: <float>,
+ *
+ * }
+ */
- ShadowMaterial.prototype.isShadowMaterial = true;
-
- /**
- * parameters = {
- * color: <hex>,
- * roughness: <float>,
- * metalness: <float>,
- * opacity: <float>,
- *
- * map: new THREE.Texture( <Image> ),
- *
- * lightMap: new THREE.Texture( <Image> ),
- * lightMapIntensity: <float>
- *
- * aoMap: new THREE.Texture( <Image> ),
- * aoMapIntensity: <float>
- *
- * emissive: <hex>,
- * emissiveIntensity: <float>
- * emissiveMap: new THREE.Texture( <Image> ),
- *
- * bumpMap: new THREE.Texture( <Image> ),
- * bumpScale: <float>,
- *
- * normalMap: new THREE.Texture( <Image> ),
- * normalMapType: THREE.TangentSpaceNormalMap,
- * normalScale: <Vector2>,
- *
- * displacementMap: new THREE.Texture( <Image> ),
- * displacementScale: <float>,
- * displacementBias: <float>,
- *
- * roughnessMap: new THREE.Texture( <Image> ),
- *
- * metalnessMap: new THREE.Texture( <Image> ),
- *
- * alphaMap: new THREE.Texture( <Image> ),
- *
- * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
- * envMapIntensity: <float>
- *
- * refractionRatio: <float>,
- *
- * wireframe: <boolean>,
- * wireframeLinewidth: <float>,
- *
- * flatShading: <bool>
- * }
- */
-
- class MeshStandardMaterial extends Material {
- constructor(parameters) {
- super();
- this.defines = {
- 'STANDARD': ''
- };
- this.type = 'MeshStandardMaterial';
- this.color = new Color(0xffffff); // diffuse
-
- this.roughness = 1.0;
- this.metalness = 0.0;
- this.map = null;
- this.lightMap = null;
- this.lightMapIntensity = 1.0;
- this.aoMap = null;
- this.aoMapIntensity = 1.0;
- this.emissive = new Color(0x000000);
- this.emissiveIntensity = 1.0;
- this.emissiveMap = null;
- this.bumpMap = null;
- this.bumpScale = 1;
- this.normalMap = null;
- this.normalMapType = TangentSpaceNormalMap;
- this.normalScale = new Vector2(1, 1);
- this.displacementMap = null;
- this.displacementScale = 1;
- this.displacementBias = 0;
- this.roughnessMap = null;
- this.metalnessMap = null;
- this.alphaMap = null;
- this.envMap = null;
- this.envMapIntensity = 1.0;
- this.refractionRatio = 0.98;
- this.wireframe = false;
- this.wireframeLinewidth = 1;
- this.wireframeLinecap = 'round';
- this.wireframeLinejoin = 'round';
- this.flatShading = false;
- this.setValues(parameters);
- }
+ class MeshToonMaterial extends Material {
+ constructor(parameters) {
+ super();
+ this.defines = {
+ 'TOON': ''
+ };
+ this.type = 'MeshToonMaterial';
+ this.color = new Color(0xffffff);
+ this.map = null;
+ this.gradientMap = null;
+ this.lightMap = null;
+ this.lightMapIntensity = 1.0;
+ this.aoMap = null;
+ this.aoMapIntensity = 1.0;
+ this.emissive = new Color(0x000000);
+ this.emissiveIntensity = 1.0;
+ this.emissiveMap = null;
+ this.bumpMap = null;
+ this.bumpScale = 1;
+ this.normalMap = null;
+ this.normalMapType = TangentSpaceNormalMap;
+ this.normalScale = new Vector2(1, 1);
+ this.displacementMap = null;
+ this.displacementScale = 1;
+ this.displacementBias = 0;
+ this.alphaMap = null;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.wireframeLinecap = 'round';
+ this.wireframeLinejoin = 'round';
+ this.setValues(parameters);
+ }
+
+ copy(source) {
+ super.copy(source);
+ this.color.copy(source.color);
+ this.map = source.map;
+ this.gradientMap = source.gradientMap;
+ this.lightMap = source.lightMap;
+ this.lightMapIntensity = source.lightMapIntensity;
+ this.aoMap = source.aoMap;
+ this.aoMapIntensity = source.aoMapIntensity;
+ this.emissive.copy(source.emissive);
+ this.emissiveMap = source.emissiveMap;
+ this.emissiveIntensity = source.emissiveIntensity;
+ this.bumpMap = source.bumpMap;
+ this.bumpScale = source.bumpScale;
+ this.normalMap = source.normalMap;
+ this.normalMapType = source.normalMapType;
+ this.normalScale.copy(source.normalScale);
+ this.displacementMap = source.displacementMap;
+ this.displacementScale = source.displacementScale;
+ this.displacementBias = source.displacementBias;
+ this.alphaMap = source.alphaMap;
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ this.wireframeLinecap = source.wireframeLinecap;
+ this.wireframeLinejoin = source.wireframeLinejoin;
+ return this;
+ }
- copy(source) {
- super.copy(source);
- this.defines = {
- 'STANDARD': ''
- };
- this.color.copy(source.color);
- this.roughness = source.roughness;
- this.metalness = source.metalness;
- this.map = source.map;
- this.lightMap = source.lightMap;
- this.lightMapIntensity = source.lightMapIntensity;
- this.aoMap = source.aoMap;
- this.aoMapIntensity = source.aoMapIntensity;
- this.emissive.copy(source.emissive);
- this.emissiveMap = source.emissiveMap;
- this.emissiveIntensity = source.emissiveIntensity;
- this.bumpMap = source.bumpMap;
- this.bumpScale = source.bumpScale;
- this.normalMap = source.normalMap;
- this.normalMapType = source.normalMapType;
- this.normalScale.copy(source.normalScale);
- this.displacementMap = source.displacementMap;
- this.displacementScale = source.displacementScale;
- this.displacementBias = source.displacementBias;
- this.roughnessMap = source.roughnessMap;
- this.metalnessMap = source.metalnessMap;
- this.alphaMap = source.alphaMap;
- this.envMap = source.envMap;
- this.envMapIntensity = source.envMapIntensity;
- this.refractionRatio = source.refractionRatio;
- this.wireframe = source.wireframe;
- this.wireframeLinewidth = source.wireframeLinewidth;
- this.wireframeLinecap = source.wireframeLinecap;
- this.wireframeLinejoin = source.wireframeLinejoin;
- this.flatShading = source.flatShading;
- return this;
- }
+ }
- }
+ MeshToonMaterial.prototype.isMeshToonMaterial = true;
- MeshStandardMaterial.prototype.isMeshStandardMaterial = true;
-
- /**
- * parameters = {
- * clearcoat: <float>,
- * clearcoatMap: new THREE.Texture( <Image> ),
- * clearcoatRoughness: <float>,
- * clearcoatRoughnessMap: new THREE.Texture( <Image> ),
- * clearcoatNormalScale: <Vector2>,
- * clearcoatNormalMap: new THREE.Texture( <Image> ),
- *
- * ior: <float>,
- * reflectivity: <float>,
- *
- * sheenTint: <Color>,
- *
- * transmission: <float>,
- * transmissionMap: new THREE.Texture( <Image> ),
- *
- * thickness: <float>,
- * thicknessMap: new THREE.Texture( <Image> ),
- * attenuationDistance: <float>,
- * attenuationTint: <Color>,
- *
- * specularIntensity: <float>,
- * specularIntensityhMap: new THREE.Texture( <Image> ),
- * specularTint: <Color>,
- * specularTintMap: new THREE.Texture( <Image> )
- * }
- */
-
- class MeshPhysicalMaterial extends MeshStandardMaterial {
- constructor(parameters) {
- super();
- this.defines = {
- 'STANDARD': '',
- 'PHYSICAL': ''
- };
- this.type = 'MeshPhysicalMaterial';
- this.clearcoatMap = null;
- this.clearcoatRoughness = 0.0;
- this.clearcoatRoughnessMap = null;
- this.clearcoatNormalScale = new Vector2(1, 1);
- this.clearcoatNormalMap = null;
- this.ior = 1.5;
- Object.defineProperty(this, 'reflectivity', {
- get: function () {
- return clamp(2.5 * (this.ior - 1) / (this.ior + 1), 0, 1);
- },
- set: function (reflectivity) {
- this.ior = (1 + 0.4 * reflectivity) / (1 - 0.4 * reflectivity);
- }
- });
- this.sheenTint = new Color(0x000000);
- this.transmission = 0.0;
- this.transmissionMap = null;
- this.thickness = 0.01;
- this.thicknessMap = null;
- this.attenuationDistance = 0.0;
- this.attenuationTint = new Color(1, 1, 1);
- this.specularIntensity = 1.0;
- this.specularIntensityMap = null;
- this.specularTint = new Color(1, 1, 1);
- this.specularTintMap = null;
- this._clearcoat = 0;
- this._transmission = 0;
- this.setValues(parameters);
- }
+ /**
+ * parameters = {
+ * opacity: <float>,
+ *
+ * bumpMap: new THREE.Texture( <Image> ),
+ * bumpScale: <float>,
+ *
+ * normalMap: new THREE.Texture( <Image> ),
+ * normalMapType: THREE.TangentSpaceNormalMap,
+ * normalScale: <Vector2>,
+ *
+ * displacementMap: new THREE.Texture( <Image> ),
+ * displacementScale: <float>,
+ * displacementBias: <float>,
+ *
+ * wireframe: <boolean>,
+ * wireframeLinewidth: <float>
+ *
+ * flatShading: <bool>
+ * }
+ */
- get clearcoat() {
- return this._clearcoat;
- }
+ class MeshNormalMaterial extends Material {
+ constructor(parameters) {
+ super();
+ this.type = 'MeshNormalMaterial';
+ this.bumpMap = null;
+ this.bumpScale = 1;
+ this.normalMap = null;
+ this.normalMapType = TangentSpaceNormalMap;
+ this.normalScale = new Vector2(1, 1);
+ this.displacementMap = null;
+ this.displacementScale = 1;
+ this.displacementBias = 0;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.fog = false;
+ this.flatShading = false;
+ this.setValues(parameters);
+ }
+
+ copy(source) {
+ super.copy(source);
+ this.bumpMap = source.bumpMap;
+ this.bumpScale = source.bumpScale;
+ this.normalMap = source.normalMap;
+ this.normalMapType = source.normalMapType;
+ this.normalScale.copy(source.normalScale);
+ this.displacementMap = source.displacementMap;
+ this.displacementScale = source.displacementScale;
+ this.displacementBias = source.displacementBias;
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ this.flatShading = source.flatShading;
+ return this;
+ }
- set clearcoat(value) {
- if (this._clearcoat > 0 !== value > 0) {
- this.version++;
}
- this._clearcoat = value;
- }
+ MeshNormalMaterial.prototype.isMeshNormalMaterial = true;
- get transmission() {
- return this._transmission;
- }
+ /**
+ * parameters = {
+ * color: <hex>,
+ * opacity: <float>,
+ *
+ * map: new THREE.Texture( <Image> ),
+ *
+ * lightMap: new THREE.Texture( <Image> ),
+ * lightMapIntensity: <float>
+ *
+ * aoMap: new THREE.Texture( <Image> ),
+ * aoMapIntensity: <float>
+ *
+ * emissive: <hex>,
+ * emissiveIntensity: <float>
+ * emissiveMap: new THREE.Texture( <Image> ),
+ *
+ * specularMap: new THREE.Texture( <Image> ),
+ *
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
+ * combine: THREE.Multiply,
+ * reflectivity: <float>,
+ * refractionRatio: <float>,
+ *
+ * wireframe: <boolean>,
+ * wireframeLinewidth: <float>,
+ *
+ * }
+ */
+
+ class MeshLambertMaterial extends Material {
+ constructor(parameters) {
+ super();
+ this.type = 'MeshLambertMaterial';
+ this.color = new Color(0xffffff); // diffuse
+
+ this.map = null;
+ this.lightMap = null;
+ this.lightMapIntensity = 1.0;
+ this.aoMap = null;
+ this.aoMapIntensity = 1.0;
+ this.emissive = new Color(0x000000);
+ this.emissiveIntensity = 1.0;
+ this.emissiveMap = null;
+ this.specularMap = null;
+ this.alphaMap = null;
+ this.envMap = null;
+ this.combine = MultiplyOperation;
+ this.reflectivity = 1;
+ this.refractionRatio = 0.98;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.wireframeLinecap = 'round';
+ this.wireframeLinejoin = 'round';
+ this.setValues(parameters);
+ }
+
+ copy(source) {
+ super.copy(source);
+ this.color.copy(source.color);
+ this.map = source.map;
+ this.lightMap = source.lightMap;
+ this.lightMapIntensity = source.lightMapIntensity;
+ this.aoMap = source.aoMap;
+ this.aoMapIntensity = source.aoMapIntensity;
+ this.emissive.copy(source.emissive);
+ this.emissiveMap = source.emissiveMap;
+ this.emissiveIntensity = source.emissiveIntensity;
+ this.specularMap = source.specularMap;
+ this.alphaMap = source.alphaMap;
+ this.envMap = source.envMap;
+ this.combine = source.combine;
+ this.reflectivity = source.reflectivity;
+ this.refractionRatio = source.refractionRatio;
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ this.wireframeLinecap = source.wireframeLinecap;
+ this.wireframeLinejoin = source.wireframeLinejoin;
+ return this;
+ }
- set transmission(value) {
- if (this._transmission > 0 !== value > 0) {
- this.version++;
}
- this._transmission = value;
- }
+ MeshLambertMaterial.prototype.isMeshLambertMaterial = true;
- copy(source) {
- super.copy(source);
- this.defines = {
- 'STANDARD': '',
- 'PHYSICAL': ''
- };
- this.clearcoat = source.clearcoat;
- this.clearcoatMap = source.clearcoatMap;
- this.clearcoatRoughness = source.clearcoatRoughness;
- this.clearcoatRoughnessMap = source.clearcoatRoughnessMap;
- this.clearcoatNormalMap = source.clearcoatNormalMap;
- this.clearcoatNormalScale.copy(source.clearcoatNormalScale);
- this.ior = source.ior;
- this.sheenTint.copy(source.sheenTint);
- this.transmission = source.transmission;
- this.transmissionMap = source.transmissionMap;
- this.thickness = source.thickness;
- this.thicknessMap = source.thicknessMap;
- this.attenuationDistance = source.attenuationDistance;
- this.attenuationTint.copy(source.attenuationTint);
- this.specularIntensity = source.specularIntensity;
- this.specularIntensityMap = source.specularIntensityMap;
- this.specularTint.copy(source.specularTint);
- this.specularTintMap = source.specularTintMap;
- return this;
- }
-
- }
-
- MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true;
-
- /**
- * parameters = {
- * color: <hex>,
- * specular: <hex>,
- * shininess: <float>,
- * opacity: <float>,
- *
- * map: new THREE.Texture( <Image> ),
- *
- * lightMap: new THREE.Texture( <Image> ),
- * lightMapIntensity: <float>
- *
- * aoMap: new THREE.Texture( <Image> ),
- * aoMapIntensity: <float>
- *
- * emissive: <hex>,
- * emissiveIntensity: <float>
- * emissiveMap: new THREE.Texture( <Image> ),
- *
- * bumpMap: new THREE.Texture( <Image> ),
- * bumpScale: <float>,
- *
- * normalMap: new THREE.Texture( <Image> ),
- * normalMapType: THREE.TangentSpaceNormalMap,
- * normalScale: <Vector2>,
- *
- * displacementMap: new THREE.Texture( <Image> ),
- * displacementScale: <float>,
- * displacementBias: <float>,
- *
- * specularMap: new THREE.Texture( <Image> ),
- *
- * alphaMap: new THREE.Texture( <Image> ),
- *
- * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
- * combine: THREE.MultiplyOperation,
- * reflectivity: <float>,
- * refractionRatio: <float>,
- *
- * wireframe: <boolean>,
- * wireframeLinewidth: <float>,
- *
- * flatShading: <bool>
- * }
- */
-
- class MeshPhongMaterial extends Material {
- constructor(parameters) {
- super();
- this.type = 'MeshPhongMaterial';
- this.color = new Color(0xffffff); // diffuse
-
- this.specular = new Color(0x111111);
- this.shininess = 30;
- this.map = null;
- this.lightMap = null;
- this.lightMapIntensity = 1.0;
- this.aoMap = null;
- this.aoMapIntensity = 1.0;
- this.emissive = new Color(0x000000);
- this.emissiveIntensity = 1.0;
- this.emissiveMap = null;
- this.bumpMap = null;
- this.bumpScale = 1;
- this.normalMap = null;
- this.normalMapType = TangentSpaceNormalMap;
- this.normalScale = new Vector2(1, 1);
- this.displacementMap = null;
- this.displacementScale = 1;
- this.displacementBias = 0;
- this.specularMap = null;
- this.alphaMap = null;
- this.envMap = null;
- this.combine = MultiplyOperation;
- this.reflectivity = 1;
- this.refractionRatio = 0.98;
- this.wireframe = false;
- this.wireframeLinewidth = 1;
- this.wireframeLinecap = 'round';
- this.wireframeLinejoin = 'round';
- this.flatShading = false;
- this.setValues(parameters);
- }
-
- copy(source) {
- super.copy(source);
- this.color.copy(source.color);
- this.specular.copy(source.specular);
- this.shininess = source.shininess;
- this.map = source.map;
- this.lightMap = source.lightMap;
- this.lightMapIntensity = source.lightMapIntensity;
- this.aoMap = source.aoMap;
- this.aoMapIntensity = source.aoMapIntensity;
- this.emissive.copy(source.emissive);
- this.emissiveMap = source.emissiveMap;
- this.emissiveIntensity = source.emissiveIntensity;
- this.bumpMap = source.bumpMap;
- this.bumpScale = source.bumpScale;
- this.normalMap = source.normalMap;
- this.normalMapType = source.normalMapType;
- this.normalScale.copy(source.normalScale);
- this.displacementMap = source.displacementMap;
- this.displacementScale = source.displacementScale;
- this.displacementBias = source.displacementBias;
- this.specularMap = source.specularMap;
- this.alphaMap = source.alphaMap;
- this.envMap = source.envMap;
- this.combine = source.combine;
- this.reflectivity = source.reflectivity;
- this.refractionRatio = source.refractionRatio;
- this.wireframe = source.wireframe;
- this.wireframeLinewidth = source.wireframeLinewidth;
- this.wireframeLinecap = source.wireframeLinecap;
- this.wireframeLinejoin = source.wireframeLinejoin;
- this.flatShading = source.flatShading;
- return this;
- }
+ /**
+ * parameters = {
+ * color: <hex>,
+ * opacity: <float>,
+ *
+ * matcap: new THREE.Texture( <Image> ),
+ *
+ * map: new THREE.Texture( <Image> ),
+ *
+ * bumpMap: new THREE.Texture( <Image> ),
+ * bumpScale: <float>,
+ *
+ * normalMap: new THREE.Texture( <Image> ),
+ * normalMapType: THREE.TangentSpaceNormalMap,
+ * normalScale: <Vector2>,
+ *
+ * displacementMap: new THREE.Texture( <Image> ),
+ * displacementScale: <float>,
+ * displacementBias: <float>,
+ *
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * flatShading: <bool>
+ * }
+ */
- }
+ class MeshMatcapMaterial extends Material {
+ constructor(parameters) {
+ super();
+ this.defines = {
+ 'MATCAP': ''
+ };
+ this.type = 'MeshMatcapMaterial';
+ this.color = new Color(0xffffff); // diffuse
+
+ this.matcap = null;
+ this.map = null;
+ this.bumpMap = null;
+ this.bumpScale = 1;
+ this.normalMap = null;
+ this.normalMapType = TangentSpaceNormalMap;
+ this.normalScale = new Vector2(1, 1);
+ this.displacementMap = null;
+ this.displacementScale = 1;
+ this.displacementBias = 0;
+ this.alphaMap = null;
+ this.flatShading = false;
+ this.setValues(parameters);
+ }
+
+ copy(source) {
+ super.copy(source);
+ this.defines = {
+ 'MATCAP': ''
+ };
+ this.color.copy(source.color);
+ this.matcap = source.matcap;
+ this.map = source.map;
+ this.bumpMap = source.bumpMap;
+ this.bumpScale = source.bumpScale;
+ this.normalMap = source.normalMap;
+ this.normalMapType = source.normalMapType;
+ this.normalScale.copy(source.normalScale);
+ this.displacementMap = source.displacementMap;
+ this.displacementScale = source.displacementScale;
+ this.displacementBias = source.displacementBias;
+ this.alphaMap = source.alphaMap;
+ this.flatShading = source.flatShading;
+ return this;
+ }
- MeshPhongMaterial.prototype.isMeshPhongMaterial = true;
-
- /**
- * parameters = {
- * color: <hex>,
- *
- * map: new THREE.Texture( <Image> ),
- * gradientMap: new THREE.Texture( <Image> ),
- *
- * lightMap: new THREE.Texture( <Image> ),
- * lightMapIntensity: <float>
- *
- * aoMap: new THREE.Texture( <Image> ),
- * aoMapIntensity: <float>
- *
- * emissive: <hex>,
- * emissiveIntensity: <float>
- * emissiveMap: new THREE.Texture( <Image> ),
- *
- * bumpMap: new THREE.Texture( <Image> ),
- * bumpScale: <float>,
- *
- * normalMap: new THREE.Texture( <Image> ),
- * normalMapType: THREE.TangentSpaceNormalMap,
- * normalScale: <Vector2>,
- *
- * displacementMap: new THREE.Texture( <Image> ),
- * displacementScale: <float>,
- * displacementBias: <float>,
- *
- * alphaMap: new THREE.Texture( <Image> ),
- *
- * wireframe: <boolean>,
- * wireframeLinewidth: <float>,
- *
- * }
- */
-
- class MeshToonMaterial extends Material {
- constructor(parameters) {
- super();
- this.defines = {
- 'TOON': ''
- };
- this.type = 'MeshToonMaterial';
- this.color = new Color(0xffffff);
- this.map = null;
- this.gradientMap = null;
- this.lightMap = null;
- this.lightMapIntensity = 1.0;
- this.aoMap = null;
- this.aoMapIntensity = 1.0;
- this.emissive = new Color(0x000000);
- this.emissiveIntensity = 1.0;
- this.emissiveMap = null;
- this.bumpMap = null;
- this.bumpScale = 1;
- this.normalMap = null;
- this.normalMapType = TangentSpaceNormalMap;
- this.normalScale = new Vector2(1, 1);
- this.displacementMap = null;
- this.displacementScale = 1;
- this.displacementBias = 0;
- this.alphaMap = null;
- this.wireframe = false;
- this.wireframeLinewidth = 1;
- this.wireframeLinecap = 'round';
- this.wireframeLinejoin = 'round';
- this.setValues(parameters);
- }
+ }
- copy(source) {
- super.copy(source);
- this.color.copy(source.color);
- this.map = source.map;
- this.gradientMap = source.gradientMap;
- this.lightMap = source.lightMap;
- this.lightMapIntensity = source.lightMapIntensity;
- this.aoMap = source.aoMap;
- this.aoMapIntensity = source.aoMapIntensity;
- this.emissive.copy(source.emissive);
- this.emissiveMap = source.emissiveMap;
- this.emissiveIntensity = source.emissiveIntensity;
- this.bumpMap = source.bumpMap;
- this.bumpScale = source.bumpScale;
- this.normalMap = source.normalMap;
- this.normalMapType = source.normalMapType;
- this.normalScale.copy(source.normalScale);
- this.displacementMap = source.displacementMap;
- this.displacementScale = source.displacementScale;
- this.displacementBias = source.displacementBias;
- this.alphaMap = source.alphaMap;
- this.wireframe = source.wireframe;
- this.wireframeLinewidth = source.wireframeLinewidth;
- this.wireframeLinecap = source.wireframeLinecap;
- this.wireframeLinejoin = source.wireframeLinejoin;
- return this;
- }
+ MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true;
- }
+ /**
+ * parameters = {
+ * color: <hex>,
+ * opacity: <float>,
+ *
+ * linewidth: <float>,
+ *
+ * scale: <float>,
+ * dashSize: <float>,
+ * gapSize: <float>
+ * }
+ */
- MeshToonMaterial.prototype.isMeshToonMaterial = true;
-
- /**
- * parameters = {
- * opacity: <float>,
- *
- * bumpMap: new THREE.Texture( <Image> ),
- * bumpScale: <float>,
- *
- * normalMap: new THREE.Texture( <Image> ),
- * normalMapType: THREE.TangentSpaceNormalMap,
- * normalScale: <Vector2>,
- *
- * displacementMap: new THREE.Texture( <Image> ),
- * displacementScale: <float>,
- * displacementBias: <float>,
- *
- * wireframe: <boolean>,
- * wireframeLinewidth: <float>
- *
- * flatShading: <bool>
- * }
- */
-
- class MeshNormalMaterial extends Material {
- constructor(parameters) {
- super();
- this.type = 'MeshNormalMaterial';
- this.bumpMap = null;
- this.bumpScale = 1;
- this.normalMap = null;
- this.normalMapType = TangentSpaceNormalMap;
- this.normalScale = new Vector2(1, 1);
- this.displacementMap = null;
- this.displacementScale = 1;
- this.displacementBias = 0;
- this.wireframe = false;
- this.wireframeLinewidth = 1;
- this.fog = false;
- this.flatShading = false;
- this.setValues(parameters);
- }
+ class LineDashedMaterial extends LineBasicMaterial {
+ constructor(parameters) {
+ super();
+ this.type = 'LineDashedMaterial';
+ this.scale = 1;
+ this.dashSize = 3;
+ this.gapSize = 1;
+ this.setValues(parameters);
+ }
+
+ copy(source) {
+ super.copy(source);
+ this.scale = source.scale;
+ this.dashSize = source.dashSize;
+ this.gapSize = source.gapSize;
+ return this;
+ }
- copy(source) {
- super.copy(source);
- this.bumpMap = source.bumpMap;
- this.bumpScale = source.bumpScale;
- this.normalMap = source.normalMap;
- this.normalMapType = source.normalMapType;
- this.normalScale.copy(source.normalScale);
- this.displacementMap = source.displacementMap;
- this.displacementScale = source.displacementScale;
- this.displacementBias = source.displacementBias;
- this.wireframe = source.wireframe;
- this.wireframeLinewidth = source.wireframeLinewidth;
- this.flatShading = source.flatShading;
- return this;
- }
+ }
- }
+ LineDashedMaterial.prototype.isLineDashedMaterial = true;
+
+ var Materials = /*#__PURE__*/Object.freeze({
+ __proto__: null,
+ ShadowMaterial: ShadowMaterial,
+ SpriteMaterial: SpriteMaterial,
+ RawShaderMaterial: RawShaderMaterial,
+ ShaderMaterial: ShaderMaterial,
+ PointsMaterial: PointsMaterial,
+ MeshPhysicalMaterial: MeshPhysicalMaterial,
+ MeshStandardMaterial: MeshStandardMaterial,
+ MeshPhongMaterial: MeshPhongMaterial,
+ MeshToonMaterial: MeshToonMaterial,
+ MeshNormalMaterial: MeshNormalMaterial,
+ MeshLambertMaterial: MeshLambertMaterial,
+ MeshDepthMaterial: MeshDepthMaterial,
+ MeshDistanceMaterial: MeshDistanceMaterial,
+ MeshBasicMaterial: MeshBasicMaterial,
+ MeshMatcapMaterial: MeshMatcapMaterial,
+ LineDashedMaterial: LineDashedMaterial,
+ LineBasicMaterial: LineBasicMaterial,
+ Material: Material
+ });
- MeshNormalMaterial.prototype.isMeshNormalMaterial = true;
-
- /**
- * parameters = {
- * color: <hex>,
- * opacity: <float>,
- *
- * map: new THREE.Texture( <Image> ),
- *
- * lightMap: new THREE.Texture( <Image> ),
- * lightMapIntensity: <float>
- *
- * aoMap: new THREE.Texture( <Image> ),
- * aoMapIntensity: <float>
- *
- * emissive: <hex>,
- * emissiveIntensity: <float>
- * emissiveMap: new THREE.Texture( <Image> ),
- *
- * specularMap: new THREE.Texture( <Image> ),
- *
- * alphaMap: new THREE.Texture( <Image> ),
- *
- * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
- * combine: THREE.Multiply,
- * reflectivity: <float>,
- * refractionRatio: <float>,
- *
- * wireframe: <boolean>,
- * wireframeLinewidth: <float>,
- *
- * }
- */
-
- class MeshLambertMaterial extends Material {
- constructor(parameters) {
- super();
- this.type = 'MeshLambertMaterial';
- this.color = new Color(0xffffff); // diffuse
-
- this.map = null;
- this.lightMap = null;
- this.lightMapIntensity = 1.0;
- this.aoMap = null;
- this.aoMapIntensity = 1.0;
- this.emissive = new Color(0x000000);
- this.emissiveIntensity = 1.0;
- this.emissiveMap = null;
- this.specularMap = null;
- this.alphaMap = null;
- this.envMap = null;
- this.combine = MultiplyOperation;
- this.reflectivity = 1;
- this.refractionRatio = 0.98;
- this.wireframe = false;
- this.wireframeLinewidth = 1;
- this.wireframeLinecap = 'round';
- this.wireframeLinejoin = 'round';
- this.setValues(parameters);
- }
+ const AnimationUtils = {
+ // same as Array.prototype.slice, but also works on typed arrays
+ arraySlice: function (array, from, to) {
+ if (AnimationUtils.isTypedArray(array)) {
+ // in ios9 array.subarray(from, undefined) will return empty array
+ // but array.subarray(from) or array.subarray(from, len) is correct
+ return new array.constructor(array.subarray(from, to !== undefined ? to : array.length));
+ }
- copy(source) {
- super.copy(source);
- this.color.copy(source.color);
- this.map = source.map;
- this.lightMap = source.lightMap;
- this.lightMapIntensity = source.lightMapIntensity;
- this.aoMap = source.aoMap;
- this.aoMapIntensity = source.aoMapIntensity;
- this.emissive.copy(source.emissive);
- this.emissiveMap = source.emissiveMap;
- this.emissiveIntensity = source.emissiveIntensity;
- this.specularMap = source.specularMap;
- this.alphaMap = source.alphaMap;
- this.envMap = source.envMap;
- this.combine = source.combine;
- this.reflectivity = source.reflectivity;
- this.refractionRatio = source.refractionRatio;
- this.wireframe = source.wireframe;
- this.wireframeLinewidth = source.wireframeLinewidth;
- this.wireframeLinecap = source.wireframeLinecap;
- this.wireframeLinejoin = source.wireframeLinejoin;
- return this;
- }
+ return array.slice(from, to);
+ },
+ // converts an array to a specific type
+ convertArray: function (array, type, forceClone) {
+ if (!array || // let 'undefined' and 'null' pass
+ !forceClone && array.constructor === type) return array;
- }
+ if (typeof type.BYTES_PER_ELEMENT === 'number') {
+ return new type(array); // create typed array
+ }
- MeshLambertMaterial.prototype.isMeshLambertMaterial = true;
-
- /**
- * parameters = {
- * color: <hex>,
- * opacity: <float>,
- *
- * matcap: new THREE.Texture( <Image> ),
- *
- * map: new THREE.Texture( <Image> ),
- *
- * bumpMap: new THREE.Texture( <Image> ),
- * bumpScale: <float>,
- *
- * normalMap: new THREE.Texture( <Image> ),
- * normalMapType: THREE.TangentSpaceNormalMap,
- * normalScale: <Vector2>,
- *
- * displacementMap: new THREE.Texture( <Image> ),
- * displacementScale: <float>,
- * displacementBias: <float>,
- *
- * alphaMap: new THREE.Texture( <Image> ),
- *
- * flatShading: <bool>
- * }
- */
-
- class MeshMatcapMaterial extends Material {
- constructor(parameters) {
- super();
- this.defines = {
- 'MATCAP': ''
- };
- this.type = 'MeshMatcapMaterial';
- this.color = new Color(0xffffff); // diffuse
-
- this.matcap = null;
- this.map = null;
- this.bumpMap = null;
- this.bumpScale = 1;
- this.normalMap = null;
- this.normalMapType = TangentSpaceNormalMap;
- this.normalScale = new Vector2(1, 1);
- this.displacementMap = null;
- this.displacementScale = 1;
- this.displacementBias = 0;
- this.alphaMap = null;
- this.flatShading = false;
- this.setValues(parameters);
- }
+ return Array.prototype.slice.call(array); // create Array
+ },
+ isTypedArray: function (object) {
+ return ArrayBuffer.isView(object) && !(object instanceof DataView);
+ },
+ // returns an array by which times and values can be sorted
+ getKeyframeOrder: function (times) {
+ function compareTime(i, j) {
+ return times[i] - times[j];
+ }
- copy(source) {
- super.copy(source);
- this.defines = {
- 'MATCAP': ''
- };
- this.color.copy(source.color);
- this.matcap = source.matcap;
- this.map = source.map;
- this.bumpMap = source.bumpMap;
- this.bumpScale = source.bumpScale;
- this.normalMap = source.normalMap;
- this.normalMapType = source.normalMapType;
- this.normalScale.copy(source.normalScale);
- this.displacementMap = source.displacementMap;
- this.displacementScale = source.displacementScale;
- this.displacementBias = source.displacementBias;
- this.alphaMap = source.alphaMap;
- this.flatShading = source.flatShading;
- return this;
- }
+ const n = times.length;
+ const result = new Array(n);
- }
+ for (let i = 0; i !== n; ++i) result[i] = i;
- MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true;
-
- /**
- * parameters = {
- * color: <hex>,
- * opacity: <float>,
- *
- * linewidth: <float>,
- *
- * scale: <float>,
- * dashSize: <float>,
- * gapSize: <float>
- * }
- */
-
- class LineDashedMaterial extends LineBasicMaterial {
- constructor(parameters) {
- super();
- this.type = 'LineDashedMaterial';
- this.scale = 1;
- this.dashSize = 3;
- this.gapSize = 1;
- this.setValues(parameters);
- }
+ result.sort(compareTime);
+ return result;
+ },
+ // uses the array previously returned by 'getKeyframeOrder' to sort data
+ sortedArray: function (values, stride, order) {
+ const nValues = values.length;
+ const result = new values.constructor(nValues);
- copy(source) {
- super.copy(source);
- this.scale = source.scale;
- this.dashSize = source.dashSize;
- this.gapSize = source.gapSize;
- return this;
- }
+ for (let i = 0, dstOffset = 0; dstOffset !== nValues; ++i) {
+ const srcOffset = order[i] * stride;
- }
+ for (let j = 0; j !== stride; ++j) {
+ result[dstOffset++] = values[srcOffset + j];
+ }
+ }
- LineDashedMaterial.prototype.isLineDashedMaterial = true;
-
- var Materials = /*#__PURE__*/Object.freeze({
- __proto__: null,
- ShadowMaterial: ShadowMaterial,
- SpriteMaterial: SpriteMaterial,
- RawShaderMaterial: RawShaderMaterial,
- ShaderMaterial: ShaderMaterial,
- PointsMaterial: PointsMaterial,
- MeshPhysicalMaterial: MeshPhysicalMaterial,
- MeshStandardMaterial: MeshStandardMaterial,
- MeshPhongMaterial: MeshPhongMaterial,
- MeshToonMaterial: MeshToonMaterial,
- MeshNormalMaterial: MeshNormalMaterial,
- MeshLambertMaterial: MeshLambertMaterial,
- MeshDepthMaterial: MeshDepthMaterial,
- MeshDistanceMaterial: MeshDistanceMaterial,
- MeshBasicMaterial: MeshBasicMaterial,
- MeshMatcapMaterial: MeshMatcapMaterial,
- LineDashedMaterial: LineDashedMaterial,
- LineBasicMaterial: LineBasicMaterial,
- Material: Material
- });
-
- const AnimationUtils = {
- // same as Array.prototype.slice, but also works on typed arrays
- arraySlice: function (array, from, to) {
- if (AnimationUtils.isTypedArray(array)) {
- // in ios9 array.subarray(from, undefined) will return empty array
- // but array.subarray(from) or array.subarray(from, len) is correct
- return new array.constructor(array.subarray(from, to !== undefined ? to : array.length));
- }
-
- return array.slice(from, to);
- },
- // converts an array to a specific type
- convertArray: function (array, type, forceClone) {
- if (!array || // let 'undefined' and 'null' pass
- !forceClone && array.constructor === type) return array;
-
- if (typeof type.BYTES_PER_ELEMENT === 'number') {
- return new type(array); // create typed array
- }
-
- return Array.prototype.slice.call(array); // create Array
- },
- isTypedArray: function (object) {
- return ArrayBuffer.isView(object) && !(object instanceof DataView);
- },
- // returns an array by which times and values can be sorted
- getKeyframeOrder: function (times) {
- function compareTime(i, j) {
- return times[i] - times[j];
- }
-
- const n = times.length;
- const result = new Array(n);
-
- for (let i = 0; i !== n; ++i) result[i] = i;
-
- result.sort(compareTime);
- return result;
- },
- // uses the array previously returned by 'getKeyframeOrder' to sort data
- sortedArray: function (values, stride, order) {
- const nValues = values.length;
- const result = new values.constructor(nValues);
-
- for (let i = 0, dstOffset = 0; dstOffset !== nValues; ++i) {
- const srcOffset = order[i] * stride;
-
- for (let j = 0; j !== stride; ++j) {
- result[dstOffset++] = values[srcOffset + j];
- }
- }
-
- return result;
- },
- // function for parsing AOS keyframe formats
- flattenJSON: function (jsonKeys, times, values, valuePropertyName) {
- let i = 1,
- key = jsonKeys[0];
-
- while (key !== undefined && key[valuePropertyName] === undefined) {
- key = jsonKeys[i++];
- }
-
- if (key === undefined) return; // no data
-
- let value = key[valuePropertyName];
- if (value === undefined) return; // no data
-
- if (Array.isArray(value)) {
- do {
- value = key[valuePropertyName];
+ return result;
+ },
+ // function for parsing AOS keyframe formats
+ flattenJSON: function (jsonKeys, times, values, valuePropertyName) {
+ let i = 1,
+ key = jsonKeys[0];
- if (value !== undefined) {
- times.push(key.time);
- values.push.apply(values, value); // push all elements
+ while (key !== undefined && key[valuePropertyName] === undefined) {
+ key = jsonKeys[i++];
}
- key = jsonKeys[i++];
- } while (key !== undefined);
- } else if (value.toArray !== undefined) {
- // ...assume THREE.Math-ish
- do {
- value = key[valuePropertyName];
+ if (key === undefined) return; // no data
- if (value !== undefined) {
- times.push(key.time);
- value.toArray(values, values.length);
- }
+ let value = key[valuePropertyName];
+ if (value === undefined) return; // no data
- key = jsonKeys[i++];
- } while (key !== undefined);
- } else {
- // otherwise push as-is
- do {
- value = key[valuePropertyName];
+ if (Array.isArray(value)) {
+ do {
+ value = key[valuePropertyName];
- if (value !== undefined) {
- times.push(key.time);
- values.push(value);
- }
+ if (value !== undefined) {
+ times.push(key.time);
+ values.push.apply(values, value); // push all elements
+ }
- key = jsonKeys[i++];
- } while (key !== undefined);
- }
- },
- subclip: function (sourceClip, name, startFrame, endFrame, fps = 30) {
- const clip = sourceClip.clone();
- clip.name = name;
- const tracks = [];
+ key = jsonKeys[i++];
+ } while (key !== undefined);
+ } else if (value.toArray !== undefined) {
+ // ...assume THREE.Math-ish
+ do {
+ value = key[valuePropertyName];
+
+ if (value !== undefined) {
+ times.push(key.time);
+ value.toArray(values, values.length);
+ }
- for (let i = 0; i < clip.tracks.length; ++i) {
- const track = clip.tracks[i];
- const valueSize = track.getValueSize();
- const times = [];
- const values = [];
+ key = jsonKeys[i++];
+ } while (key !== undefined);
+ } else {
+ // otherwise push as-is
+ do {
+ value = key[valuePropertyName];
- for (let j = 0; j < track.times.length; ++j) {
- const frame = track.times[j] * fps;
- if (frame < startFrame || frame >= endFrame) continue;
- times.push(track.times[j]);
+ if (value !== undefined) {
+ times.push(key.time);
+ values.push(value);
+ }
- for (let k = 0; k < valueSize; ++k) {
- values.push(track.values[j * valueSize + k]);
+ key = jsonKeys[i++];
+ } while (key !== undefined);
}
- }
+ },
+ subclip: function (sourceClip, name, startFrame, endFrame, fps = 30) {
+ const clip = sourceClip.clone();
+ clip.name = name;
+ const tracks = [];
+
+ for (let i = 0; i < clip.tracks.length; ++i) {
+ const track = clip.tracks[i];
+ const valueSize = track.getValueSize();
+ const times = [];
+ const values = [];
- if (times.length === 0) continue;
- track.times = AnimationUtils.convertArray(times, track.times.constructor);
- track.values = AnimationUtils.convertArray(values, track.values.constructor);
- tracks.push(track);
- }
+ for (let j = 0; j < track.times.length; ++j) {
+ const frame = track.times[j] * fps;
+ if (frame < startFrame || frame >= endFrame) continue;
+ times.push(track.times[j]);
- clip.tracks = tracks; // find minimum .times value across all tracks in the trimmed clip
+ for (let k = 0; k < valueSize; ++k) {
+ values.push(track.values[j * valueSize + k]);
+ }
+ }
- let minStartTime = Infinity;
+ if (times.length === 0) continue;
+ track.times = AnimationUtils.convertArray(times, track.times.constructor);
+ track.values = AnimationUtils.convertArray(values, track.values.constructor);
+ tracks.push(track);
+ }
- for (let i = 0; i < clip.tracks.length; ++i) {
- if (minStartTime > clip.tracks[i].times[0]) {
- minStartTime = clip.tracks[i].times[0];
- }
- } // shift all tracks such that clip begins at t=0
+ clip.tracks = tracks; // find minimum .times value across all tracks in the trimmed clip
+ let minStartTime = Infinity;
- for (let i = 0; i < clip.tracks.length; ++i) {
- clip.tracks[i].shift(-1 * minStartTime);
- }
+ for (let i = 0; i < clip.tracks.length; ++i) {
+ if (minStartTime > clip.tracks[i].times[0]) {
+ minStartTime = clip.tracks[i].times[0];
+ }
+ } // shift all tracks such that clip begins at t=0
- clip.resetDuration();
- return clip;
- },
- makeClipAdditive: function (targetClip, referenceFrame = 0, referenceClip = targetClip, fps = 30) {
- if (fps <= 0) fps = 30;
- const numTracks = referenceClip.tracks.length;
- const referenceTime = referenceFrame / fps; // Make each track's values relative to the values at the reference frame
- for (let i = 0; i < numTracks; ++i) {
- const referenceTrack = referenceClip.tracks[i];
- const referenceTrackType = referenceTrack.ValueTypeName; // Skip this track if it's non-numeric
+ for (let i = 0; i < clip.tracks.length; ++i) {
+ clip.tracks[i].shift(-1 * minStartTime);
+ }
- if (referenceTrackType === 'bool' || referenceTrackType === 'string') continue; // Find the track in the target clip whose name and type matches the reference track
+ clip.resetDuration();
+ return clip;
+ },
+ makeClipAdditive: function (targetClip, referenceFrame = 0, referenceClip = targetClip, fps = 30) {
+ if (fps <= 0) fps = 30;
+ const numTracks = referenceClip.tracks.length;
+ const referenceTime = referenceFrame / fps; // Make each track's values relative to the values at the reference frame
- const targetTrack = targetClip.tracks.find(function (track) {
- return track.name === referenceTrack.name && track.ValueTypeName === referenceTrackType;
- });
- if (targetTrack === undefined) continue;
- let referenceOffset = 0;
- const referenceValueSize = referenceTrack.getValueSize();
+ for (let i = 0; i < numTracks; ++i) {
+ const referenceTrack = referenceClip.tracks[i];
+ const referenceTrackType = referenceTrack.ValueTypeName; // Skip this track if it's non-numeric
- if (referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) {
- referenceOffset = referenceValueSize / 3;
- }
+ if (referenceTrackType === 'bool' || referenceTrackType === 'string') continue; // Find the track in the target clip whose name and type matches the reference track
- let targetOffset = 0;
- const targetValueSize = targetTrack.getValueSize();
+ const targetTrack = targetClip.tracks.find(function (track) {
+ return track.name === referenceTrack.name && track.ValueTypeName === referenceTrackType;
+ });
+ if (targetTrack === undefined) continue;
+ let referenceOffset = 0;
+ const referenceValueSize = referenceTrack.getValueSize();
- if (targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) {
- targetOffset = targetValueSize / 3;
- }
+ if (referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) {
+ referenceOffset = referenceValueSize / 3;
+ }
- const lastIndex = referenceTrack.times.length - 1;
- let referenceValue; // Find the value to subtract out of the track
+ let targetOffset = 0;
+ const targetValueSize = targetTrack.getValueSize();
- if (referenceTime <= referenceTrack.times[0]) {
- // Reference frame is earlier than the first keyframe, so just use the first keyframe
- const startIndex = referenceOffset;
- const endIndex = referenceValueSize - referenceOffset;
- referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex);
- } else if (referenceTime >= referenceTrack.times[lastIndex]) {
- // Reference frame is after the last keyframe, so just use the last keyframe
- const startIndex = lastIndex * referenceValueSize + referenceOffset;
- const endIndex = startIndex + referenceValueSize - referenceOffset;
- referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex);
- } else {
- // Interpolate to the reference value
- const interpolant = referenceTrack.createInterpolant();
- const startIndex = referenceOffset;
- const endIndex = referenceValueSize - referenceOffset;
- interpolant.evaluate(referenceTime);
- referenceValue = AnimationUtils.arraySlice(interpolant.resultBuffer, startIndex, endIndex);
- } // Conjugate the quaternion
+ if (targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) {
+ targetOffset = targetValueSize / 3;
+ }
+
+ const lastIndex = referenceTrack.times.length - 1;
+ let referenceValue; // Find the value to subtract out of the track
+
+ if (referenceTime <= referenceTrack.times[0]) {
+ // Reference frame is earlier than the first keyframe, so just use the first keyframe
+ const startIndex = referenceOffset;
+ const endIndex = referenceValueSize - referenceOffset;
+ referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex);
+ } else if (referenceTime >= referenceTrack.times[lastIndex]) {
+ // Reference frame is after the last keyframe, so just use the last keyframe
+ const startIndex = lastIndex * referenceValueSize + referenceOffset;
+ const endIndex = startIndex + referenceValueSize - referenceOffset;
+ referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex);
+ } else {
+ // Interpolate to the reference value
+ const interpolant = referenceTrack.createInterpolant();
+ const startIndex = referenceOffset;
+ const endIndex = referenceValueSize - referenceOffset;
+ interpolant.evaluate(referenceTime);
+ referenceValue = AnimationUtils.arraySlice(interpolant.resultBuffer, startIndex, endIndex);
+ } // Conjugate the quaternion
- if (referenceTrackType === 'quaternion') {
- const referenceQuat = new Quaternion().fromArray(referenceValue).normalize().conjugate();
- referenceQuat.toArray(referenceValue);
- } // Subtract the reference value from all of the track values
+ if (referenceTrackType === 'quaternion') {
+ const referenceQuat = new Quaternion().fromArray(referenceValue).normalize().conjugate();
+ referenceQuat.toArray(referenceValue);
+ } // Subtract the reference value from all of the track values
- const numTimes = targetTrack.times.length;
+ const numTimes = targetTrack.times.length;
- for (let j = 0; j < numTimes; ++j) {
- const valueStart = j * targetValueSize + targetOffset;
+ for (let j = 0; j < numTimes; ++j) {
+ const valueStart = j * targetValueSize + targetOffset;
- if (referenceTrackType === 'quaternion') {
- // Multiply the conjugate for quaternion track types
- Quaternion.multiplyQuaternionsFlat(targetTrack.values, valueStart, referenceValue, 0, targetTrack.values, valueStart);
- } else {
- const valueEnd = targetValueSize - targetOffset * 2; // Subtract each value for all other numeric track types
+ if (referenceTrackType === 'quaternion') {
+ // Multiply the conjugate for quaternion track types
+ Quaternion.multiplyQuaternionsFlat(targetTrack.values, valueStart, referenceValue, 0, targetTrack.values, valueStart);
+ } else {
+ const valueEnd = targetValueSize - targetOffset * 2; // Subtract each value for all other numeric track types
- for (let k = 0; k < valueEnd; ++k) {
- targetTrack.values[valueStart + k] -= referenceValue[k];
+ for (let k = 0; k < valueEnd; ++k) {
+ targetTrack.values[valueStart + k] -= referenceValue[k];
+ }
+ }
}
}
+
+ targetClip.blendMode = AdditiveAnimationBlendMode;
+ return targetClip;
}
- }
+ };
- targetClip.blendMode = AdditiveAnimationBlendMode;
- return targetClip;
- }
- };
-
- /**
- * Abstract base class of interpolants over parametric samples.
- *
- * The parameter domain is one dimensional, typically the time or a path
- * along a curve defined by the data.
- *
- * The sample values can have any dimensionality and derived classes may
- * apply special interpretations to the data.
- *
- * This class provides the interval seek in a Template Method, deferring
- * the actual interpolation to derived classes.
- *
- * Time complexity is O(1) for linear access crossing at most two points
- * and O(log N) for random access, where N is the number of positions.
- *
- * References:
- *
- * http://www.oodesign.com/template-method-pattern.html
- *
- */
- class Interpolant {
- constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
- this.parameterPositions = parameterPositions;
- this._cachedIndex = 0;
- this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor(sampleSize);
- this.sampleValues = sampleValues;
- this.valueSize = sampleSize;
- this.settings = null;
- this.DefaultSettings_ = {};
- }
+ /**
+ * Abstract base class of interpolants over parametric samples.
+ *
+ * The parameter domain is one dimensional, typically the time or a path
+ * along a curve defined by the data.
+ *
+ * The sample values can have any dimensionality and derived classes may
+ * apply special interpretations to the data.
+ *
+ * This class provides the interval seek in a Template Method, deferring
+ * the actual interpolation to derived classes.
+ *
+ * Time complexity is O(1) for linear access crossing at most two points
+ * and O(log N) for random access, where N is the number of positions.
+ *
+ * References:
+ *
+ * http://www.oodesign.com/template-method-pattern.html
+ *
+ */
+ class Interpolant {
+ constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
+ this.parameterPositions = parameterPositions;
+ this._cachedIndex = 0;
+ this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor(sampleSize);
+ this.sampleValues = sampleValues;
+ this.valueSize = sampleSize;
+ this.settings = null;
+ this.DefaultSettings_ = {};
+ }
- evaluate(t) {
- const pp = this.parameterPositions;
- let i1 = this._cachedIndex,
- t1 = pp[i1],
- t0 = pp[i1 - 1];
-
- validate_interval: {
- seek: {
- let right;
-
- linear_scan: {
- //- See http://jsperf.com/comparison-to-undefined/3
- //- slower code:
- //-
- //- if ( t >= t1 || t1 === undefined ) {
- forward_scan: if (!(t < t1)) {
- for (let giveUpAt = i1 + 2;;) {
- if (t1 === undefined) {
- if (t < t0) break forward_scan; // after end
-
- i1 = pp.length;
- this._cachedIndex = i1;
- return this.afterEnd_(i1 - 1, t, t0);
- }
+ evaluate(t) {
+ const pp = this.parameterPositions;
+ let i1 = this._cachedIndex,
+ t1 = pp[i1],
+ t0 = pp[i1 - 1];
- if (i1 === giveUpAt) break; // this loop
+ validate_interval: {
+ seek: {
+ let right;
- t0 = t1;
- t1 = pp[++i1];
+ linear_scan: {
+ //- See http://jsperf.com/comparison-to-undefined/3
+ //- slower code:
+ //-
+ //- if ( t >= t1 || t1 === undefined ) {
+ forward_scan: if (!(t < t1)) {
+ for (let giveUpAt = i1 + 2; ;) {
+ if (t1 === undefined) {
+ if (t < t0) break forward_scan; // after end
- if (t < t1) {
- // we have arrived at the sought interval
- break seek;
- }
- } // prepare binary search on the right side of the index
+ i1 = pp.length;
+ this._cachedIndex = i1;
+ return this.afterEnd_(i1 - 1, t, t0);
+ }
+ if (i1 === giveUpAt) break; // this loop
- right = pp.length;
- break linear_scan;
- } //- slower code:
- //- if ( t < t0 || t0 === undefined ) {
+ t0 = t1;
+ t1 = pp[++i1];
+ if (t < t1) {
+ // we have arrived at the sought interval
+ break seek;
+ }
+ } // prepare binary search on the right side of the index
- if (!(t >= t0)) {
- // looping?
- const t1global = pp[1];
- if (t < t1global) {
- i1 = 2; // + 1, using the scan for the details
+ right = pp.length;
+ break linear_scan;
+ } //- slower code:
+ //- if ( t < t0 || t0 === undefined ) {
- t0 = t1global;
- } // linear reverse scan
+ if (!(t >= t0)) {
+ // looping?
+ const t1global = pp[1];
- for (let giveUpAt = i1 - 2;;) {
- if (t0 === undefined) {
- // before start
- this._cachedIndex = 0;
- return this.beforeStart_(0, t, t1);
- }
+ if (t < t1global) {
+ i1 = 2; // + 1, using the scan for the details
- if (i1 === giveUpAt) break; // this loop
+ t0 = t1global;
+ } // linear reverse scan
- t1 = t0;
- t0 = pp[--i1 - 1];
- if (t >= t0) {
- // we have arrived at the sought interval
- break seek;
- }
- } // prepare binary search on the left side of the index
+ for (let giveUpAt = i1 - 2; ;) {
+ if (t0 === undefined) {
+ // before start
+ this._cachedIndex = 0;
+ return this.beforeStart_(0, t, t1);
+ }
+ if (i1 === giveUpAt) break; // this loop
- right = i1;
- i1 = 0;
- break linear_scan;
- } // the interval is valid
+ t1 = t0;
+ t0 = pp[--i1 - 1];
+ if (t >= t0) {
+ // we have arrived at the sought interval
+ break seek;
+ }
+ } // prepare binary search on the left side of the index
- break validate_interval;
- } // linear scan
- // binary search
+ right = i1;
+ i1 = 0;
+ break linear_scan;
+ } // the interval is valid
- while (i1 < right) {
- const mid = i1 + right >>> 1;
- if (t < pp[mid]) {
- right = mid;
- } else {
- i1 = mid + 1;
- }
- }
+ break validate_interval;
+ } // linear scan
+ // binary search
- t1 = pp[i1];
- t0 = pp[i1 - 1]; // check boundary cases, again
- if (t0 === undefined) {
- this._cachedIndex = 0;
- return this.beforeStart_(0, t, t1);
- }
+ while (i1 < right) {
+ const mid = i1 + right >>> 1;
- if (t1 === undefined) {
- i1 = pp.length;
- this._cachedIndex = i1;
- return this.afterEnd_(i1 - 1, t0, t);
- }
- } // seek
+ if (t < pp[mid]) {
+ right = mid;
+ } else {
+ i1 = mid + 1;
+ }
+ }
+
+ t1 = pp[i1];
+ t0 = pp[i1 - 1]; // check boundary cases, again
+
+ if (t0 === undefined) {
+ this._cachedIndex = 0;
+ return this.beforeStart_(0, t, t1);
+ }
+ if (t1 === undefined) {
+ i1 = pp.length;
+ this._cachedIndex = i1;
+ return this.afterEnd_(i1 - 1, t0, t);
+ }
+ } // seek
- this._cachedIndex = i1;
- this.intervalChanged_(i1, t0, t1);
- } // validate_interval
+ this._cachedIndex = i1;
+ this.intervalChanged_(i1, t0, t1);
+ } // validate_interval
- return this.interpolate_(i1, t0, t, t1);
- }
- getSettings_() {
- return this.settings || this.DefaultSettings_;
- }
+ return this.interpolate_(i1, t0, t, t1);
+ }
+
+ getSettings_() {
+ return this.settings || this.DefaultSettings_;
+ }
- copySampleValue_(index) {
- // copies a sample value to the result buffer
- const result = this.resultBuffer,
+ copySampleValue_(index) {
+ // copies a sample value to the result buffer
+ const result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset = index * stride;
- for (let i = 0; i !== stride; ++i) {
- result[i] = values[offset + i];
- }
+ for (let i = 0; i !== stride; ++i) {
+ result[i] = values[offset + i];
+ }
- return result;
- } // Template methods for derived classes:
+ return result;
+ } // Template methods for derived classes:
- interpolate_() {
- throw new Error('call to abstract method'); // implementations shall return this.resultBuffer
- }
+ interpolate_() {
+ throw new Error('call to abstract method'); // implementations shall return this.resultBuffer
+ }
- intervalChanged_() {// empty
- }
+ intervalChanged_() {// empty
+ }
- } // ALIAS DEFINITIONS
-
-
- Interpolant.prototype.beforeStart_ = Interpolant.prototype.copySampleValue_;
- Interpolant.prototype.afterEnd_ = Interpolant.prototype.copySampleValue_;
-
- /**
- * Fast and simple cubic spline interpolant.
- *
- * It was derived from a Hermitian construction setting the first derivative
- * at each sample position to the linear slope between neighboring positions
- * over their parameter interval.
- */
-
- class CubicInterpolant extends Interpolant {
- constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
- super(parameterPositions, sampleValues, sampleSize, resultBuffer);
- this._weightPrev = -0;
- this._offsetPrev = -0;
- this._weightNext = -0;
- this._offsetNext = -0;
- this.DefaultSettings_ = {
- endingStart: ZeroCurvatureEnding,
- endingEnd: ZeroCurvatureEnding
- };
- }
+ } // ALIAS DEFINITIONS
- intervalChanged_(i1, t0, t1) {
- const pp = this.parameterPositions;
- let iPrev = i1 - 2,
- iNext = i1 + 1,
- tPrev = pp[iPrev],
- tNext = pp[iNext];
-
- if (tPrev === undefined) {
- switch (this.getSettings_().endingStart) {
- case ZeroSlopeEnding:
- // f'(t0) = 0
- iPrev = i1;
- tPrev = 2 * t0 - t1;
- break;
- case WrapAroundEnding:
- // use the other end of the curve
- iPrev = pp.length - 2;
- tPrev = t0 + pp[iPrev] - pp[iPrev + 1];
- break;
+ Interpolant.prototype.beforeStart_ = Interpolant.prototype.copySampleValue_;
+ Interpolant.prototype.afterEnd_ = Interpolant.prototype.copySampleValue_;
- default:
- // ZeroCurvatureEnding
- // f''(t0) = 0 a.k.a. Natural Spline
- iPrev = i1;
- tPrev = t1;
+ /**
+ * Fast and simple cubic spline interpolant.
+ *
+ * It was derived from a Hermitian construction setting the first derivative
+ * at each sample position to the linear slope between neighboring positions
+ * over their parameter interval.
+ */
+
+ class CubicInterpolant extends Interpolant {
+ constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
+ super(parameterPositions, sampleValues, sampleSize, resultBuffer);
+ this._weightPrev = -0;
+ this._offsetPrev = -0;
+ this._weightNext = -0;
+ this._offsetNext = -0;
+ this.DefaultSettings_ = {
+ endingStart: ZeroCurvatureEnding,
+ endingEnd: ZeroCurvatureEnding
+ };
}
- }
- if (tNext === undefined) {
- switch (this.getSettings_().endingEnd) {
- case ZeroSlopeEnding:
- // f'(tN) = 0
- iNext = i1;
- tNext = 2 * t1 - t0;
- break;
+ intervalChanged_(i1, t0, t1) {
+ const pp = this.parameterPositions;
+ let iPrev = i1 - 2,
+ iNext = i1 + 1,
+ tPrev = pp[iPrev],
+ tNext = pp[iNext];
- case WrapAroundEnding:
- // use the other end of the curve
- iNext = 1;
- tNext = t1 + pp[1] - pp[0];
- break;
+ if (tPrev === undefined) {
+ switch (this.getSettings_().endingStart) {
+ case ZeroSlopeEnding:
+ // f'(t0) = 0
+ iPrev = i1;
+ tPrev = 2 * t0 - t1;
+ break;
- default:
- // ZeroCurvatureEnding
- // f''(tN) = 0, a.k.a. Natural Spline
- iNext = i1 - 1;
- tNext = t0;
- }
- }
+ case WrapAroundEnding:
+ // use the other end of the curve
+ iPrev = pp.length - 2;
+ tPrev = t0 + pp[iPrev] - pp[iPrev + 1];
+ break;
+
+ default:
+ // ZeroCurvatureEnding
+ // f''(t0) = 0 a.k.a. Natural Spline
+ iPrev = i1;
+ tPrev = t1;
+ }
+ }
+
+ if (tNext === undefined) {
+ switch (this.getSettings_().endingEnd) {
+ case ZeroSlopeEnding:
+ // f'(tN) = 0
+ iNext = i1;
+ tNext = 2 * t1 - t0;
+ break;
+
+ case WrapAroundEnding:
+ // use the other end of the curve
+ iNext = 1;
+ tNext = t1 + pp[1] - pp[0];
+ break;
+
+ default:
+ // ZeroCurvatureEnding
+ // f''(tN) = 0, a.k.a. Natural Spline
+ iNext = i1 - 1;
+ tNext = t0;
+ }
+ }
- const halfDt = (t1 - t0) * 0.5,
+ const halfDt = (t1 - t0) * 0.5,
stride = this.valueSize;
- this._weightPrev = halfDt / (t0 - tPrev);
- this._weightNext = halfDt / (tNext - t1);
- this._offsetPrev = iPrev * stride;
- this._offsetNext = iNext * stride;
- }
+ this._weightPrev = halfDt / (t0 - tPrev);
+ this._weightNext = halfDt / (tNext - t1);
+ this._offsetPrev = iPrev * stride;
+ this._offsetNext = iNext * stride;
+ }
- interpolate_(i1, t0, t, t1) {
- const result = this.resultBuffer,
+ interpolate_(i1, t0, t, t1) {
+ const result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
o1 = i1 * stride,
pp = p * p,
ppp = pp * p; // evaluate polynomials
- const sP = -wP * ppp + 2 * wP * pp - wP * p;
- const s0 = (1 + wP) * ppp + (-1.5 - 2 * wP) * pp + (-0.5 + wP) * p + 1;
- const s1 = (-1 - wN) * ppp + (1.5 + wN) * pp + 0.5 * p;
- const sN = wN * ppp - wN * pp; // combine data linearly
+ const sP = -wP * ppp + 2 * wP * pp - wP * p;
+ const s0 = (1 + wP) * ppp + (-1.5 - 2 * wP) * pp + (-0.5 + wP) * p + 1;
+ const s1 = (-1 - wN) * ppp + (1.5 + wN) * pp + 0.5 * p;
+ const sN = wN * ppp - wN * pp; // combine data linearly
- for (let i = 0; i !== stride; ++i) {
- result[i] = sP * values[oP + i] + s0 * values[o0 + i] + s1 * values[o1 + i] + sN * values[oN + i];
- }
+ for (let i = 0; i !== stride; ++i) {
+ result[i] = sP * values[oP + i] + s0 * values[o0 + i] + s1 * values[o1 + i] + sN * values[oN + i];
+ }
- return result;
- }
+ return result;
+ }
- }
+ }
- class LinearInterpolant extends Interpolant {
- constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
- super(parameterPositions, sampleValues, sampleSize, resultBuffer);
- }
+ class LinearInterpolant extends Interpolant {
+ constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
+ super(parameterPositions, sampleValues, sampleSize, resultBuffer);
+ }
- interpolate_(i1, t0, t, t1) {
- const result = this.resultBuffer,
+ interpolate_(i1, t0, t, t1) {
+ const result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset1 = i1 * stride,
weight1 = (t - t0) / (t1 - t0),
weight0 = 1 - weight1;
- for (let i = 0; i !== stride; ++i) {
- result[i] = values[offset0 + i] * weight0 + values[offset1 + i] * weight1;
+ for (let i = 0; i !== stride; ++i) {
+ result[i] = values[offset0 + i] * weight0 + values[offset1 + i] * weight1;
+ }
+
+ return result;
+ }
+
}
- return result;
- }
+ /**
+ *
+ * Interpolant that evaluates to the sample value at the position preceeding
+ * the parameter.
+ */
- }
+ class DiscreteInterpolant extends Interpolant {
+ constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
+ super(parameterPositions, sampleValues, sampleSize, resultBuffer);
+ }
- /**
- *
- * Interpolant that evaluates to the sample value at the position preceeding
- * the parameter.
- */
+ interpolate_(i1
+ /*, t0, t, t1 */
+ ) {
+ return this.copySampleValue_(i1 - 1);
+ }
- class DiscreteInterpolant extends Interpolant {
- constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
- super(parameterPositions, sampleValues, sampleSize, resultBuffer);
- }
+ }
- interpolate_(i1
- /*, t0, t, t1 */
- ) {
- return this.copySampleValue_(i1 - 1);
- }
+ class KeyframeTrack {
+ constructor(name, times, values, interpolation) {
+ if (name === undefined) throw new Error('THREE.KeyframeTrack: track name is undefined');
+ if (times === undefined || times.length === 0) throw new Error('THREE.KeyframeTrack: no keyframes in track named ' + name);
+ this.name = name;
+ this.times = AnimationUtils.convertArray(times, this.TimeBufferType);
+ this.values = AnimationUtils.convertArray(values, this.ValueBufferType);
+ this.setInterpolation(interpolation || this.DefaultInterpolation);
+ } // Serialization (in static context, because of constructor invocation
+ // and automatic invocation of .toJSON):
- }
- class KeyframeTrack {
- constructor(name, times, values, interpolation) {
- if (name === undefined) throw new Error('THREE.KeyframeTrack: track name is undefined');
- if (times === undefined || times.length === 0) throw new Error('THREE.KeyframeTrack: no keyframes in track named ' + name);
- this.name = name;
- this.times = AnimationUtils.convertArray(times, this.TimeBufferType);
- this.values = AnimationUtils.convertArray(values, this.ValueBufferType);
- this.setInterpolation(interpolation || this.DefaultInterpolation);
- } // Serialization (in static context, because of constructor invocation
- // and automatic invocation of .toJSON):
+ static toJSON(track) {
+ const trackType = track.constructor;
+ let json; // derived classes can define a static toJSON method
+ if (trackType.toJSON !== this.toJSON) {
+ json = trackType.toJSON(track);
+ } else {
+ // by default, we assume the data can be serialized as-is
+ json = {
+ 'name': track.name,
+ 'times': AnimationUtils.convertArray(track.times, Array),
+ 'values': AnimationUtils.convertArray(track.values, Array)
+ };
+ const interpolation = track.getInterpolation();
- static toJSON(track) {
- const trackType = track.constructor;
- let json; // derived classes can define a static toJSON method
+ if (interpolation !== track.DefaultInterpolation) {
+ json.interpolation = interpolation;
+ }
+ }
- if (trackType.toJSON !== this.toJSON) {
- json = trackType.toJSON(track);
- } else {
- // by default, we assume the data can be serialized as-is
- json = {
- 'name': track.name,
- 'times': AnimationUtils.convertArray(track.times, Array),
- 'values': AnimationUtils.convertArray(track.values, Array)
- };
- const interpolation = track.getInterpolation();
+ json.type = track.ValueTypeName; // mandatory
- if (interpolation !== track.DefaultInterpolation) {
- json.interpolation = interpolation;
+ return json;
}
- }
- json.type = track.ValueTypeName; // mandatory
-
- return json;
- }
+ InterpolantFactoryMethodDiscrete(result) {
+ return new DiscreteInterpolant(this.times, this.values, this.getValueSize(), result);
+ }
- InterpolantFactoryMethodDiscrete(result) {
- return new DiscreteInterpolant(this.times, this.values, this.getValueSize(), result);
- }
+ InterpolantFactoryMethodLinear(result) {
+ return new LinearInterpolant(this.times, this.values, this.getValueSize(), result);
+ }
- InterpolantFactoryMethodLinear(result) {
- return new LinearInterpolant(this.times, this.values, this.getValueSize(), result);
- }
+ InterpolantFactoryMethodSmooth(result) {
+ return new CubicInterpolant(this.times, this.values, this.getValueSize(), result);
+ }
- InterpolantFactoryMethodSmooth(result) {
- return new CubicInterpolant(this.times, this.values, this.getValueSize(), result);
- }
+ setInterpolation(interpolation) {
+ let factoryMethod;
- setInterpolation(interpolation) {
- let factoryMethod;
+ switch (interpolation) {
+ case InterpolateDiscrete:
+ factoryMethod = this.InterpolantFactoryMethodDiscrete;
+ break;
- switch (interpolation) {
- case InterpolateDiscrete:
- factoryMethod = this.InterpolantFactoryMethodDiscrete;
- break;
+ case InterpolateLinear:
+ factoryMethod = this.InterpolantFactoryMethodLinear;
+ break;
- case InterpolateLinear:
- factoryMethod = this.InterpolantFactoryMethodLinear;
- break;
+ case InterpolateSmooth:
+ factoryMethod = this.InterpolantFactoryMethodSmooth;
+ break;
+ }
- case InterpolateSmooth:
- factoryMethod = this.InterpolantFactoryMethodSmooth;
- break;
- }
+ if (factoryMethod === undefined) {
+ const message = 'unsupported interpolation for ' + this.ValueTypeName + ' keyframe track named ' + this.name;
- if (factoryMethod === undefined) {
- const message = 'unsupported interpolation for ' + this.ValueTypeName + ' keyframe track named ' + this.name;
+ if (this.createInterpolant === undefined) {
+ // fall back to default, unless the default itself is messed up
+ if (interpolation !== this.DefaultInterpolation) {
+ this.setInterpolation(this.DefaultInterpolation);
+ } else {
+ throw new Error(message); // fatal, in this case
+ }
+ }
- if (this.createInterpolant === undefined) {
- // fall back to default, unless the default itself is messed up
- if (interpolation !== this.DefaultInterpolation) {
- this.setInterpolation(this.DefaultInterpolation);
- } else {
- throw new Error(message); // fatal, in this case
+ console.warn('THREE.KeyframeTrack:', message);
+ return this;
}
- }
- console.warn('THREE.KeyframeTrack:', message);
- return this;
- }
-
- this.createInterpolant = factoryMethod;
- return this;
- }
+ this.createInterpolant = factoryMethod;
+ return this;
+ }
- getInterpolation() {
- switch (this.createInterpolant) {
- case this.InterpolantFactoryMethodDiscrete:
- return InterpolateDiscrete;
+ getInterpolation() {
+ switch (this.createInterpolant) {
+ case this.InterpolantFactoryMethodDiscrete:
+ return InterpolateDiscrete;
- case this.InterpolantFactoryMethodLinear:
- return InterpolateLinear;
+ case this.InterpolantFactoryMethodLinear:
+ return InterpolateLinear;
- case this.InterpolantFactoryMethodSmooth:
- return InterpolateSmooth;
- }
- }
+ case this.InterpolantFactoryMethodSmooth:
+ return InterpolateSmooth;
+ }
+ }
- getValueSize() {
- return this.values.length / this.times.length;
- } // move all keyframes either forwards or backwards in time
+ getValueSize() {
+ return this.values.length / this.times.length;
+ } // move all keyframes either forwards or backwards in time
- shift(timeOffset) {
- if (timeOffset !== 0.0) {
- const times = this.times;
+ shift(timeOffset) {
+ if (timeOffset !== 0.0) {
+ const times = this.times;
- for (let i = 0, n = times.length; i !== n; ++i) {
- times[i] += timeOffset;
- }
- }
+ for (let i = 0, n = times.length; i !== n; ++i) {
+ times[i] += timeOffset;
+ }
+ }
- return this;
- } // scale all keyframe times by a factor (useful for frame <-> seconds conversions)
+ return this;
+ } // scale all keyframe times by a factor (useful for frame <-> seconds conversions)
- scale(timeScale) {
- if (timeScale !== 1.0) {
- const times = this.times;
+ scale(timeScale) {
+ if (timeScale !== 1.0) {
+ const times = this.times;
- for (let i = 0, n = times.length; i !== n; ++i) {
- times[i] *= timeScale;
- }
- }
+ for (let i = 0, n = times.length; i !== n; ++i) {
+ times[i] *= timeScale;
+ }
+ }
- return this;
- } // removes keyframes before and after animation without changing any values within the range [startTime, endTime].
- // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
+ return this;
+ } // removes keyframes before and after animation without changing any values within the range [startTime, endTime].
+ // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
- trim(startTime, endTime) {
- const times = this.times,
+ trim(startTime, endTime) {
+ const times = this.times,
nKeys = times.length;
- let from = 0,
- to = nKeys - 1;
+ let from = 0,
+ to = nKeys - 1;
- while (from !== nKeys && times[from] < startTime) {
- ++from;
- }
+ while (from !== nKeys && times[from] < startTime) {
+ ++from;
+ }
- while (to !== -1 && times[to] > endTime) {
- --to;
- }
+ while (to !== -1 && times[to] > endTime) {
+ --to;
+ }
- ++to; // inclusive -> exclusive bound
+ ++to; // inclusive -> exclusive bound
- if (from !== 0 || to !== nKeys) {
- // empty tracks are forbidden, so keep at least one keyframe
- if (from >= to) {
- to = Math.max(to, 1);
- from = to - 1;
- }
+ if (from !== 0 || to !== nKeys) {
+ // empty tracks are forbidden, so keep at least one keyframe
+ if (from >= to) {
+ to = Math.max(to, 1);
+ from = to - 1;
+ }
- const stride = this.getValueSize();
- this.times = AnimationUtils.arraySlice(times, from, to);
- this.values = AnimationUtils.arraySlice(this.values, from * stride, to * stride);
- }
+ const stride = this.getValueSize();
+ this.times = AnimationUtils.arraySlice(times, from, to);
+ this.values = AnimationUtils.arraySlice(this.values, from * stride, to * stride);
+ }
- return this;
- } // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
+ return this;
+ } // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
- validate() {
- let valid = true;
- const valueSize = this.getValueSize();
+ validate() {
+ let valid = true;
+ const valueSize = this.getValueSize();
- if (valueSize - Math.floor(valueSize) !== 0) {
- console.error('THREE.KeyframeTrack: Invalid value size in track.', this);
- valid = false;
- }
+ if (valueSize - Math.floor(valueSize) !== 0) {
+ console.error('THREE.KeyframeTrack: Invalid value size in track.', this);
+ valid = false;
+ }
- const times = this.times,
+ const times = this.times,
values = this.values,
nKeys = times.length;
- if (nKeys === 0) {
- console.error('THREE.KeyframeTrack: Track is empty.', this);
- valid = false;
- }
+ if (nKeys === 0) {
+ console.error('THREE.KeyframeTrack: Track is empty.', this);
+ valid = false;
+ }
- let prevTime = null;
+ let prevTime = null;
- for (let i = 0; i !== nKeys; i++) {
- const currTime = times[i];
+ for (let i = 0; i !== nKeys; i++) {
+ const currTime = times[i];
- if (typeof currTime === 'number' && isNaN(currTime)) {
- console.error('THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime);
- valid = false;
- break;
- }
+ if (typeof currTime === 'number' && isNaN(currTime)) {
+ console.error('THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime);
+ valid = false;
+ break;
+ }
- if (prevTime !== null && prevTime > currTime) {
- console.error('THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime);
- valid = false;
- break;
- }
+ if (prevTime !== null && prevTime > currTime) {
+ console.error('THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime);
+ valid = false;
+ break;
+ }
- prevTime = currTime;
- }
+ prevTime = currTime;
+ }
- if (values !== undefined) {
- if (AnimationUtils.isTypedArray(values)) {
- for (let i = 0, n = values.length; i !== n; ++i) {
- const value = values[i];
+ if (values !== undefined) {
+ if (AnimationUtils.isTypedArray(values)) {
+ for (let i = 0, n = values.length; i !== n; ++i) {
+ const value = values[i];
- if (isNaN(value)) {
- console.error('THREE.KeyframeTrack: Value is not a valid number.', this, i, value);
- valid = false;
- break;
+ if (isNaN(value)) {
+ console.error('THREE.KeyframeTrack: Value is not a valid number.', this, i, value);
+ valid = false;
+ break;
+ }
+ }
}
}
- }
- }
- return valid;
- } // removes equivalent sequential keys as common in morph target sequences
- // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
+ return valid;
+ } // removes equivalent sequential keys as common in morph target sequences
+ // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
- optimize() {
- // times or values may be shared with other tracks, so overwriting is unsafe
- const times = AnimationUtils.arraySlice(this.times),
+ optimize() {
+ // times or values may be shared with other tracks, so overwriting is unsafe
+ const times = AnimationUtils.arraySlice(this.times),
values = AnimationUtils.arraySlice(this.values),
stride = this.getValueSize(),
smoothInterpolation = this.getInterpolation() === InterpolateSmooth,
lastIndex = times.length - 1;
- let writeIndex = 1;
+ let writeIndex = 1;
- for (let i = 1; i < lastIndex; ++i) {
- let keep = false;
- const time = times[i];
- const timeNext = times[i + 1]; // remove adjacent keyframes scheduled at the same time
+ for (let i = 1; i < lastIndex; ++i) {
+ let keep = false;
+ const time = times[i];
+ const timeNext = times[i + 1]; // remove adjacent keyframes scheduled at the same time
- if (time !== timeNext && (i !== 1 || time !== times[0])) {
- if (!smoothInterpolation) {
- // remove unnecessary keyframes same as their neighbors
- const offset = i * stride,
+ if (time !== timeNext && (i !== 1 || time !== times[0])) {
+ if (!smoothInterpolation) {
+ // remove unnecessary keyframes same as their neighbors
+ const offset = i * stride,
offsetP = offset - stride,
offsetN = offset + stride;
- for (let j = 0; j !== stride; ++j) {
- const value = values[offset + j];
+ for (let j = 0; j !== stride; ++j) {
+ const value = values[offset + j];
- if (value !== values[offsetP + j] || value !== values[offsetN + j]) {
- keep = true;
- break;
+ if (value !== values[offsetP + j] || value !== values[offsetN + j]) {
+ keep = true;
+ break;
+ }
+ }
+ } else {
+ keep = true;
}
- }
- } else {
- keep = true;
- }
- } // in-place compaction
+ } // in-place compaction
- if (keep) {
- if (i !== writeIndex) {
- times[writeIndex] = times[i];
- const readOffset = i * stride,
+ if (keep) {
+ if (i !== writeIndex) {
+ times[writeIndex] = times[i];
+ const readOffset = i * stride,
writeOffset = writeIndex * stride;
- for (let j = 0; j !== stride; ++j) {
- values[writeOffset + j] = values[readOffset + j];
- }
- }
+ for (let j = 0; j !== stride; ++j) {
+ values[writeOffset + j] = values[readOffset + j];
+ }
+ }
- ++writeIndex;
- }
- } // flush last keyframe (compaction looks ahead)
+ ++writeIndex;
+ }
+ } // flush last keyframe (compaction looks ahead)
- if (lastIndex > 0) {
- times[writeIndex] = times[lastIndex];
+ if (lastIndex > 0) {
+ times[writeIndex] = times[lastIndex];
- for (let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++j) {
- values[writeOffset + j] = values[readOffset + j];
- }
+ for (let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++j) {
+ values[writeOffset + j] = values[readOffset + j];
+ }
- ++writeIndex;
- }
+ ++writeIndex;
+ }
- if (writeIndex !== times.length) {
- this.times = AnimationUtils.arraySlice(times, 0, writeIndex);
- this.values = AnimationUtils.arraySlice(values, 0, writeIndex * stride);
- } else {
- this.times = times;
- this.values = values;
- }
+ if (writeIndex !== times.length) {
+ this.times = AnimationUtils.arraySlice(times, 0, writeIndex);
+ this.values = AnimationUtils.arraySlice(values, 0, writeIndex * stride);
+ } else {
+ this.times = times;
+ this.values = values;
+ }
- return this;
- }
+ return this;
+ }
- clone() {
- const times = AnimationUtils.arraySlice(this.times, 0);
- const values = AnimationUtils.arraySlice(this.values, 0);
- const TypedKeyframeTrack = this.constructor;
- const track = new TypedKeyframeTrack(this.name, times, values); // Interpolant argument to constructor is not saved, so copy the factory method directly.
+ clone() {
+ const times = AnimationUtils.arraySlice(this.times, 0);
+ const values = AnimationUtils.arraySlice(this.values, 0);
+ const TypedKeyframeTrack = this.constructor;
+ const track = new TypedKeyframeTrack(this.name, times, values); // Interpolant argument to constructor is not saved, so copy the factory method directly.
- track.createInterpolant = this.createInterpolant;
- return track;
- }
+ track.createInterpolant = this.createInterpolant;
+ return track;
+ }
- }
+ }
- KeyframeTrack.prototype.TimeBufferType = Float32Array;
- KeyframeTrack.prototype.ValueBufferType = Float32Array;
- KeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear;
+ KeyframeTrack.prototype.TimeBufferType = Float32Array;
+ KeyframeTrack.prototype.ValueBufferType = Float32Array;
+ KeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear;
- /**
- * A Track of Boolean keyframe values.
- */
+ /**
+ * A Track of Boolean keyframe values.
+ */
- class BooleanKeyframeTrack extends KeyframeTrack {}
+ class BooleanKeyframeTrack extends KeyframeTrack {
+ }
- BooleanKeyframeTrack.prototype.ValueTypeName = 'bool';
- BooleanKeyframeTrack.prototype.ValueBufferType = Array;
- BooleanKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete;
- BooleanKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined;
- BooleanKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; // Note: Actually this track could have a optimized / compressed
+ BooleanKeyframeTrack.prototype.ValueTypeName = 'bool';
+ BooleanKeyframeTrack.prototype.ValueBufferType = Array;
+ BooleanKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete;
+ BooleanKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined;
+ BooleanKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; // Note: Actually this track could have a optimized / compressed
- /**
- * A Track of keyframe values that represent color.
- */
+ /**
+ * A Track of keyframe values that represent color.
+ */
- class ColorKeyframeTrack extends KeyframeTrack {}
+ class ColorKeyframeTrack extends KeyframeTrack {
+ }
- ColorKeyframeTrack.prototype.ValueTypeName = 'color'; // ValueBufferType is inherited
+ ColorKeyframeTrack.prototype.ValueTypeName = 'color'; // ValueBufferType is inherited
- /**
- * A Track of numeric keyframe values.
- */
+ /**
+ * A Track of numeric keyframe values.
+ */
- class NumberKeyframeTrack extends KeyframeTrack {}
+ class NumberKeyframeTrack extends KeyframeTrack {
+ }
- NumberKeyframeTrack.prototype.ValueTypeName = 'number'; // ValueBufferType is inherited
+ NumberKeyframeTrack.prototype.ValueTypeName = 'number'; // ValueBufferType is inherited
- /**
- * Spherical linear unit quaternion interpolant.
- */
+ /**
+ * Spherical linear unit quaternion interpolant.
+ */
- class QuaternionLinearInterpolant extends Interpolant {
- constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
- super(parameterPositions, sampleValues, sampleSize, resultBuffer);
- }
+ class QuaternionLinearInterpolant extends Interpolant {
+ constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
+ super(parameterPositions, sampleValues, sampleSize, resultBuffer);
+ }
- interpolate_(i1, t0, t, t1) {
- const result = this.resultBuffer,
+ interpolate_(i1, t0, t, t1) {
+ const result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
alpha = (t - t0) / (t1 - t0);
- let offset = i1 * stride;
+ let offset = i1 * stride;
- for (let end = offset + stride; offset !== end; offset += 4) {
- Quaternion.slerpFlat(result, 0, values, offset - stride, values, offset, alpha);
- }
+ for (let end = offset + stride; offset !== end; offset += 4) {
+ Quaternion.slerpFlat(result, 0, values, offset - stride, values, offset, alpha);
+ }
- return result;
- }
+ return result;
+ }
- }
+ }
- /**
- * A Track of quaternion keyframe values.
- */
+ /**
+ * A Track of quaternion keyframe values.
+ */
- class QuaternionKeyframeTrack extends KeyframeTrack {
- InterpolantFactoryMethodLinear(result) {
- return new QuaternionLinearInterpolant(this.times, this.values, this.getValueSize(), result);
- }
+ class QuaternionKeyframeTrack extends KeyframeTrack {
+ InterpolantFactoryMethodLinear(result) {
+ return new QuaternionLinearInterpolant(this.times, this.values, this.getValueSize(), result);
+ }
- }
+ }
- QuaternionKeyframeTrack.prototype.ValueTypeName = 'quaternion'; // ValueBufferType is inherited
+ QuaternionKeyframeTrack.prototype.ValueTypeName = 'quaternion'; // ValueBufferType is inherited
- QuaternionKeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear;
- QuaternionKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined;
+ QuaternionKeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear;
+ QuaternionKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined;
- /**
- * A Track that interpolates Strings
- */
+ /**
+ * A Track that interpolates Strings
+ */
- class StringKeyframeTrack extends KeyframeTrack {}
+ class StringKeyframeTrack extends KeyframeTrack {
+ }
- StringKeyframeTrack.prototype.ValueTypeName = 'string';
- StringKeyframeTrack.prototype.ValueBufferType = Array;
- StringKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete;
- StringKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined;
- StringKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined;
+ StringKeyframeTrack.prototype.ValueTypeName = 'string';
+ StringKeyframeTrack.prototype.ValueBufferType = Array;
+ StringKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete;
+ StringKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined;
+ StringKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined;
- /**
- * A Track of vectored keyframe values.
- */
+ /**
+ * A Track of vectored keyframe values.
+ */
- class VectorKeyframeTrack extends KeyframeTrack {}
+ class VectorKeyframeTrack extends KeyframeTrack {
+ }
- VectorKeyframeTrack.prototype.ValueTypeName = 'vector'; // ValueBufferType is inherited
+ VectorKeyframeTrack.prototype.ValueTypeName = 'vector'; // ValueBufferType is inherited
- class AnimationClip {
- constructor(name, duration = -1, tracks, blendMode = NormalAnimationBlendMode) {
- this.name = name;
- this.tracks = tracks;
- this.duration = duration;
- this.blendMode = blendMode;
- this.uuid = generateUUID(); // this means it should figure out its duration by scanning the tracks
+ class AnimationClip {
+ constructor(name, duration = -1, tracks, blendMode = NormalAnimationBlendMode) {
+ this.name = name;
+ this.tracks = tracks;
+ this.duration = duration;
+ this.blendMode = blendMode;
+ this.uuid = generateUUID(); // this means it should figure out its duration by scanning the tracks
- if (this.duration < 0) {
- this.resetDuration();
- }
- }
+ if (this.duration < 0) {
+ this.resetDuration();
+ }
+ }
- static parse(json) {
- const tracks = [],
+ static parse(json) {
+ const tracks = [],
jsonTracks = json.tracks,
frameTime = 1.0 / (json.fps || 1.0);
- for (let i = 0, n = jsonTracks.length; i !== n; ++i) {
- tracks.push(parseKeyframeTrack(jsonTracks[i]).scale(frameTime));
- }
+ for (let i = 0, n = jsonTracks.length; i !== n; ++i) {
+ tracks.push(parseKeyframeTrack(jsonTracks[i]).scale(frameTime));
+ }
- const clip = new this(json.name, json.duration, tracks, json.blendMode);
- clip.uuid = json.uuid;
- return clip;
- }
+ const clip = new this(json.name, json.duration, tracks, json.blendMode);
+ clip.uuid = json.uuid;
+ return clip;
+ }
- static toJSON(clip) {
- const tracks = [],
+ static toJSON(clip) {
+ const tracks = [],
clipTracks = clip.tracks;
- const json = {
- 'name': clip.name,
- 'duration': clip.duration,
- 'tracks': tracks,
- 'uuid': clip.uuid,
- 'blendMode': clip.blendMode
- };
+ const json = {
+ 'name': clip.name,
+ 'duration': clip.duration,
+ 'tracks': tracks,
+ 'uuid': clip.uuid,
+ 'blendMode': clip.blendMode
+ };
- for (let i = 0, n = clipTracks.length; i !== n; ++i) {
- tracks.push(KeyframeTrack.toJSON(clipTracks[i]));
- }
+ for (let i = 0, n = clipTracks.length; i !== n; ++i) {
+ tracks.push(KeyframeTrack.toJSON(clipTracks[i]));
+ }
- return json;
- }
+ return json;
+ }
- static CreateFromMorphTargetSequence(name, morphTargetSequence, fps, noLoop) {
- const numMorphTargets = morphTargetSequence.length;
- const tracks = [];
+ static CreateFromMorphTargetSequence(name, morphTargetSequence, fps, noLoop) {
+ const numMorphTargets = morphTargetSequence.length;
+ const tracks = [];
- for (let i = 0; i < numMorphTargets; i++) {
- let times = [];
- let values = [];
- times.push((i + numMorphTargets - 1) % numMorphTargets, i, (i + 1) % numMorphTargets);
- values.push(0, 1, 0);
- const order = AnimationUtils.getKeyframeOrder(times);
- times = AnimationUtils.sortedArray(times, 1, order);
- values = AnimationUtils.sortedArray(values, 1, order); // if there is a key at the first frame, duplicate it as the
- // last frame as well for perfect loop.
+ for (let i = 0; i < numMorphTargets; i++) {
+ let times = [];
+ let values = [];
+ times.push((i + numMorphTargets - 1) % numMorphTargets, i, (i + 1) % numMorphTargets);
+ values.push(0, 1, 0);
+ const order = AnimationUtils.getKeyframeOrder(times);
+ times = AnimationUtils.sortedArray(times, 1, order);
+ values = AnimationUtils.sortedArray(values, 1, order); // if there is a key at the first frame, duplicate it as the
+ // last frame as well for perfect loop.
- if (!noLoop && times[0] === 0) {
- times.push(numMorphTargets);
- values.push(values[0]);
- }
+ if (!noLoop && times[0] === 0) {
+ times.push(numMorphTargets);
+ values.push(values[0]);
+ }
- tracks.push(new NumberKeyframeTrack('.morphTargetInfluences[' + morphTargetSequence[i].name + ']', times, values).scale(1.0 / fps));
- }
+ tracks.push(new NumberKeyframeTrack('.morphTargetInfluences[' + morphTargetSequence[i].name + ']', times, values).scale(1.0 / fps));
+ }
- return new this(name, -1, tracks);
- }
+ return new this(name, -1, tracks);
+ }
- static findByName(objectOrClipArray, name) {
- let clipArray = objectOrClipArray;
+ static findByName(objectOrClipArray, name) {
+ let clipArray = objectOrClipArray;
- if (!Array.isArray(objectOrClipArray)) {
- const o = objectOrClipArray;
- clipArray = o.geometry && o.geometry.animations || o.animations;
- }
+ if (!Array.isArray(objectOrClipArray)) {
+ const o = objectOrClipArray;
+ clipArray = o.geometry && o.geometry.animations || o.animations;
+ }
- for (let i = 0; i < clipArray.length; i++) {
- if (clipArray[i].name === name) {
- return clipArray[i];
+ for (let i = 0; i < clipArray.length; i++) {
+ if (clipArray[i].name === name) {
+ return clipArray[i];
+ }
+ }
+
+ return null;
}
- }
- return null;
- }
+ static CreateClipsFromMorphTargetSequences(morphTargets, fps, noLoop) {
+ const animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences
+ // such flamingo_flyA_003, flamingo_run1_003, crdeath0059
- static CreateClipsFromMorphTargetSequences(morphTargets, fps, noLoop) {
- const animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences
- // such flamingo_flyA_003, flamingo_run1_003, crdeath0059
+ const pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based
+ // patterns like Walk_001, Walk_002, Run_001, Run_002
- const pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based
- // patterns like Walk_001, Walk_002, Run_001, Run_002
+ for (let i = 0, il = morphTargets.length; i < il; i++) {
+ const morphTarget = morphTargets[i];
+ const parts = morphTarget.name.match(pattern);
- for (let i = 0, il = morphTargets.length; i < il; i++) {
- const morphTarget = morphTargets[i];
- const parts = morphTarget.name.match(pattern);
+ if (parts && parts.length > 1) {
+ const name = parts[1];
+ let animationMorphTargets = animationToMorphTargets[name];
- if (parts && parts.length > 1) {
- const name = parts[1];
- let animationMorphTargets = animationToMorphTargets[name];
+ if (!animationMorphTargets) {
+ animationToMorphTargets[name] = animationMorphTargets = [];
+ }
- if (!animationMorphTargets) {
- animationToMorphTargets[name] = animationMorphTargets = [];
+ animationMorphTargets.push(morphTarget);
+ }
}
- animationMorphTargets.push(morphTarget);
- }
- }
+ const clips = [];
- const clips = [];
+ for (const name in animationToMorphTargets) {
+ clips.push(this.CreateFromMorphTargetSequence(name, animationToMorphTargets[name], fps, noLoop));
+ }
- for (const name in animationToMorphTargets) {
- clips.push(this.CreateFromMorphTargetSequence(name, animationToMorphTargets[name], fps, noLoop));
- }
+ return clips;
+ } // parse the animation.hierarchy format
- return clips;
- } // parse the animation.hierarchy format
+ static parseAnimation(animation, bones) {
+ if (!animation) {
+ console.error('THREE.AnimationClip: No animation in JSONLoader data.');
+ return null;
+ }
- static parseAnimation(animation, bones) {
- if (!animation) {
- console.error('THREE.AnimationClip: No animation in JSONLoader data.');
- return null;
- }
+ const addNonemptyTrack = function (trackType, trackName, animationKeys, propertyName, destTracks) {
+ // only return track if there are actually keys.
+ if (animationKeys.length !== 0) {
+ const times = [];
+ const values = [];
+ AnimationUtils.flattenJSON(animationKeys, times, values, propertyName); // empty keys are filtered out, so check again
- const addNonemptyTrack = function (trackType, trackName, animationKeys, propertyName, destTracks) {
- // only return track if there are actually keys.
- if (animationKeys.length !== 0) {
- const times = [];
- const values = [];
- AnimationUtils.flattenJSON(animationKeys, times, values, propertyName); // empty keys are filtered out, so check again
+ if (times.length !== 0) {
+ destTracks.push(new trackType(trackName, times, values));
+ }
+ }
+ };
- if (times.length !== 0) {
- destTracks.push(new trackType(trackName, times, values));
- }
- }
- };
+ const tracks = [];
+ const clipName = animation.name || 'default';
+ const fps = animation.fps || 30;
+ const blendMode = animation.blendMode; // automatic length determination in AnimationClip.
- const tracks = [];
- const clipName = animation.name || 'default';
- const fps = animation.fps || 30;
- const blendMode = animation.blendMode; // automatic length determination in AnimationClip.
+ let duration = animation.length || -1;
+ const hierarchyTracks = animation.hierarchy || [];
- let duration = animation.length || -1;
- const hierarchyTracks = animation.hierarchy || [];
+ for (let h = 0; h < hierarchyTracks.length; h++) {
+ const animationKeys = hierarchyTracks[h].keys; // skip empty tracks
- for (let h = 0; h < hierarchyTracks.length; h++) {
- const animationKeys = hierarchyTracks[h].keys; // skip empty tracks
+ if (!animationKeys || animationKeys.length === 0) continue; // process morph targets
- if (!animationKeys || animationKeys.length === 0) continue; // process morph targets
+ if (animationKeys[0].morphTargets) {
+ // figure out all morph targets used in this track
+ const morphTargetNames = {};
+ let k;
- if (animationKeys[0].morphTargets) {
- // figure out all morph targets used in this track
- const morphTargetNames = {};
- let k;
+ for (k = 0; k < animationKeys.length; k++) {
+ if (animationKeys[k].morphTargets) {
+ for (let m = 0; m < animationKeys[k].morphTargets.length; m++) {
+ morphTargetNames[animationKeys[k].morphTargets[m]] = -1;
+ }
+ }
+ } // create a track for each morph target with all zero
+ // morphTargetInfluences except for the keys in which
+ // the morphTarget is named.
- for (k = 0; k < animationKeys.length; k++) {
- if (animationKeys[k].morphTargets) {
- for (let m = 0; m < animationKeys[k].morphTargets.length; m++) {
- morphTargetNames[animationKeys[k].morphTargets[m]] = -1;
- }
- }
- } // create a track for each morph target with all zero
- // morphTargetInfluences except for the keys in which
- // the morphTarget is named.
+ for (const morphTargetName in morphTargetNames) {
+ const times = [];
+ const values = [];
- for (const morphTargetName in morphTargetNames) {
- const times = [];
- const values = [];
+ for (let m = 0; m !== animationKeys[k].morphTargets.length; ++m) {
+ const animationKey = animationKeys[k];
+ times.push(animationKey.time);
+ values.push(animationKey.morphTarget === morphTargetName ? 1 : 0);
+ }
+
+ tracks.push(new NumberKeyframeTrack('.morphTargetInfluence[' + morphTargetName + ']', times, values));
+ }
- for (let m = 0; m !== animationKeys[k].morphTargets.length; ++m) {
- const animationKey = animationKeys[k];
- times.push(animationKey.time);
- values.push(animationKey.morphTarget === morphTargetName ? 1 : 0);
+ duration = morphTargetNames.length * (fps || 1.0);
+ } else {
+ // ...assume skeletal animation
+ const boneName = '.bones[' + bones[h].name + ']';
+ addNonemptyTrack(VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks);
+ addNonemptyTrack(QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks);
+ addNonemptyTrack(VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks);
}
+ }
- tracks.push(new NumberKeyframeTrack('.morphTargetInfluence[' + morphTargetName + ']', times, values));
+ if (tracks.length === 0) {
+ return null;
}
- duration = morphTargetNames.length * (fps || 1.0);
- } else {
- // ...assume skeletal animation
- const boneName = '.bones[' + bones[h].name + ']';
- addNonemptyTrack(VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks);
- addNonemptyTrack(QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks);
- addNonemptyTrack(VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks);
+ const clip = new this(clipName, duration, tracks, blendMode);
+ return clip;
}
- }
- if (tracks.length === 0) {
- return null;
- }
+ resetDuration() {
+ const tracks = this.tracks;
+ let duration = 0;
- const clip = new this(clipName, duration, tracks, blendMode);
- return clip;
- }
+ for (let i = 0, n = tracks.length; i !== n; ++i) {
+ const track = this.tracks[i];
+ duration = Math.max(duration, track.times[track.times.length - 1]);
+ }
- resetDuration() {
- const tracks = this.tracks;
- let duration = 0;
+ this.duration = duration;
+ return this;
+ }
- for (let i = 0, n = tracks.length; i !== n; ++i) {
- const track = this.tracks[i];
- duration = Math.max(duration, track.times[track.times.length - 1]);
- }
+ trim() {
+ for (let i = 0; i < this.tracks.length; i++) {
+ this.tracks[i].trim(0, this.duration);
+ }
- this.duration = duration;
- return this;
- }
+ return this;
+ }
- trim() {
- for (let i = 0; i < this.tracks.length; i++) {
- this.tracks[i].trim(0, this.duration);
- }
+ validate() {
+ let valid = true;
- return this;
- }
+ for (let i = 0; i < this.tracks.length; i++) {
+ valid = valid && this.tracks[i].validate();
+ }
- validate() {
- let valid = true;
+ return valid;
+ }
- for (let i = 0; i < this.tracks.length; i++) {
- valid = valid && this.tracks[i].validate();
- }
+ optimize() {
+ for (let i = 0; i < this.tracks.length; i++) {
+ this.tracks[i].optimize();
+ }
- return valid;
- }
+ return this;
+ }
- optimize() {
- for (let i = 0; i < this.tracks.length; i++) {
- this.tracks[i].optimize();
- }
+ clone() {
+ const tracks = [];
- return this;
- }
+ for (let i = 0; i < this.tracks.length; i++) {
+ tracks.push(this.tracks[i].clone());
+ }
- clone() {
- const tracks = [];
+ return new this.constructor(this.name, this.duration, tracks, this.blendMode);
+ }
+
+ toJSON() {
+ return this.constructor.toJSON(this);
+ }
- for (let i = 0; i < this.tracks.length; i++) {
- tracks.push(this.tracks[i].clone());
}
- return new this.constructor(this.name, this.duration, tracks, this.blendMode);
- }
+ function getTrackTypeForValueTypeName(typeName) {
+ switch (typeName.toLowerCase()) {
+ case 'scalar':
+ case 'double':
+ case 'float':
+ case 'number':
+ case 'integer':
+ return NumberKeyframeTrack;
- toJSON() {
- return this.constructor.toJSON(this);
- }
+ case 'vector':
+ case 'vector2':
+ case 'vector3':
+ case 'vector4':
+ return VectorKeyframeTrack;
- }
+ case 'color':
+ return ColorKeyframeTrack;
- function getTrackTypeForValueTypeName(typeName) {
- switch (typeName.toLowerCase()) {
- case 'scalar':
- case 'double':
- case 'float':
- case 'number':
- case 'integer':
- return NumberKeyframeTrack;
-
- case 'vector':
- case 'vector2':
- case 'vector3':
- case 'vector4':
- return VectorKeyframeTrack;
-
- case 'color':
- return ColorKeyframeTrack;
-
- case 'quaternion':
- return QuaternionKeyframeTrack;
-
- case 'bool':
- case 'boolean':
- return BooleanKeyframeTrack;
-
- case 'string':
- return StringKeyframeTrack;
- }
+ case 'quaternion':
+ return QuaternionKeyframeTrack;
- throw new Error('THREE.KeyframeTrack: Unsupported typeName: ' + typeName);
- }
+ case 'bool':
+ case 'boolean':
+ return BooleanKeyframeTrack;
- function parseKeyframeTrack(json) {
- if (json.type === undefined) {
- throw new Error('THREE.KeyframeTrack: track type undefined, can not parse');
- }
+ case 'string':
+ return StringKeyframeTrack;
+ }
- const trackType = getTrackTypeForValueTypeName(json.type);
+ throw new Error('THREE.KeyframeTrack: Unsupported typeName: ' + typeName);
+ }
- if (json.times === undefined) {
- const times = [],
- values = [];
- AnimationUtils.flattenJSON(json.keys, times, values, 'value');
- json.times = times;
- json.values = values;
- } // derived classes can define a static parse method
+ function parseKeyframeTrack(json) {
+ if (json.type === undefined) {
+ throw new Error('THREE.KeyframeTrack: track type undefined, can not parse');
+ }
+ const trackType = getTrackTypeForValueTypeName(json.type);
- if (trackType.parse !== undefined) {
- return trackType.parse(json);
- } else {
- // by default, we assume a constructor compatible with the base
- return new trackType(json.name, json.times, json.values, json.interpolation);
- }
- }
+ if (json.times === undefined) {
+ const times = [],
+ values = [];
+ AnimationUtils.flattenJSON(json.keys, times, values, 'value');
+ json.times = times;
+ json.values = values;
+ } // derived classes can define a static parse method
- const Cache = {
- enabled: false,
- files: {},
- add: function (key, file) {
- if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Adding key:', key );
-
- this.files[key] = file;
- },
- get: function (key) {
- if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Checking key:', key );
-
- return this.files[key];
- },
- remove: function (key) {
- delete this.files[key];
- },
- clear: function () {
- this.files = {};
- }
- };
- class LoadingManager {
- constructor(onLoad, onProgress, onError) {
- const scope = this;
- let isLoading = false;
- let itemsLoaded = 0;
- let itemsTotal = 0;
- let urlModifier = undefined;
- const handlers = []; // Refer to #5689 for the reason why we don't set .onStart
- // in the constructor
+ if (trackType.parse !== undefined) {
+ return trackType.parse(json);
+ } else {
+ // by default, we assume a constructor compatible with the base
+ return new trackType(json.name, json.times, json.values, json.interpolation);
+ }
+ }
- this.onStart = undefined;
- this.onLoad = onLoad;
- this.onProgress = onProgress;
- this.onError = onError;
+ const Cache = {
+ enabled: false,
+ files: {},
+ add: function (key, file) {
+ if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Adding key:', key );
- this.itemStart = function (url) {
- itemsTotal++;
+ this.files[key] = file;
+ },
+ get: function (key) {
+ if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Checking key:', key );
- if (isLoading === false) {
- if (scope.onStart !== undefined) {
- scope.onStart(url, itemsLoaded, itemsTotal);
- }
+ return this.files[key];
+ },
+ remove: function (key) {
+ delete this.files[key];
+ },
+ clear: function () {
+ this.files = {};
}
-
- isLoading = true;
};
- this.itemEnd = function (url) {
- itemsLoaded++;
+ class LoadingManager {
+ constructor(onLoad, onProgress, onError) {
+ const scope = this;
+ let isLoading = false;
+ let itemsLoaded = 0;
+ let itemsTotal = 0;
+ let urlModifier = undefined;
+ const handlers = []; // Refer to #5689 for the reason why we don't set .onStart
+ // in the constructor
+
+ this.onStart = undefined;
+ this.onLoad = onLoad;
+ this.onProgress = onProgress;
+ this.onError = onError;
+
+ this.itemStart = function (url) {
+ itemsTotal++;
+
+ if (isLoading === false) {
+ if (scope.onStart !== undefined) {
+ scope.onStart(url, itemsLoaded, itemsTotal);
+ }
+ }
- if (scope.onProgress !== undefined) {
- scope.onProgress(url, itemsLoaded, itemsTotal);
- }
+ isLoading = true;
+ };
- if (itemsLoaded === itemsTotal) {
- isLoading = false;
+ this.itemEnd = function (url) {
+ itemsLoaded++;
- if (scope.onLoad !== undefined) {
- scope.onLoad();
- }
- }
- };
+ if (scope.onProgress !== undefined) {
+ scope.onProgress(url, itemsLoaded, itemsTotal);
+ }
- this.itemError = function (url) {
- if (scope.onError !== undefined) {
- scope.onError(url);
- }
- };
+ if (itemsLoaded === itemsTotal) {
+ isLoading = false;
- this.resolveURL = function (url) {
- if (urlModifier) {
- return urlModifier(url);
- }
+ if (scope.onLoad !== undefined) {
+ scope.onLoad();
+ }
+ }
+ };
- return url;
- };
+ this.itemError = function (url) {
+ if (scope.onError !== undefined) {
+ scope.onError(url);
+ }
+ };
- this.setURLModifier = function (transform) {
- urlModifier = transform;
- return this;
- };
+ this.resolveURL = function (url) {
+ if (urlModifier) {
+ return urlModifier(url);
+ }
- this.addHandler = function (regex, loader) {
- handlers.push(regex, loader);
- return this;
- };
+ return url;
+ };
- this.removeHandler = function (regex) {
- const index = handlers.indexOf(regex);
+ this.setURLModifier = function (transform) {
+ urlModifier = transform;
+ return this;
+ };
- if (index !== -1) {
- handlers.splice(index, 2);
- }
+ this.addHandler = function (regex, loader) {
+ handlers.push(regex, loader);
+ return this;
+ };
- return this;
- };
+ this.removeHandler = function (regex) {
+ const index = handlers.indexOf(regex);
- this.getHandler = function (file) {
- for (let i = 0, l = handlers.length; i < l; i += 2) {
- const regex = handlers[i];
- const loader = handlers[i + 1];
- if (regex.global) regex.lastIndex = 0; // see #17920
+ if (index !== -1) {
+ handlers.splice(index, 2);
+ }
- if (regex.test(file)) {
- return loader;
- }
- }
+ return this;
+ };
- return null;
- };
- }
+ this.getHandler = function (file) {
+ for (let i = 0, l = handlers.length; i < l; i += 2) {
+ const regex = handlers[i];
+ const loader = handlers[i + 1];
+ if (regex.global) regex.lastIndex = 0; // see #17920
- }
+ if (regex.test(file)) {
+ return loader;
+ }
+ }
- const DefaultLoadingManager = new LoadingManager();
+ return null;
+ };
+ }
- class Loader {
- constructor(manager) {
- this.manager = manager !== undefined ? manager : DefaultLoadingManager;
- this.crossOrigin = 'anonymous';
- this.withCredentials = false;
- this.path = '';
- this.resourcePath = '';
- this.requestHeader = {};
- }
+ }
- load() {}
+ const DefaultLoadingManager = new LoadingManager();
- loadAsync(url, onProgress) {
- const scope = this;
- return new Promise(function (resolve, reject) {
- scope.load(url, resolve, onProgress, reject);
- });
- }
+ class Loader {
+ constructor(manager) {
+ this.manager = manager !== undefined ? manager : DefaultLoadingManager;
+ this.crossOrigin = 'anonymous';
+ this.withCredentials = false;
+ this.path = '';
+ this.resourcePath = '';
+ this.requestHeader = {};
+ }
- parse() {}
+ load() {
+ }
- setCrossOrigin(crossOrigin) {
- this.crossOrigin = crossOrigin;
- return this;
- }
+ loadAsync(url, onProgress) {
+ const scope = this;
+ return new Promise(function (resolve, reject) {
+ scope.load(url, resolve, onProgress, reject);
+ });
+ }
- setWithCredentials(value) {
- this.withCredentials = value;
- return this;
- }
+ parse() {
+ }
- setPath(path) {
- this.path = path;
- return this;
- }
+ setCrossOrigin(crossOrigin) {
+ this.crossOrigin = crossOrigin;
+ return this;
+ }
- setResourcePath(resourcePath) {
- this.resourcePath = resourcePath;
- return this;
- }
+ setWithCredentials(value) {
+ this.withCredentials = value;
+ return this;
+ }
- setRequestHeader(requestHeader) {
- this.requestHeader = requestHeader;
- return this;
- }
+ setPath(path) {
+ this.path = path;
+ return this;
+ }
- }
+ setResourcePath(resourcePath) {
+ this.resourcePath = resourcePath;
+ return this;
+ }
- const loading = {};
+ setRequestHeader(requestHeader) {
+ this.requestHeader = requestHeader;
+ return this;
+ }
- class FileLoader extends Loader {
- constructor(manager) {
- super(manager);
- }
+ }
- load(url, onLoad, onProgress, onError) {
- if (url === undefined) url = '';
- if (this.path !== undefined) url = this.path + url;
- url = this.manager.resolveURL(url);
- const scope = this;
- const cached = Cache.get(url);
-
- if (cached !== undefined) {
- scope.manager.itemStart(url);
- setTimeout(function () {
- if (onLoad) onLoad(cached);
- scope.manager.itemEnd(url);
- }, 0);
- return cached;
- } // Check if request is duplicate
-
-
- if (loading[url] !== undefined) {
- loading[url].push({
- onLoad: onLoad,
- onProgress: onProgress,
- onError: onError
- });
- return;
- } // Check for data: URI
+ const loading = {};
+ class FileLoader extends Loader {
+ constructor(manager) {
+ super(manager);
+ }
- const dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/;
- const dataUriRegexResult = url.match(dataUriRegex);
- let request; // Safari can not handle Data URIs through XMLHttpRequest so process manually
+ load(url, onLoad, onProgress, onError) {
+ if (url === undefined) url = '';
+ if (this.path !== undefined) url = this.path + url;
+ url = this.manager.resolveURL(url);
+ const scope = this;
+ const cached = Cache.get(url);
- if (dataUriRegexResult) {
- const mimeType = dataUriRegexResult[1];
- const isBase64 = !!dataUriRegexResult[2];
- let data = dataUriRegexResult[3];
- data = decodeURIComponent(data);
- if (isBase64) data = atob(data);
+ if (cached !== undefined) {
+ scope.manager.itemStart(url);
+ setTimeout(function () {
+ if (onLoad) onLoad(cached);
+ scope.manager.itemEnd(url);
+ }, 0);
+ return cached;
+ } // Check if request is duplicate
- try {
- let response;
- const responseType = (this.responseType || '').toLowerCase();
- switch (responseType) {
- case 'arraybuffer':
- case 'blob':
- const view = new Uint8Array(data.length);
+ if (loading[url] !== undefined) {
+ loading[url].push({
+ onLoad: onLoad,
+ onProgress: onProgress,
+ onError: onError
+ });
+ return;
+ } // Check for data: URI
- for (let i = 0; i < data.length; i++) {
- view[i] = data.charCodeAt(i);
- }
- if (responseType === 'blob') {
- response = new Blob([view.buffer], {
- type: mimeType
- });
- } else {
- response = view.buffer;
- }
+ const dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/;
+ const dataUriRegexResult = url.match(dataUriRegex);
+ let request; // Safari can not handle Data URIs through XMLHttpRequest so process manually
- break;
+ if (dataUriRegexResult) {
+ const mimeType = dataUriRegexResult[1];
+ const isBase64 = !!dataUriRegexResult[2];
+ let data = dataUriRegexResult[3];
+ data = decodeURIComponent(data);
+ if (isBase64) data = atob(data);
- case 'document':
- const parser = new DOMParser();
- response = parser.parseFromString(data, mimeType);
- break;
+ try {
+ let response;
+ const responseType = (this.responseType || '').toLowerCase();
- case 'json':
- response = JSON.parse(data);
- break;
+ switch (responseType) {
+ case 'arraybuffer':
+ case 'blob':
+ const view = new Uint8Array(data.length);
- default:
- // 'text' or other
- response = data;
- break;
- } // Wait for next browser tick like standard XMLHttpRequest event dispatching does
+ for (let i = 0; i < data.length; i++) {
+ view[i] = data.charCodeAt(i);
+ }
+ if (responseType === 'blob') {
+ response = new Blob([view.buffer], {
+ type: mimeType
+ });
+ } else {
+ response = view.buffer;
+ }
- setTimeout(function () {
- if (onLoad) onLoad(response);
- scope.manager.itemEnd(url);
- }, 0);
- } catch (error) {
- // Wait for next browser tick like standard XMLHttpRequest event dispatching does
- setTimeout(function () {
- if (onError) onError(error);
- scope.manager.itemError(url);
- scope.manager.itemEnd(url);
- }, 0);
- }
- } else {
- // Initialise array for duplicate requests
- loading[url] = [];
- loading[url].push({
- onLoad: onLoad,
- onProgress: onProgress,
- onError: onError
- });
- request = new XMLHttpRequest();
- request.open('GET', url, true);
- request.addEventListener('load', function (event) {
- const response = this.response;
- const callbacks = loading[url];
- delete loading[url];
+ break;
- if (this.status === 200 || this.status === 0) {
- // Some browsers return HTTP Status 0 when using non-http protocol
- // e.g. 'file://' or 'data://'. Handle as success.
- if (this.status === 0) console.warn('THREE.FileLoader: HTTP Status 0 received.'); // Add to cache only on HTTP success, so that we do not cache
- // error response bodies as proper responses to requests.
+ case 'document':
+ const parser = new DOMParser();
+ response = parser.parseFromString(data, mimeType);
+ break;
- Cache.add(url, response);
+ case 'json':
+ response = JSON.parse(data);
+ break;
- for (let i = 0, il = callbacks.length; i < il; i++) {
- const callback = callbacks[i];
- if (callback.onLoad) callback.onLoad(response);
+ default:
+ // 'text' or other
+ response = data;
+ break;
+ } // Wait for next browser tick like standard XMLHttpRequest event dispatching does
+
+
+ setTimeout(function () {
+ if (onLoad) onLoad(response);
+ scope.manager.itemEnd(url);
+ }, 0);
+ } catch (error) {
+ // Wait for next browser tick like standard XMLHttpRequest event dispatching does
+ setTimeout(function () {
+ if (onError) onError(error);
+ scope.manager.itemError(url);
+ scope.manager.itemEnd(url);
+ }, 0);
}
-
- scope.manager.itemEnd(url);
} else {
- for (let i = 0, il = callbacks.length; i < il; i++) {
- const callback = callbacks[i];
- if (callback.onError) callback.onError(event);
- }
+ // Initialise array for duplicate requests
+ loading[url] = [];
+ loading[url].push({
+ onLoad: onLoad,
+ onProgress: onProgress,
+ onError: onError
+ });
+ request = new XMLHttpRequest();
+ request.open('GET', url, true);
+ request.addEventListener('load', function (event) {
+ const response = this.response;
+ const callbacks = loading[url];
+ delete loading[url];
+
+ if (this.status === 200 || this.status === 0) {
+ // Some browsers return HTTP Status 0 when using non-http protocol
+ // e.g. 'file://' or 'data://'. Handle as success.
+ if (this.status === 0) console.warn('THREE.FileLoader: HTTP Status 0 received.'); // Add to cache only on HTTP success, so that we do not cache
+ // error response bodies as proper responses to requests.
+
+ Cache.add(url, response);
+
+ for (let i = 0, il = callbacks.length; i < il; i++) {
+ const callback = callbacks[i];
+ if (callback.onLoad) callback.onLoad(response);
+ }
- scope.manager.itemError(url);
- scope.manager.itemEnd(url);
- }
- }, false);
- request.addEventListener('progress', function (event) {
- const callbacks = loading[url];
+ scope.manager.itemEnd(url);
+ } else {
+ for (let i = 0, il = callbacks.length; i < il; i++) {
+ const callback = callbacks[i];
+ if (callback.onError) callback.onError(event);
+ }
- for (let i = 0, il = callbacks.length; i < il; i++) {
- const callback = callbacks[i];
- if (callback.onProgress) callback.onProgress(event);
- }
- }, false);
- request.addEventListener('error', function (event) {
- const callbacks = loading[url];
- delete loading[url];
+ scope.manager.itemError(url);
+ scope.manager.itemEnd(url);
+ }
+ }, false);
+ request.addEventListener('progress', function (event) {
+ const callbacks = loading[url];
- for (let i = 0, il = callbacks.length; i < il; i++) {
- const callback = callbacks[i];
- if (callback.onError) callback.onError(event);
- }
+ for (let i = 0, il = callbacks.length; i < il; i++) {
+ const callback = callbacks[i];
+ if (callback.onProgress) callback.onProgress(event);
+ }
+ }, false);
+ request.addEventListener('error', function (event) {
+ const callbacks = loading[url];
+ delete loading[url];
+
+ for (let i = 0, il = callbacks.length; i < il; i++) {
+ const callback = callbacks[i];
+ if (callback.onError) callback.onError(event);
+ }
+
+ scope.manager.itemError(url);
+ scope.manager.itemEnd(url);
+ }, false);
+ request.addEventListener('abort', function (event) {
+ const callbacks = loading[url];
+ delete loading[url];
+
+ for (let i = 0, il = callbacks.length; i < il; i++) {
+ const callback = callbacks[i];
+ if (callback.onError) callback.onError(event);
+ }
- scope.manager.itemError(url);
- scope.manager.itemEnd(url);
- }, false);
- request.addEventListener('abort', function (event) {
- const callbacks = loading[url];
- delete loading[url];
+ scope.manager.itemError(url);
+ scope.manager.itemEnd(url);
+ }, false);
+ if (this.responseType !== undefined) request.responseType = this.responseType;
+ if (this.withCredentials !== undefined) request.withCredentials = this.withCredentials;
+ if (request.overrideMimeType) request.overrideMimeType(this.mimeType !== undefined ? this.mimeType : 'text/plain');
- for (let i = 0, il = callbacks.length; i < il; i++) {
- const callback = callbacks[i];
- if (callback.onError) callback.onError(event);
+ for (const header in this.requestHeader) {
+ request.setRequestHeader(header, this.requestHeader[header]);
+ }
+
+ request.send(null);
}
- scope.manager.itemError(url);
- scope.manager.itemEnd(url);
- }, false);
- if (this.responseType !== undefined) request.responseType = this.responseType;
- if (this.withCredentials !== undefined) request.withCredentials = this.withCredentials;
- if (request.overrideMimeType) request.overrideMimeType(this.mimeType !== undefined ? this.mimeType : 'text/plain');
+ scope.manager.itemStart(url);
+ return request;
+ }
+
+ setResponseType(value) {
+ this.responseType = value;
+ return this;
+ }
- for (const header in this.requestHeader) {
- request.setRequestHeader(header, this.requestHeader[header]);
+ setMimeType(value) {
+ this.mimeType = value;
+ return this;
}
- request.send(null);
}
- scope.manager.itemStart(url);
- return request;
- }
-
- setResponseType(value) {
- this.responseType = value;
- return this;
- }
+ class AnimationLoader extends Loader {
+ constructor(manager) {
+ super(manager);
+ }
- setMimeType(value) {
- this.mimeType = value;
- return this;
- }
+ load(url, onLoad, onProgress, onError) {
+ const scope = this;
+ const loader = new FileLoader(this.manager);
+ loader.setPath(this.path);
+ loader.setRequestHeader(this.requestHeader);
+ loader.setWithCredentials(this.withCredentials);
+ loader.load(url, function (text) {
+ try {
+ onLoad(scope.parse(JSON.parse(text)));
+ } catch (e) {
+ if (onError) {
+ onError(e);
+ } else {
+ console.error(e);
+ }
- }
+ scope.manager.itemError(url);
+ }
+ }, onProgress, onError);
+ }
- class AnimationLoader extends Loader {
- constructor(manager) {
- super(manager);
- }
+ parse(json) {
+ const animations = [];
- load(url, onLoad, onProgress, onError) {
- const scope = this;
- const loader = new FileLoader(this.manager);
- loader.setPath(this.path);
- loader.setRequestHeader(this.requestHeader);
- loader.setWithCredentials(this.withCredentials);
- loader.load(url, function (text) {
- try {
- onLoad(scope.parse(JSON.parse(text)));
- } catch (e) {
- if (onError) {
- onError(e);
- } else {
- console.error(e);
+ for (let i = 0; i < json.length; i++) {
+ const clip = AnimationClip.parse(json[i]);
+ animations.push(clip);
}
- scope.manager.itemError(url);
+ return animations;
}
- }, onProgress, onError);
- }
-
- parse(json) {
- const animations = [];
- for (let i = 0; i < json.length; i++) {
- const clip = AnimationClip.parse(json[i]);
- animations.push(clip);
}
- return animations;
- }
+ /**
+ * Abstract Base class to block based textures loader (dds, pvr, ...)
+ *
+ * Sub classes have to implement the parse() method which will be used in load().
+ */
- }
+ class CompressedTextureLoader extends Loader {
+ constructor(manager) {
+ super(manager);
+ }
+
+ load(url, onLoad, onProgress, onError) {
+ const scope = this;
+ const images = [];
+ const texture = new CompressedTexture();
+ const loader = new FileLoader(this.manager);
+ loader.setPath(this.path);
+ loader.setResponseType('arraybuffer');
+ loader.setRequestHeader(this.requestHeader);
+ loader.setWithCredentials(scope.withCredentials);
+ let loaded = 0;
+
+ function loadTexture(i) {
+ loader.load(url[i], function (buffer) {
+ const texDatas = scope.parse(buffer, true);
+ images[i] = {
+ width: texDatas.width,
+ height: texDatas.height,
+ format: texDatas.format,
+ mipmaps: texDatas.mipmaps
+ };
+ loaded += 1;
+
+ if (loaded === 6) {
+ if (texDatas.mipmapCount === 1) texture.minFilter = LinearFilter;
+ texture.image = images;
+ texture.format = texDatas.format;
+ texture.needsUpdate = true;
+ if (onLoad) onLoad(texture);
+ }
+ }, onProgress, onError);
+ }
- /**
- * Abstract Base class to block based textures loader (dds, pvr, ...)
- *
- * Sub classes have to implement the parse() method which will be used in load().
- */
+ if (Array.isArray(url)) {
+ for (let i = 0, il = url.length; i < il; ++i) {
+ loadTexture(i);
+ }
+ } else {
+ // compressed cubemap texture stored in a single DDS file
+ loader.load(url, function (buffer) {
+ const texDatas = scope.parse(buffer, true);
+
+ if (texDatas.isCubemap) {
+ const faces = texDatas.mipmaps.length / texDatas.mipmapCount;
+
+ for (let f = 0; f < faces; f++) {
+ images[f] = {
+ mipmaps: []
+ };
+
+ for (let i = 0; i < texDatas.mipmapCount; i++) {
+ images[f].mipmaps.push(texDatas.mipmaps[f * texDatas.mipmapCount + i]);
+ images[f].format = texDatas.format;
+ images[f].width = texDatas.width;
+ images[f].height = texDatas.height;
+ }
+ }
- class CompressedTextureLoader extends Loader {
- constructor(manager) {
- super(manager);
- }
+ texture.image = images;
+ } else {
+ texture.image.width = texDatas.width;
+ texture.image.height = texDatas.height;
+ texture.mipmaps = texDatas.mipmaps;
+ }
- load(url, onLoad, onProgress, onError) {
- const scope = this;
- const images = [];
- const texture = new CompressedTexture();
- const loader = new FileLoader(this.manager);
- loader.setPath(this.path);
- loader.setResponseType('arraybuffer');
- loader.setRequestHeader(this.requestHeader);
- loader.setWithCredentials(scope.withCredentials);
- let loaded = 0;
-
- function loadTexture(i) {
- loader.load(url[i], function (buffer) {
- const texDatas = scope.parse(buffer, true);
- images[i] = {
- width: texDatas.width,
- height: texDatas.height,
- format: texDatas.format,
- mipmaps: texDatas.mipmaps
- };
- loaded += 1;
+ if (texDatas.mipmapCount === 1) {
+ texture.minFilter = LinearFilter;
+ }
- if (loaded === 6) {
- if (texDatas.mipmapCount === 1) texture.minFilter = LinearFilter;
- texture.image = images;
- texture.format = texDatas.format;
- texture.needsUpdate = true;
- if (onLoad) onLoad(texture);
+ texture.format = texDatas.format;
+ texture.needsUpdate = true;
+ if (onLoad) onLoad(texture);
+ }, onProgress, onError);
}
- }, onProgress, onError);
- }
- if (Array.isArray(url)) {
- for (let i = 0, il = url.length; i < il; ++i) {
- loadTexture(i);
+ return texture;
}
- } else {
- // compressed cubemap texture stored in a single DDS file
- loader.load(url, function (buffer) {
- const texDatas = scope.parse(buffer, true);
- if (texDatas.isCubemap) {
- const faces = texDatas.mipmaps.length / texDatas.mipmapCount;
+ }
- for (let f = 0; f < faces; f++) {
- images[f] = {
- mipmaps: []
- };
+ class ImageLoader extends Loader {
+ constructor(manager) {
+ super(manager);
+ }
- for (let i = 0; i < texDatas.mipmapCount; i++) {
- images[f].mipmaps.push(texDatas.mipmaps[f * texDatas.mipmapCount + i]);
- images[f].format = texDatas.format;
- images[f].width = texDatas.width;
- images[f].height = texDatas.height;
- }
- }
+ load(url, onLoad, onProgress, onError) {
+ if (this.path !== undefined) url = this.path + url;
+ url = this.manager.resolveURL(url);
+ const scope = this;
+ const cached = Cache.get(url);
- texture.image = images;
- } else {
- texture.image.width = texDatas.width;
- texture.image.height = texDatas.height;
- texture.mipmaps = texDatas.mipmaps;
+ if (cached !== undefined) {
+ scope.manager.itemStart(url);
+ setTimeout(function () {
+ if (onLoad) onLoad(cached);
+ scope.manager.itemEnd(url);
+ }, 0);
+ return cached;
}
- if (texDatas.mipmapCount === 1) {
- texture.minFilter = LinearFilter;
- }
+ const image = document.createElementNS('http://www.w3.org/1999/xhtml', 'img');
- texture.format = texDatas.format;
- texture.needsUpdate = true;
- if (onLoad) onLoad(texture);
- }, onProgress, onError);
- }
+ function onImageLoad() {
+ image.removeEventListener('load', onImageLoad, false);
+ image.removeEventListener('error', onImageError, false);
+ Cache.add(url, this);
+ if (onLoad) onLoad(this);
+ scope.manager.itemEnd(url);
+ }
- return texture;
- }
+ function onImageError(event) {
+ image.removeEventListener('load', onImageLoad, false);
+ image.removeEventListener('error', onImageError, false);
+ if (onError) onError(event);
+ scope.manager.itemError(url);
+ scope.manager.itemEnd(url);
+ }
- }
+ image.addEventListener('load', onImageLoad, false);
+ image.addEventListener('error', onImageError, false);
- class ImageLoader extends Loader {
- constructor(manager) {
- super(manager);
- }
+ if (url.substr(0, 5) !== 'data:') {
+ if (this.crossOrigin !== undefined) image.crossOrigin = this.crossOrigin;
+ }
- load(url, onLoad, onProgress, onError) {
- if (this.path !== undefined) url = this.path + url;
- url = this.manager.resolveURL(url);
- const scope = this;
- const cached = Cache.get(url);
+ scope.manager.itemStart(url);
+ image.src = url;
+ return image;
+ }
- if (cached !== undefined) {
- scope.manager.itemStart(url);
- setTimeout(function () {
- if (onLoad) onLoad(cached);
- scope.manager.itemEnd(url);
- }, 0);
- return cached;
}
- const image = document.createElementNS('http://www.w3.org/1999/xhtml', 'img');
+ class CubeTextureLoader extends Loader {
+ constructor(manager) {
+ super(manager);
+ }
- function onImageLoad() {
- image.removeEventListener('load', onImageLoad, false);
- image.removeEventListener('error', onImageError, false);
- Cache.add(url, this);
- if (onLoad) onLoad(this);
- scope.manager.itemEnd(url);
- }
+ load(urls, onLoad, onProgress, onError) {
+ const texture = new CubeTexture();
+ const loader = new ImageLoader(this.manager);
+ loader.setCrossOrigin(this.crossOrigin);
+ loader.setPath(this.path);
+ let loaded = 0;
- function onImageError(event) {
- image.removeEventListener('load', onImageLoad, false);
- image.removeEventListener('error', onImageError, false);
- if (onError) onError(event);
- scope.manager.itemError(url);
- scope.manager.itemEnd(url);
- }
+ function loadTexture(i) {
+ loader.load(urls[i], function (image) {
+ texture.images[i] = image;
+ loaded++;
- image.addEventListener('load', onImageLoad, false);
- image.addEventListener('error', onImageError, false);
+ if (loaded === 6) {
+ texture.needsUpdate = true;
+ if (onLoad) onLoad(texture);
+ }
+ }, undefined, onError);
+ }
- if (url.substr(0, 5) !== 'data:') {
- if (this.crossOrigin !== undefined) image.crossOrigin = this.crossOrigin;
- }
+ for (let i = 0; i < urls.length; ++i) {
+ loadTexture(i);
+ }
- scope.manager.itemStart(url);
- image.src = url;
- return image;
- }
+ return texture;
+ }
- }
+ }
- class CubeTextureLoader extends Loader {
- constructor(manager) {
- super(manager);
- }
+ /**
+ * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)
+ *
+ * Sub classes have to implement the parse() method which will be used in load().
+ */
- load(urls, onLoad, onProgress, onError) {
- const texture = new CubeTexture();
- const loader = new ImageLoader(this.manager);
- loader.setCrossOrigin(this.crossOrigin);
- loader.setPath(this.path);
- let loaded = 0;
+ class DataTextureLoader extends Loader {
+ constructor(manager) {
+ super(manager);
+ }
+
+ load(url, onLoad, onProgress, onError) {
+ const scope = this;
+ const texture = new DataTexture();
+ const loader = new FileLoader(this.manager);
+ loader.setResponseType('arraybuffer');
+ loader.setRequestHeader(this.requestHeader);
+ loader.setPath(this.path);
+ loader.setWithCredentials(scope.withCredentials);
+ loader.load(url, function (buffer) {
+ const texData = scope.parse(buffer);
+ if (!texData) return;
+
+ if (texData.image !== undefined) {
+ texture.image = texData.image;
+ } else if (texData.data !== undefined) {
+ texture.image.width = texData.width;
+ texture.image.height = texData.height;
+ texture.image.data = texData.data;
+ }
- function loadTexture(i) {
- loader.load(urls[i], function (image) {
- texture.images[i] = image;
- loaded++;
+ texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping;
+ texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping;
+ texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter;
+ texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter;
+ texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1;
- if (loaded === 6) {
- texture.needsUpdate = true;
- if (onLoad) onLoad(texture);
- }
- }, undefined, onError);
- }
+ if (texData.encoding !== undefined) {
+ texture.encoding = texData.encoding;
+ }
- for (let i = 0; i < urls.length; ++i) {
- loadTexture(i);
- }
+ if (texData.flipY !== undefined) {
+ texture.flipY = texData.flipY;
+ }
- return texture;
- }
+ if (texData.format !== undefined) {
+ texture.format = texData.format;
+ }
- }
+ if (texData.type !== undefined) {
+ texture.type = texData.type;
+ }
- /**
- * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)
- *
- * Sub classes have to implement the parse() method which will be used in load().
- */
+ if (texData.mipmaps !== undefined) {
+ texture.mipmaps = texData.mipmaps;
+ texture.minFilter = LinearMipmapLinearFilter; // presumably...
+ }
- class DataTextureLoader extends Loader {
- constructor(manager) {
- super(manager);
- }
+ if (texData.mipmapCount === 1) {
+ texture.minFilter = LinearFilter;
+ }
- load(url, onLoad, onProgress, onError) {
- const scope = this;
- const texture = new DataTexture();
- const loader = new FileLoader(this.manager);
- loader.setResponseType('arraybuffer');
- loader.setRequestHeader(this.requestHeader);
- loader.setPath(this.path);
- loader.setWithCredentials(scope.withCredentials);
- loader.load(url, function (buffer) {
- const texData = scope.parse(buffer);
- if (!texData) return;
+ if (texData.generateMipmaps !== undefined) {
+ texture.generateMipmaps = texData.generateMipmaps;
+ }
- if (texData.image !== undefined) {
- texture.image = texData.image;
- } else if (texData.data !== undefined) {
- texture.image.width = texData.width;
- texture.image.height = texData.height;
- texture.image.data = texData.data;
+ texture.needsUpdate = true;
+ if (onLoad) onLoad(texture, texData);
+ }, onProgress, onError);
+ return texture;
}
- texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping;
- texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping;
- texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter;
- texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter;
- texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1;
+ }
- if (texData.encoding !== undefined) {
- texture.encoding = texData.encoding;
+ class TextureLoader extends Loader {
+ constructor(manager) {
+ super(manager);
}
- if (texData.flipY !== undefined) {
- texture.flipY = texData.flipY;
- }
+ load(url, onLoad, onProgress, onError) {
+ const texture = new Texture();
+ const loader = new ImageLoader(this.manager);
+ loader.setCrossOrigin(this.crossOrigin);
+ loader.setPath(this.path);
+ loader.load(url, function (image) {
+ texture.image = image; // JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB.
- if (texData.format !== undefined) {
- texture.format = texData.format;
- }
+ const isJPEG = url.search(/\.jpe?g($|\?)/i) > 0 || url.search(/^data\:image\/jpeg/) === 0;
+ texture.format = isJPEG ? RGBFormat : RGBAFormat;
+ texture.needsUpdate = true;
- if (texData.type !== undefined) {
- texture.type = texData.type;
+ if (onLoad !== undefined) {
+ onLoad(texture);
+ }
+ }, onProgress, onError);
+ return texture;
}
- if (texData.mipmaps !== undefined) {
- texture.mipmaps = texData.mipmaps;
- texture.minFilter = LinearMipmapLinearFilter; // presumably...
- }
+ }
+
+ /**************************************************************
+ * Curved Path - a curve path is simply a array of connected
+ * curves, but retains the api of a curve
+ **************************************************************/
- if (texData.mipmapCount === 1) {
- texture.minFilter = LinearFilter;
+ class CurvePath extends Curve {
+ constructor() {
+ super();
+ this.type = 'CurvePath';
+ this.curves = [];
+ this.autoClose = false; // Automatically closes the path
}
- if (texData.generateMipmaps !== undefined) {
- texture.generateMipmaps = texData.generateMipmaps;
+ add(curve) {
+ this.curves.push(curve);
}
- texture.needsUpdate = true;
- if (onLoad) onLoad(texture, texData);
- }, onProgress, onError);
- return texture;
- }
+ closePath() {
+ // Add a line curve if start and end of lines are not connected
+ const startPoint = this.curves[0].getPoint(0);
+ const endPoint = this.curves[this.curves.length - 1].getPoint(1);
- }
+ if (!startPoint.equals(endPoint)) {
+ this.curves.push(new LineCurve(endPoint, startPoint));
+ }
+ } // To get accurate point with reference to
+ // entire path distance at time t,
+ // following has to be done:
+ // 1. Length of each sub path have to be known
+ // 2. Locate and identify type of curve
+ // 3. Get t for the curve
+ // 4. Return curve.getPointAt(t')
+
+
+ getPoint(t) {
+ const d = t * this.getLength();
+ const curveLengths = this.getCurveLengths();
+ let i = 0; // To think about boundaries points.
+
+ while (i < curveLengths.length) {
+ if (curveLengths[i] >= d) {
+ const diff = curveLengths[i] - d;
+ const curve = this.curves[i];
+ const segmentLength = curve.getLength();
+ const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength;
+ return curve.getPointAt(u);
+ }
- class TextureLoader extends Loader {
- constructor(manager) {
- super(manager);
- }
+ i++;
+ }
- load(url, onLoad, onProgress, onError) {
- const texture = new Texture();
- const loader = new ImageLoader(this.manager);
- loader.setCrossOrigin(this.crossOrigin);
- loader.setPath(this.path);
- loader.load(url, function (image) {
- texture.image = image; // JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB.
+ return null; // loop where sum != 0, sum > d , sum+1 <d
+ } // We cannot use the default THREE.Curve getPoint() with getLength() because in
+ // THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath
+ // getPoint() depends on getLength
- const isJPEG = url.search(/\.jpe?g($|\?)/i) > 0 || url.search(/^data\:image\/jpeg/) === 0;
- texture.format = isJPEG ? RGBFormat : RGBAFormat;
- texture.needsUpdate = true;
- if (onLoad !== undefined) {
- onLoad(texture);
- }
- }, onProgress, onError);
- return texture;
- }
+ getLength() {
+ const lens = this.getCurveLengths();
+ return lens[lens.length - 1];
+ } // cacheLengths must be recalculated.
- }
- /**************************************************************
- * Curved Path - a curve path is simply a array of connected
- * curves, but retains the api of a curve
- **************************************************************/
-
- class CurvePath extends Curve {
- constructor() {
- super();
- this.type = 'CurvePath';
- this.curves = [];
- this.autoClose = false; // Automatically closes the path
- }
+ updateArcLengths() {
+ this.needsUpdate = true;
+ this.cacheLengths = null;
+ this.getCurveLengths();
+ } // Compute lengths and cache them
+ // We cannot overwrite getLengths() because UtoT mapping uses it.
- add(curve) {
- this.curves.push(curve);
- }
- closePath() {
- // Add a line curve if start and end of lines are not connected
- const startPoint = this.curves[0].getPoint(0);
- const endPoint = this.curves[this.curves.length - 1].getPoint(1);
+ getCurveLengths() {
+ // We use cache values if curves and cache array are same length
+ if (this.cacheLengths && this.cacheLengths.length === this.curves.length) {
+ return this.cacheLengths;
+ } // Get length of sub-curve
+ // Push sums into cached array
- if (!startPoint.equals(endPoint)) {
- this.curves.push(new LineCurve(endPoint, startPoint));
- }
- } // To get accurate point with reference to
- // entire path distance at time t,
- // following has to be done:
- // 1. Length of each sub path have to be known
- // 2. Locate and identify type of curve
- // 3. Get t for the curve
- // 4. Return curve.getPointAt(t')
+ const lengths = [];
+ let sums = 0;
- getPoint(t) {
- const d = t * this.getLength();
- const curveLengths = this.getCurveLengths();
- let i = 0; // To think about boundaries points.
+ for (let i = 0, l = this.curves.length; i < l; i++) {
+ sums += this.curves[i].getLength();
+ lengths.push(sums);
+ }
- while (i < curveLengths.length) {
- if (curveLengths[i] >= d) {
- const diff = curveLengths[i] - d;
- const curve = this.curves[i];
- const segmentLength = curve.getLength();
- const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength;
- return curve.getPointAt(u);
+ this.cacheLengths = lengths;
+ return lengths;
}
- i++;
- }
-
- return null; // loop where sum != 0, sum > d , sum+1 <d
- } // We cannot use the default THREE.Curve getPoint() with getLength() because in
- // THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath
- // getPoint() depends on getLength
+ getSpacedPoints(divisions = 40) {
+ const points = [];
+ for (let i = 0; i <= divisions; i++) {
+ points.push(this.getPoint(i / divisions));
+ }
- getLength() {
- const lens = this.getCurveLengths();
- return lens[lens.length - 1];
- } // cacheLengths must be recalculated.
+ if (this.autoClose) {
+ points.push(points[0]);
+ }
+ return points;
+ }
- updateArcLengths() {
- this.needsUpdate = true;
- this.cacheLengths = null;
- this.getCurveLengths();
- } // Compute lengths and cache them
- // We cannot overwrite getLengths() because UtoT mapping uses it.
+ getPoints(divisions = 12) {
+ const points = [];
+ let last;
+ for (let i = 0, curves = this.curves; i < curves.length; i++) {
+ const curve = curves[i];
+ const resolution = curve && curve.isEllipseCurve ? divisions * 2 : curve && (curve.isLineCurve || curve.isLineCurve3) ? 1 : curve && curve.isSplineCurve ? divisions * curve.points.length : divisions;
+ const pts = curve.getPoints(resolution);
- getCurveLengths() {
- // We use cache values if curves and cache array are same length
- if (this.cacheLengths && this.cacheLengths.length === this.curves.length) {
- return this.cacheLengths;
- } // Get length of sub-curve
- // Push sums into cached array
+ for (let j = 0; j < pts.length; j++) {
+ const point = pts[j];
+ if (last && last.equals(point)) continue; // ensures no consecutive points are duplicates
+ points.push(point);
+ last = point;
+ }
+ }
- const lengths = [];
- let sums = 0;
+ if (this.autoClose && points.length > 1 && !points[points.length - 1].equals(points[0])) {
+ points.push(points[0]);
+ }
- for (let i = 0, l = this.curves.length; i < l; i++) {
- sums += this.curves[i].getLength();
- lengths.push(sums);
- }
+ return points;
+ }
- this.cacheLengths = lengths;
- return lengths;
- }
+ copy(source) {
+ super.copy(source);
+ this.curves = [];
- getSpacedPoints(divisions = 40) {
- const points = [];
+ for (let i = 0, l = source.curves.length; i < l; i++) {
+ const curve = source.curves[i];
+ this.curves.push(curve.clone());
+ }
- for (let i = 0; i <= divisions; i++) {
- points.push(this.getPoint(i / divisions));
- }
+ this.autoClose = source.autoClose;
+ return this;
+ }
- if (this.autoClose) {
- points.push(points[0]);
- }
+ toJSON() {
+ const data = super.toJSON();
+ data.autoClose = this.autoClose;
+ data.curves = [];
- return points;
- }
+ for (let i = 0, l = this.curves.length; i < l; i++) {
+ const curve = this.curves[i];
+ data.curves.push(curve.toJSON());
+ }
- getPoints(divisions = 12) {
- const points = [];
- let last;
+ return data;
+ }
- for (let i = 0, curves = this.curves; i < curves.length; i++) {
- const curve = curves[i];
- const resolution = curve && curve.isEllipseCurve ? divisions * 2 : curve && (curve.isLineCurve || curve.isLineCurve3) ? 1 : curve && curve.isSplineCurve ? divisions * curve.points.length : divisions;
- const pts = curve.getPoints(resolution);
+ fromJSON(json) {
+ super.fromJSON(json);
+ this.autoClose = json.autoClose;
+ this.curves = [];
- for (let j = 0; j < pts.length; j++) {
- const point = pts[j];
- if (last && last.equals(point)) continue; // ensures no consecutive points are duplicates
+ for (let i = 0, l = json.curves.length; i < l; i++) {
+ const curve = json.curves[i];
+ this.curves.push(new Curves[curve.type]().fromJSON(curve));
+ }
- points.push(point);
- last = point;
+ return this;
}
- }
- if (this.autoClose && points.length > 1 && !points[points.length - 1].equals(points[0])) {
- points.push(points[0]);
}
- return points;
- }
+ class Path extends CurvePath {
+ constructor(points) {
+ super();
+ this.type = 'Path';
+ this.currentPoint = new Vector2();
- copy(source) {
- super.copy(source);
- this.curves = [];
+ if (points) {
+ this.setFromPoints(points);
+ }
+ }
- for (let i = 0, l = source.curves.length; i < l; i++) {
- const curve = source.curves[i];
- this.curves.push(curve.clone());
- }
+ setFromPoints(points) {
+ this.moveTo(points[0].x, points[0].y);
- this.autoClose = source.autoClose;
- return this;
- }
+ for (let i = 1, l = points.length; i < l; i++) {
+ this.lineTo(points[i].x, points[i].y);
+ }
- toJSON() {
- const data = super.toJSON();
- data.autoClose = this.autoClose;
- data.curves = [];
+ return this;
+ }
- for (let i = 0, l = this.curves.length; i < l; i++) {
- const curve = this.curves[i];
- data.curves.push(curve.toJSON());
- }
+ moveTo(x, y) {
+ this.currentPoint.set(x, y); // TODO consider referencing vectors instead of copying?
- return data;
- }
+ return this;
+ }
- fromJSON(json) {
- super.fromJSON(json);
- this.autoClose = json.autoClose;
- this.curves = [];
+ lineTo(x, y) {
+ const curve = new LineCurve(this.currentPoint.clone(), new Vector2(x, y));
+ this.curves.push(curve);
+ this.currentPoint.set(x, y);
+ return this;
+ }
- for (let i = 0, l = json.curves.length; i < l; i++) {
- const curve = json.curves[i];
- this.curves.push(new Curves[curve.type]().fromJSON(curve));
- }
+ quadraticCurveTo(aCPx, aCPy, aX, aY) {
+ const curve = new QuadraticBezierCurve(this.currentPoint.clone(), new Vector2(aCPx, aCPy), new Vector2(aX, aY));
+ this.curves.push(curve);
+ this.currentPoint.set(aX, aY);
+ return this;
+ }
- return this;
- }
+ bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) {
+ const curve = new CubicBezierCurve(this.currentPoint.clone(), new Vector2(aCP1x, aCP1y), new Vector2(aCP2x, aCP2y), new Vector2(aX, aY));
+ this.curves.push(curve);
+ this.currentPoint.set(aX, aY);
+ return this;
+ }
- }
+ splineThru(pts
+ /*Array of Vector*/
+ ) {
+ const npts = [this.currentPoint.clone()].concat(pts);
+ const curve = new SplineCurve(npts);
+ this.curves.push(curve);
+ this.currentPoint.copy(pts[pts.length - 1]);
+ return this;
+ }
- class Path extends CurvePath {
- constructor(points) {
- super();
- this.type = 'Path';
- this.currentPoint = new Vector2();
+ arc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
+ const x0 = this.currentPoint.x;
+ const y0 = this.currentPoint.y;
+ this.absarc(aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise);
+ return this;
+ }
- if (points) {
- this.setFromPoints(points);
- }
- }
+ absarc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
+ this.absellipse(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise);
+ return this;
+ }
- setFromPoints(points) {
- this.moveTo(points[0].x, points[0].y);
+ ellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) {
+ const x0 = this.currentPoint.x;
+ const y0 = this.currentPoint.y;
+ this.absellipse(aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation);
+ return this;
+ }
- for (let i = 1, l = points.length; i < l; i++) {
- this.lineTo(points[i].x, points[i].y);
- }
+ absellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) {
+ const curve = new EllipseCurve(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation);
- return this;
- }
+ if (this.curves.length > 0) {
+ // if a previous curve is present, attempt to join
+ const firstPoint = curve.getPoint(0);
- moveTo(x, y) {
- this.currentPoint.set(x, y); // TODO consider referencing vectors instead of copying?
+ if (!firstPoint.equals(this.currentPoint)) {
+ this.lineTo(firstPoint.x, firstPoint.y);
+ }
+ }
- return this;
- }
+ this.curves.push(curve);
+ const lastPoint = curve.getPoint(1);
+ this.currentPoint.copy(lastPoint);
+ return this;
+ }
- lineTo(x, y) {
- const curve = new LineCurve(this.currentPoint.clone(), new Vector2(x, y));
- this.curves.push(curve);
- this.currentPoint.set(x, y);
- return this;
- }
+ copy(source) {
+ super.copy(source);
+ this.currentPoint.copy(source.currentPoint);
+ return this;
+ }
- quadraticCurveTo(aCPx, aCPy, aX, aY) {
- const curve = new QuadraticBezierCurve(this.currentPoint.clone(), new Vector2(aCPx, aCPy), new Vector2(aX, aY));
- this.curves.push(curve);
- this.currentPoint.set(aX, aY);
- return this;
- }
+ toJSON() {
+ const data = super.toJSON();
+ data.currentPoint = this.currentPoint.toArray();
+ return data;
+ }
- bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) {
- const curve = new CubicBezierCurve(this.currentPoint.clone(), new Vector2(aCP1x, aCP1y), new Vector2(aCP2x, aCP2y), new Vector2(aX, aY));
- this.curves.push(curve);
- this.currentPoint.set(aX, aY);
- return this;
- }
+ fromJSON(json) {
+ super.fromJSON(json);
+ this.currentPoint.fromArray(json.currentPoint);
+ return this;
+ }
- splineThru(pts
- /*Array of Vector*/
- ) {
- const npts = [this.currentPoint.clone()].concat(pts);
- const curve = new SplineCurve(npts);
- this.curves.push(curve);
- this.currentPoint.copy(pts[pts.length - 1]);
- return this;
- }
+ }
- arc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
- const x0 = this.currentPoint.x;
- const y0 = this.currentPoint.y;
- this.absarc(aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise);
- return this;
- }
+ class Shape extends Path {
+ constructor(points) {
+ super(points);
+ this.uuid = generateUUID();
+ this.type = 'Shape';
+ this.holes = [];
+ }
- absarc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
- this.absellipse(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise);
- return this;
- }
+ getPointsHoles(divisions) {
+ const holesPts = [];
- ellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) {
- const x0 = this.currentPoint.x;
- const y0 = this.currentPoint.y;
- this.absellipse(aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation);
- return this;
- }
+ for (let i = 0, l = this.holes.length; i < l; i++) {
+ holesPts[i] = this.holes[i].getPoints(divisions);
+ }
- absellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) {
- const curve = new EllipseCurve(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation);
+ return holesPts;
+ } // get points of shape and holes (keypoints based on segments parameter)
- if (this.curves.length > 0) {
- // if a previous curve is present, attempt to join
- const firstPoint = curve.getPoint(0);
- if (!firstPoint.equals(this.currentPoint)) {
- this.lineTo(firstPoint.x, firstPoint.y);
+ extractPoints(divisions) {
+ return {
+ shape: this.getPoints(divisions),
+ holes: this.getPointsHoles(divisions)
+ };
}
- }
- this.curves.push(curve);
- const lastPoint = curve.getPoint(1);
- this.currentPoint.copy(lastPoint);
- return this;
- }
+ copy(source) {
+ super.copy(source);
+ this.holes = [];
- copy(source) {
- super.copy(source);
- this.currentPoint.copy(source.currentPoint);
- return this;
- }
+ for (let i = 0, l = source.holes.length; i < l; i++) {
+ const hole = source.holes[i];
+ this.holes.push(hole.clone());
+ }
- toJSON() {
- const data = super.toJSON();
- data.currentPoint = this.currentPoint.toArray();
- return data;
- }
+ return this;
+ }
- fromJSON(json) {
- super.fromJSON(json);
- this.currentPoint.fromArray(json.currentPoint);
- return this;
- }
+ toJSON() {
+ const data = super.toJSON();
+ data.uuid = this.uuid;
+ data.holes = [];
- }
+ for (let i = 0, l = this.holes.length; i < l; i++) {
+ const hole = this.holes[i];
+ data.holes.push(hole.toJSON());
+ }
- class Shape extends Path {
- constructor(points) {
- super(points);
- this.uuid = generateUUID();
- this.type = 'Shape';
- this.holes = [];
- }
+ return data;
+ }
- getPointsHoles(divisions) {
- const holesPts = [];
+ fromJSON(json) {
+ super.fromJSON(json);
+ this.uuid = json.uuid;
+ this.holes = [];
+
+ for (let i = 0, l = json.holes.length; i < l; i++) {
+ const hole = json.holes[i];
+ this.holes.push(new Path().fromJSON(hole));
+ }
+
+ return this;
+ }
- for (let i = 0, l = this.holes.length; i < l; i++) {
- holesPts[i] = this.holes[i].getPoints(divisions);
}
- return holesPts;
- } // get points of shape and holes (keypoints based on segments parameter)
+ class Light extends Object3D {
+ constructor(color, intensity = 1) {
+ super();
+ this.type = 'Light';
+ this.color = new Color(color);
+ this.intensity = intensity;
+ }
+ dispose() {// Empty here in base class; some subclasses override.
+ }
- extractPoints(divisions) {
- return {
- shape: this.getPoints(divisions),
- holes: this.getPointsHoles(divisions)
- };
- }
+ copy(source) {
+ super.copy(source);
+ this.color.copy(source.color);
+ this.intensity = source.intensity;
+ return this;
+ }
- copy(source) {
- super.copy(source);
- this.holes = [];
+ toJSON(meta) {
+ const data = super.toJSON(meta);
+ data.object.color = this.color.getHex();
+ data.object.intensity = this.intensity;
+ if (this.groundColor !== undefined) data.object.groundColor = this.groundColor.getHex();
+ if (this.distance !== undefined) data.object.distance = this.distance;
+ if (this.angle !== undefined) data.object.angle = this.angle;
+ if (this.decay !== undefined) data.object.decay = this.decay;
+ if (this.penumbra !== undefined) data.object.penumbra = this.penumbra;
+ if (this.shadow !== undefined) data.object.shadow = this.shadow.toJSON();
+ return data;
+ }
- for (let i = 0, l = source.holes.length; i < l; i++) {
- const hole = source.holes[i];
- this.holes.push(hole.clone());
}
- return this;
- }
+ Light.prototype.isLight = true;
+
+ class HemisphereLight extends Light {
+ constructor(skyColor, groundColor, intensity) {
+ super(skyColor, intensity);
+ this.type = 'HemisphereLight';
+ this.position.copy(Object3D.DefaultUp);
+ this.updateMatrix();
+ this.groundColor = new Color(groundColor);
+ }
- toJSON() {
- const data = super.toJSON();
- data.uuid = this.uuid;
- data.holes = [];
+ copy(source) {
+ Light.prototype.copy.call(this, source);
+ this.groundColor.copy(source.groundColor);
+ return this;
+ }
- for (let i = 0, l = this.holes.length; i < l; i++) {
- const hole = this.holes[i];
- data.holes.push(hole.toJSON());
}
- return data;
- }
+ HemisphereLight.prototype.isHemisphereLight = true;
- fromJSON(json) {
- super.fromJSON(json);
- this.uuid = json.uuid;
- this.holes = [];
+ const _projScreenMatrix$1 = /*@__PURE__*/new Matrix4();
- for (let i = 0, l = json.holes.length; i < l; i++) {
- const hole = json.holes[i];
- this.holes.push(new Path().fromJSON(hole));
- }
+ const _lightPositionWorld$1 = /*@__PURE__*/new Vector3();
- return this;
- }
+ const _lookTarget$1 = /*@__PURE__*/new Vector3();
- }
+ class LightShadow {
+ constructor(camera) {
+ this.camera = camera;
+ this.bias = 0;
+ this.normalBias = 0;
+ this.radius = 1;
+ this.blurSamples = 8;
+ this.mapSize = new Vector2(512, 512);
+ this.map = null;
+ this.mapPass = null;
+ this.matrix = new Matrix4();
+ this.autoUpdate = true;
+ this.needsUpdate = false;
+ this._frustum = new Frustum();
+ this._frameExtents = new Vector2(1, 1);
+ this._viewportCount = 1;
+ this._viewports = [new Vector4(0, 0, 1, 1)];
+ }
- class Light extends Object3D {
- constructor(color, intensity = 1) {
- super();
- this.type = 'Light';
- this.color = new Color(color);
- this.intensity = intensity;
- }
+ getViewportCount() {
+ return this._viewportCount;
+ }
- dispose() {// Empty here in base class; some subclasses override.
- }
+ getFrustum() {
+ return this._frustum;
+ }
- copy(source) {
- super.copy(source);
- this.color.copy(source.color);
- this.intensity = source.intensity;
- return this;
- }
+ updateMatrices(light) {
+ const shadowCamera = this.camera;
+ const shadowMatrix = this.matrix;
- toJSON(meta) {
- const data = super.toJSON(meta);
- data.object.color = this.color.getHex();
- data.object.intensity = this.intensity;
- if (this.groundColor !== undefined) data.object.groundColor = this.groundColor.getHex();
- if (this.distance !== undefined) data.object.distance = this.distance;
- if (this.angle !== undefined) data.object.angle = this.angle;
- if (this.decay !== undefined) data.object.decay = this.decay;
- if (this.penumbra !== undefined) data.object.penumbra = this.penumbra;
- if (this.shadow !== undefined) data.object.shadow = this.shadow.toJSON();
- return data;
- }
+ _lightPositionWorld$1.setFromMatrixPosition(light.matrixWorld);
- }
+ shadowCamera.position.copy(_lightPositionWorld$1);
- Light.prototype.isLight = true;
+ _lookTarget$1.setFromMatrixPosition(light.target.matrixWorld);
- class HemisphereLight extends Light {
- constructor(skyColor, groundColor, intensity) {
- super(skyColor, intensity);
- this.type = 'HemisphereLight';
- this.position.copy(Object3D.DefaultUp);
- this.updateMatrix();
- this.groundColor = new Color(groundColor);
- }
+ shadowCamera.lookAt(_lookTarget$1);
+ shadowCamera.updateMatrixWorld();
- copy(source) {
- Light.prototype.copy.call(this, source);
- this.groundColor.copy(source.groundColor);
- return this;
- }
+ _projScreenMatrix$1.multiplyMatrices(shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse);
- }
+ this._frustum.setFromProjectionMatrix(_projScreenMatrix$1);
- HemisphereLight.prototype.isHemisphereLight = true;
-
- const _projScreenMatrix$1 = /*@__PURE__*/new Matrix4();
-
- const _lightPositionWorld$1 = /*@__PURE__*/new Vector3();
-
- const _lookTarget$1 = /*@__PURE__*/new Vector3();
-
- class LightShadow {
- constructor(camera) {
- this.camera = camera;
- this.bias = 0;
- this.normalBias = 0;
- this.radius = 1;
- this.blurSamples = 8;
- this.mapSize = new Vector2(512, 512);
- this.map = null;
- this.mapPass = null;
- this.matrix = new Matrix4();
- this.autoUpdate = true;
- this.needsUpdate = false;
- this._frustum = new Frustum();
- this._frameExtents = new Vector2(1, 1);
- this._viewportCount = 1;
- this._viewports = [new Vector4(0, 0, 1, 1)];
- }
+ shadowMatrix.set(0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0);
+ shadowMatrix.multiply(shadowCamera.projectionMatrix);
+ shadowMatrix.multiply(shadowCamera.matrixWorldInverse);
+ }
- getViewportCount() {
- return this._viewportCount;
- }
+ getViewport(viewportIndex) {
+ return this._viewports[viewportIndex];
+ }
- getFrustum() {
- return this._frustum;
- }
+ getFrameExtents() {
+ return this._frameExtents;
+ }
- updateMatrices(light) {
- const shadowCamera = this.camera;
- const shadowMatrix = this.matrix;
+ dispose() {
+ if (this.map) {
+ this.map.dispose();
+ }
- _lightPositionWorld$1.setFromMatrixPosition(light.matrixWorld);
+ if (this.mapPass) {
+ this.mapPass.dispose();
+ }
+ }
- shadowCamera.position.copy(_lightPositionWorld$1);
+ copy(source) {
+ this.camera = source.camera.clone();
+ this.bias = source.bias;
+ this.radius = source.radius;
+ this.mapSize.copy(source.mapSize);
+ return this;
+ }
- _lookTarget$1.setFromMatrixPosition(light.target.matrixWorld);
+ clone() {
+ return new this.constructor().copy(this);
+ }
- shadowCamera.lookAt(_lookTarget$1);
- shadowCamera.updateMatrixWorld();
+ toJSON() {
+ const object = {};
+ if (this.bias !== 0) object.bias = this.bias;
+ if (this.normalBias !== 0) object.normalBias = this.normalBias;
+ if (this.radius !== 1) object.radius = this.radius;
+ if (this.mapSize.x !== 512 || this.mapSize.y !== 512) object.mapSize = this.mapSize.toArray();
+ object.camera = this.camera.toJSON(false).object;
+ delete object.camera.matrix;
+ return object;
+ }
- _projScreenMatrix$1.multiplyMatrices(shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse);
+ }
- this._frustum.setFromProjectionMatrix(_projScreenMatrix$1);
+ class SpotLightShadow extends LightShadow {
+ constructor() {
+ super(new PerspectiveCamera(50, 1, 0.5, 500));
+ this.focus = 1;
+ }
- shadowMatrix.set(0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0);
- shadowMatrix.multiply(shadowCamera.projectionMatrix);
- shadowMatrix.multiply(shadowCamera.matrixWorldInverse);
- }
+ updateMatrices(light) {
+ const camera = this.camera;
+ const fov = RAD2DEG * 2 * light.angle * this.focus;
+ const aspect = this.mapSize.width / this.mapSize.height;
+ const far = light.distance || camera.far;
- getViewport(viewportIndex) {
- return this._viewports[viewportIndex];
- }
+ if (fov !== camera.fov || aspect !== camera.aspect || far !== camera.far) {
+ camera.fov = fov;
+ camera.aspect = aspect;
+ camera.far = far;
+ camera.updateProjectionMatrix();
+ }
- getFrameExtents() {
- return this._frameExtents;
- }
+ super.updateMatrices(light);
+ }
- dispose() {
- if (this.map) {
- this.map.dispose();
- }
+ copy(source) {
+ super.copy(source);
+ this.focus = source.focus;
+ return this;
+ }
- if (this.mapPass) {
- this.mapPass.dispose();
}
- }
- copy(source) {
- this.camera = source.camera.clone();
- this.bias = source.bias;
- this.radius = source.radius;
- this.mapSize.copy(source.mapSize);
- return this;
- }
+ SpotLightShadow.prototype.isSpotLightShadow = true;
- clone() {
- return new this.constructor().copy(this);
- }
+ class SpotLight extends Light {
+ constructor(color, intensity, distance = 0, angle = Math.PI / 3, penumbra = 0, decay = 1) {
+ super(color, intensity);
+ this.type = 'SpotLight';
+ this.position.copy(Object3D.DefaultUp);
+ this.updateMatrix();
+ this.target = new Object3D();
+ this.distance = distance;
+ this.angle = angle;
+ this.penumbra = penumbra;
+ this.decay = decay; // for physically correct lights, should be 2.
- toJSON() {
- const object = {};
- if (this.bias !== 0) object.bias = this.bias;
- if (this.normalBias !== 0) object.normalBias = this.normalBias;
- if (this.radius !== 1) object.radius = this.radius;
- if (this.mapSize.x !== 512 || this.mapSize.y !== 512) object.mapSize = this.mapSize.toArray();
- object.camera = this.camera.toJSON(false).object;
- delete object.camera.matrix;
- return object;
- }
+ this.shadow = new SpotLightShadow();
+ }
- }
+ get power() {
+ // compute the light's luminous power (in lumens) from its intensity (in candela)
+ // by convention for a spotlight, luminous power (lm) = π * luminous intensity (cd)
+ return this.intensity * Math.PI;
+ }
- class SpotLightShadow extends LightShadow {
- constructor() {
- super(new PerspectiveCamera(50, 1, 0.5, 500));
- this.focus = 1;
- }
+ set power(power) {
+ // set the light's intensity (in candela) from the desired luminous power (in lumens)
+ this.intensity = power / Math.PI;
+ }
+
+ dispose() {
+ this.shadow.dispose();
+ }
- updateMatrices(light) {
- const camera = this.camera;
- const fov = RAD2DEG * 2 * light.angle * this.focus;
- const aspect = this.mapSize.width / this.mapSize.height;
- const far = light.distance || camera.far;
+ copy(source) {
+ super.copy(source);
+ this.distance = source.distance;
+ this.angle = source.angle;
+ this.penumbra = source.penumbra;
+ this.decay = source.decay;
+ this.target = source.target.clone();
+ this.shadow = source.shadow.clone();
+ return this;
+ }
- if (fov !== camera.fov || aspect !== camera.aspect || far !== camera.far) {
- camera.fov = fov;
- camera.aspect = aspect;
- camera.far = far;
- camera.updateProjectionMatrix();
}
- super.updateMatrices(light);
- }
+ SpotLight.prototype.isSpotLight = true;
+
+ const _projScreenMatrix = /*@__PURE__*/new Matrix4();
+
+ const _lightPositionWorld = /*@__PURE__*/new Vector3();
+
+ const _lookTarget = /*@__PURE__*/new Vector3();
+
+ class PointLightShadow extends LightShadow {
+ constructor() {
+ super(new PerspectiveCamera(90, 1, 0.5, 500));
+ this._frameExtents = new Vector2(4, 2);
+ this._viewportCount = 6;
+ this._viewports = [// These viewports map a cube-map onto a 2D texture with the
+ // following orientation:
+ //
+ // xzXZ
+ // y Y
+ //
+ // X - Positive x direction
+ // x - Negative x direction
+ // Y - Positive y direction
+ // y - Negative y direction
+ // Z - Positive z direction
+ // z - Negative z direction
+ // positive X
+ new Vector4(2, 1, 1, 1), // negative X
+ new Vector4(0, 1, 1, 1), // positive Z
+ new Vector4(3, 1, 1, 1), // negative Z
+ new Vector4(1, 1, 1, 1), // positive Y
+ new Vector4(3, 0, 1, 1), // negative Y
+ new Vector4(1, 0, 1, 1)];
+ this._cubeDirections = [new Vector3(1, 0, 0), new Vector3(-1, 0, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1), new Vector3(0, 1, 0), new Vector3(0, -1, 0)];
+ this._cubeUps = [new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1)];
+ }
+
+ updateMatrices(light, viewportIndex = 0) {
+ const camera = this.camera;
+ const shadowMatrix = this.matrix;
+ const far = light.distance || camera.far;
+
+ if (far !== camera.far) {
+ camera.far = far;
+ camera.updateProjectionMatrix();
+ }
- copy(source) {
- super.copy(source);
- this.focus = source.focus;
- return this;
- }
+ _lightPositionWorld.setFromMatrixPosition(light.matrixWorld);
- }
+ camera.position.copy(_lightPositionWorld);
- SpotLightShadow.prototype.isSpotLightShadow = true;
-
- class SpotLight extends Light {
- constructor(color, intensity, distance = 0, angle = Math.PI / 3, penumbra = 0, decay = 1) {
- super(color, intensity);
- this.type = 'SpotLight';
- this.position.copy(Object3D.DefaultUp);
- this.updateMatrix();
- this.target = new Object3D();
- this.distance = distance;
- this.angle = angle;
- this.penumbra = penumbra;
- this.decay = decay; // for physically correct lights, should be 2.
-
- this.shadow = new SpotLightShadow();
- }
+ _lookTarget.copy(camera.position);
- get power() {
- // compute the light's luminous power (in lumens) from its intensity (in candela)
- // by convention for a spotlight, luminous power (lm) = π * luminous intensity (cd)
- return this.intensity * Math.PI;
- }
+ _lookTarget.add(this._cubeDirections[viewportIndex]);
- set power(power) {
- // set the light's intensity (in candela) from the desired luminous power (in lumens)
- this.intensity = power / Math.PI;
- }
+ camera.up.copy(this._cubeUps[viewportIndex]);
+ camera.lookAt(_lookTarget);
+ camera.updateMatrixWorld();
+ shadowMatrix.makeTranslation(-_lightPositionWorld.x, -_lightPositionWorld.y, -_lightPositionWorld.z);
- dispose() {
- this.shadow.dispose();
- }
+ _projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse);
- copy(source) {
- super.copy(source);
- this.distance = source.distance;
- this.angle = source.angle;
- this.penumbra = source.penumbra;
- this.decay = source.decay;
- this.target = source.target.clone();
- this.shadow = source.shadow.clone();
- return this;
- }
+ this._frustum.setFromProjectionMatrix(_projScreenMatrix);
+ }
- }
+ }
- SpotLight.prototype.isSpotLight = true;
+ PointLightShadow.prototype.isPointLightShadow = true;
- const _projScreenMatrix = /*@__PURE__*/new Matrix4();
+ class PointLight extends Light {
+ constructor(color, intensity, distance = 0, decay = 1) {
+ super(color, intensity);
+ this.type = 'PointLight';
+ this.distance = distance;
+ this.decay = decay; // for physically correct lights, should be 2.
- const _lightPositionWorld = /*@__PURE__*/new Vector3();
+ this.shadow = new PointLightShadow();
+ }
- const _lookTarget = /*@__PURE__*/new Vector3();
+ get power() {
+ // compute the light's luminous power (in lumens) from its intensity (in candela)
+ // for an isotropic light source, luminous power (lm) = 4 π luminous intensity (cd)
+ return this.intensity * 4 * Math.PI;
+ }
- class PointLightShadow extends LightShadow {
- constructor() {
- super(new PerspectiveCamera(90, 1, 0.5, 500));
- this._frameExtents = new Vector2(4, 2);
- this._viewportCount = 6;
- this._viewports = [// These viewports map a cube-map onto a 2D texture with the
- // following orientation:
- //
- // xzXZ
- // y Y
- //
- // X - Positive x direction
- // x - Negative x direction
- // Y - Positive y direction
- // y - Negative y direction
- // Z - Positive z direction
- // z - Negative z direction
- // positive X
- new Vector4(2, 1, 1, 1), // negative X
- new Vector4(0, 1, 1, 1), // positive Z
- new Vector4(3, 1, 1, 1), // negative Z
- new Vector4(1, 1, 1, 1), // positive Y
- new Vector4(3, 0, 1, 1), // negative Y
- new Vector4(1, 0, 1, 1)];
- this._cubeDirections = [new Vector3(1, 0, 0), new Vector3(-1, 0, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1), new Vector3(0, 1, 0), new Vector3(0, -1, 0)];
- this._cubeUps = [new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1)];
- }
+ set power(power) {
+ // set the light's intensity (in candela) from the desired luminous power (in lumens)
+ this.intensity = power / (4 * Math.PI);
+ }
+
+ dispose() {
+ this.shadow.dispose();
+ }
- updateMatrices(light, viewportIndex = 0) {
- const camera = this.camera;
- const shadowMatrix = this.matrix;
- const far = light.distance || camera.far;
+ copy(source) {
+ super.copy(source);
+ this.distance = source.distance;
+ this.decay = source.decay;
+ this.shadow = source.shadow.clone();
+ return this;
+ }
- if (far !== camera.far) {
- camera.far = far;
- camera.updateProjectionMatrix();
}
- _lightPositionWorld.setFromMatrixPosition(light.matrixWorld);
+ PointLight.prototype.isPointLight = true;
- camera.position.copy(_lightPositionWorld);
+ class DirectionalLightShadow extends LightShadow {
+ constructor() {
+ super(new OrthographicCamera(-5, 5, 5, -5, 0.5, 500));
+ }
- _lookTarget.copy(camera.position);
+ }
- _lookTarget.add(this._cubeDirections[viewportIndex]);
+ DirectionalLightShadow.prototype.isDirectionalLightShadow = true;
- camera.up.copy(this._cubeUps[viewportIndex]);
- camera.lookAt(_lookTarget);
- camera.updateMatrixWorld();
- shadowMatrix.makeTranslation(-_lightPositionWorld.x, -_lightPositionWorld.y, -_lightPositionWorld.z);
+ class DirectionalLight extends Light {
+ constructor(color, intensity) {
+ super(color, intensity);
+ this.type = 'DirectionalLight';
+ this.position.copy(Object3D.DefaultUp);
+ this.updateMatrix();
+ this.target = new Object3D();
+ this.shadow = new DirectionalLightShadow();
+ }
- _projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse);
+ dispose() {
+ this.shadow.dispose();
+ }
- this._frustum.setFromProjectionMatrix(_projScreenMatrix);
- }
+ copy(source) {
+ super.copy(source);
+ this.target = source.target.clone();
+ this.shadow = source.shadow.clone();
+ return this;
+ }
- }
+ }
- PointLightShadow.prototype.isPointLightShadow = true;
+ DirectionalLight.prototype.isDirectionalLight = true;
- class PointLight extends Light {
- constructor(color, intensity, distance = 0, decay = 1) {
- super(color, intensity);
- this.type = 'PointLight';
- this.distance = distance;
- this.decay = decay; // for physically correct lights, should be 2.
+ class AmbientLight extends Light {
+ constructor(color, intensity) {
+ super(color, intensity);
+ this.type = 'AmbientLight';
+ }
- this.shadow = new PointLightShadow();
- }
+ }
- get power() {
- // compute the light's luminous power (in lumens) from its intensity (in candela)
- // for an isotropic light source, luminous power (lm) = 4 π luminous intensity (cd)
- return this.intensity * 4 * Math.PI;
- }
+ AmbientLight.prototype.isAmbientLight = true;
- set power(power) {
- // set the light's intensity (in candela) from the desired luminous power (in lumens)
- this.intensity = power / (4 * Math.PI);
- }
+ class RectAreaLight extends Light {
+ constructor(color, intensity, width = 10, height = 10) {
+ super(color, intensity);
+ this.type = 'RectAreaLight';
+ this.width = width;
+ this.height = height;
+ }
- dispose() {
- this.shadow.dispose();
- }
+ get power() {
+ // compute the light's luminous power (in lumens) from its intensity (in nits)
+ return this.intensity * this.width * this.height * Math.PI;
+ }
- copy(source) {
- super.copy(source);
- this.distance = source.distance;
- this.decay = source.decay;
- this.shadow = source.shadow.clone();
- return this;
- }
+ set power(power) {
+ // set the light's intensity (in nits) from the desired luminous power (in lumens)
+ this.intensity = power / (this.width * this.height * Math.PI);
+ }
- }
+ copy(source) {
+ super.copy(source);
+ this.width = source.width;
+ this.height = source.height;
+ return this;
+ }
- PointLight.prototype.isPointLight = true;
+ toJSON(meta) {
+ const data = super.toJSON(meta);
+ data.object.width = this.width;
+ data.object.height = this.height;
+ return data;
+ }
- class DirectionalLightShadow extends LightShadow {
- constructor() {
- super(new OrthographicCamera(-5, 5, 5, -5, 0.5, 500));
- }
+ }
- }
+ RectAreaLight.prototype.isRectAreaLight = true;
- DirectionalLightShadow.prototype.isDirectionalLightShadow = true;
+ /**
+ * Primary reference:
+ * https://graphics.stanford.edu/papers/envmap/envmap.pdf
+ *
+ * Secondary reference:
+ * https://www.ppsloan.org/publications/StupidSH36.pdf
+ */
+ // 3-band SH defined by 9 coefficients
- class DirectionalLight extends Light {
- constructor(color, intensity) {
- super(color, intensity);
- this.type = 'DirectionalLight';
- this.position.copy(Object3D.DefaultUp);
- this.updateMatrix();
- this.target = new Object3D();
- this.shadow = new DirectionalLightShadow();
- }
+ class SphericalHarmonics3 {
+ constructor() {
+ this.coefficients = [];
- dispose() {
- this.shadow.dispose();
- }
+ for (let i = 0; i < 9; i++) {
+ this.coefficients.push(new Vector3());
+ }
+ }
- copy(source) {
- super.copy(source);
- this.target = source.target.clone();
- this.shadow = source.shadow.clone();
- return this;
- }
+ set(coefficients) {
+ for (let i = 0; i < 9; i++) {
+ this.coefficients[i].copy(coefficients[i]);
+ }
- }
+ return this;
+ }
- DirectionalLight.prototype.isDirectionalLight = true;
+ zero() {
+ for (let i = 0; i < 9; i++) {
+ this.coefficients[i].set(0, 0, 0);
+ }
- class AmbientLight extends Light {
- constructor(color, intensity) {
- super(color, intensity);
- this.type = 'AmbientLight';
- }
+ return this;
+ } // get the radiance in the direction of the normal
+ // target is a Vector3
- }
- AmbientLight.prototype.isAmbientLight = true;
+ getAt(normal, target) {
+ // normal is assumed to be unit length
+ const x = normal.x,
+ y = normal.y,
+ z = normal.z;
+ const coeff = this.coefficients; // band 0
- class RectAreaLight extends Light {
- constructor(color, intensity, width = 10, height = 10) {
- super(color, intensity);
- this.type = 'RectAreaLight';
- this.width = width;
- this.height = height;
- }
+ target.copy(coeff[0]).multiplyScalar(0.282095); // band 1
- get power() {
- // compute the light's luminous power (in lumens) from its intensity (in nits)
- return this.intensity * this.width * this.height * Math.PI;
- }
+ target.addScaledVector(coeff[1], 0.488603 * y);
+ target.addScaledVector(coeff[2], 0.488603 * z);
+ target.addScaledVector(coeff[3], 0.488603 * x); // band 2
- set power(power) {
- // set the light's intensity (in nits) from the desired luminous power (in lumens)
- this.intensity = power / (this.width * this.height * Math.PI);
- }
+ target.addScaledVector(coeff[4], 1.092548 * (x * y));
+ target.addScaledVector(coeff[5], 1.092548 * (y * z));
+ target.addScaledVector(coeff[6], 0.315392 * (3.0 * z * z - 1.0));
+ target.addScaledVector(coeff[7], 1.092548 * (x * z));
+ target.addScaledVector(coeff[8], 0.546274 * (x * x - y * y));
+ return target;
+ } // get the irradiance (radiance convolved with cosine lobe) in the direction of the normal
+ // target is a Vector3
+ // https://graphics.stanford.edu/papers/envmap/envmap.pdf
- copy(source) {
- super.copy(source);
- this.width = source.width;
- this.height = source.height;
- return this;
- }
- toJSON(meta) {
- const data = super.toJSON(meta);
- data.object.width = this.width;
- data.object.height = this.height;
- return data;
- }
+ getIrradianceAt(normal, target) {
+ // normal is assumed to be unit length
+ const x = normal.x,
+ y = normal.y,
+ z = normal.z;
+ const coeff = this.coefficients; // band 0
- }
+ target.copy(coeff[0]).multiplyScalar(0.886227); // π * 0.282095
+ // band 1
- RectAreaLight.prototype.isRectAreaLight = true;
+ target.addScaledVector(coeff[1], 2.0 * 0.511664 * y); // ( 2 * π / 3 ) * 0.488603
- /**
- * Primary reference:
- * https://graphics.stanford.edu/papers/envmap/envmap.pdf
- *
- * Secondary reference:
- * https://www.ppsloan.org/publications/StupidSH36.pdf
- */
- // 3-band SH defined by 9 coefficients
+ target.addScaledVector(coeff[2], 2.0 * 0.511664 * z);
+ target.addScaledVector(coeff[3], 2.0 * 0.511664 * x); // band 2
- class SphericalHarmonics3 {
- constructor() {
- this.coefficients = [];
+ target.addScaledVector(coeff[4], 2.0 * 0.429043 * x * y); // ( π / 4 ) * 1.092548
- for (let i = 0; i < 9; i++) {
- this.coefficients.push(new Vector3());
- }
- }
+ target.addScaledVector(coeff[5], 2.0 * 0.429043 * y * z);
+ target.addScaledVector(coeff[6], 0.743125 * z * z - 0.247708); // ( π / 4 ) * 0.315392 * 3
- set(coefficients) {
- for (let i = 0; i < 9; i++) {
- this.coefficients[i].copy(coefficients[i]);
- }
+ target.addScaledVector(coeff[7], 2.0 * 0.429043 * x * z);
+ target.addScaledVector(coeff[8], 0.429043 * (x * x - y * y)); // ( π / 4 ) * 0.546274
- return this;
- }
+ return target;
+ }
- zero() {
- for (let i = 0; i < 9; i++) {
- this.coefficients[i].set(0, 0, 0);
- }
+ add(sh) {
+ for (let i = 0; i < 9; i++) {
+ this.coefficients[i].add(sh.coefficients[i]);
+ }
- return this;
- } // get the radiance in the direction of the normal
- // target is a Vector3
+ return this;
+ }
+ addScaledSH(sh, s) {
+ for (let i = 0; i < 9; i++) {
+ this.coefficients[i].addScaledVector(sh.coefficients[i], s);
+ }
- getAt(normal, target) {
- // normal is assumed to be unit length
- const x = normal.x,
- y = normal.y,
- z = normal.z;
- const coeff = this.coefficients; // band 0
+ return this;
+ }
- target.copy(coeff[0]).multiplyScalar(0.282095); // band 1
+ scale(s) {
+ for (let i = 0; i < 9; i++) {
+ this.coefficients[i].multiplyScalar(s);
+ }
- target.addScaledVector(coeff[1], 0.488603 * y);
- target.addScaledVector(coeff[2], 0.488603 * z);
- target.addScaledVector(coeff[3], 0.488603 * x); // band 2
+ return this;
+ }
- target.addScaledVector(coeff[4], 1.092548 * (x * y));
- target.addScaledVector(coeff[5], 1.092548 * (y * z));
- target.addScaledVector(coeff[6], 0.315392 * (3.0 * z * z - 1.0));
- target.addScaledVector(coeff[7], 1.092548 * (x * z));
- target.addScaledVector(coeff[8], 0.546274 * (x * x - y * y));
- return target;
- } // get the irradiance (radiance convolved with cosine lobe) in the direction of the normal
- // target is a Vector3
- // https://graphics.stanford.edu/papers/envmap/envmap.pdf
+ lerp(sh, alpha) {
+ for (let i = 0; i < 9; i++) {
+ this.coefficients[i].lerp(sh.coefficients[i], alpha);
+ }
+ return this;
+ }
- getIrradianceAt(normal, target) {
- // normal is assumed to be unit length
- const x = normal.x,
- y = normal.y,
- z = normal.z;
- const coeff = this.coefficients; // band 0
+ equals(sh) {
+ for (let i = 0; i < 9; i++) {
+ if (!this.coefficients[i].equals(sh.coefficients[i])) {
+ return false;
+ }
+ }
- target.copy(coeff[0]).multiplyScalar(0.886227); // π * 0.282095
- // band 1
+ return true;
+ }
- target.addScaledVector(coeff[1], 2.0 * 0.511664 * y); // ( 2 * π / 3 ) * 0.488603
+ copy(sh) {
+ return this.set(sh.coefficients);
+ }
- target.addScaledVector(coeff[2], 2.0 * 0.511664 * z);
- target.addScaledVector(coeff[3], 2.0 * 0.511664 * x); // band 2
+ clone() {
+ return new this.constructor().copy(this);
+ }
- target.addScaledVector(coeff[4], 2.0 * 0.429043 * x * y); // ( π / 4 ) * 1.092548
+ fromArray(array, offset = 0) {
+ const coefficients = this.coefficients;
- target.addScaledVector(coeff[5], 2.0 * 0.429043 * y * z);
- target.addScaledVector(coeff[6], 0.743125 * z * z - 0.247708); // ( π / 4 ) * 0.315392 * 3
+ for (let i = 0; i < 9; i++) {
+ coefficients[i].fromArray(array, offset + i * 3);
+ }
- target.addScaledVector(coeff[7], 2.0 * 0.429043 * x * z);
- target.addScaledVector(coeff[8], 0.429043 * (x * x - y * y)); // ( π / 4 ) * 0.546274
+ return this;
+ }
- return target;
- }
+ toArray(array = [], offset = 0) {
+ const coefficients = this.coefficients;
- add(sh) {
- for (let i = 0; i < 9; i++) {
- this.coefficients[i].add(sh.coefficients[i]);
- }
+ for (let i = 0; i < 9; i++) {
+ coefficients[i].toArray(array, offset + i * 3);
+ }
- return this;
- }
+ return array;
+ } // evaluate the basis functions
+ // shBasis is an Array[ 9 ]
- addScaledSH(sh, s) {
- for (let i = 0; i < 9; i++) {
- this.coefficients[i].addScaledVector(sh.coefficients[i], s);
- }
- return this;
- }
+ static getBasisAt(normal, shBasis) {
+ // normal is assumed to be unit length
+ const x = normal.x,
+ y = normal.y,
+ z = normal.z; // band 0
- scale(s) {
- for (let i = 0; i < 9; i++) {
- this.coefficients[i].multiplyScalar(s);
- }
+ shBasis[0] = 0.282095; // band 1
- return this;
- }
+ shBasis[1] = 0.488603 * y;
+ shBasis[2] = 0.488603 * z;
+ shBasis[3] = 0.488603 * x; // band 2
+
+ shBasis[4] = 1.092548 * x * y;
+ shBasis[5] = 1.092548 * y * z;
+ shBasis[6] = 0.315392 * (3 * z * z - 1);
+ shBasis[7] = 1.092548 * x * z;
+ shBasis[8] = 0.546274 * (x * x - y * y);
+ }
- lerp(sh, alpha) {
- for (let i = 0; i < 9; i++) {
- this.coefficients[i].lerp(sh.coefficients[i], alpha);
}
- return this;
- }
+ SphericalHarmonics3.prototype.isSphericalHarmonics3 = true;
- equals(sh) {
- for (let i = 0; i < 9; i++) {
- if (!this.coefficients[i].equals(sh.coefficients[i])) {
- return false;
+ class LightProbe extends Light {
+ constructor(sh = new SphericalHarmonics3(), intensity = 1) {
+ super(undefined, intensity);
+ this.sh = sh;
}
- }
- return true;
- }
+ copy(source) {
+ super.copy(source);
+ this.sh.copy(source.sh);
+ return this;
+ }
- copy(sh) {
- return this.set(sh.coefficients);
- }
+ fromJSON(json) {
+ this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON();
- clone() {
- return new this.constructor().copy(this);
- }
+ this.sh.fromArray(json.sh);
+ return this;
+ }
- fromArray(array, offset = 0) {
- const coefficients = this.coefficients;
+ toJSON(meta) {
+ const data = super.toJSON(meta);
+ data.object.sh = this.sh.toArray();
+ return data;
+ }
- for (let i = 0; i < 9; i++) {
- coefficients[i].fromArray(array, offset + i * 3);
}
- return this;
- }
+ LightProbe.prototype.isLightProbe = true;
- toArray(array = [], offset = 0) {
- const coefficients = this.coefficients;
+ class MaterialLoader extends Loader {
+ constructor(manager) {
+ super(manager);
+ this.textures = {};
+ }
- for (let i = 0; i < 9; i++) {
- coefficients[i].toArray(array, offset + i * 3);
- }
+ load(url, onLoad, onProgress, onError) {
+ const scope = this;
+ const loader = new FileLoader(scope.manager);
+ loader.setPath(scope.path);
+ loader.setRequestHeader(scope.requestHeader);
+ loader.setWithCredentials(scope.withCredentials);
+ loader.load(url, function (text) {
+ try {
+ onLoad(scope.parse(JSON.parse(text)));
+ } catch (e) {
+ if (onError) {
+ onError(e);
+ } else {
+ console.error(e);
+ }
- return array;
- } // evaluate the basis functions
- // shBasis is an Array[ 9 ]
+ scope.manager.itemError(url);
+ }
+ }, onProgress, onError);
+ }
+ parse(json) {
+ const textures = this.textures;
- static getBasisAt(normal, shBasis) {
- // normal is assumed to be unit length
- const x = normal.x,
- y = normal.y,
- z = normal.z; // band 0
+ function getTexture(name) {
+ if (textures[name] === undefined) {
+ console.warn('THREE.MaterialLoader: Undefined texture', name);
+ }
- shBasis[0] = 0.282095; // band 1
+ return textures[name];
+ }
- shBasis[1] = 0.488603 * y;
- shBasis[2] = 0.488603 * z;
- shBasis[3] = 0.488603 * x; // band 2
+ const material = new Materials[json.type]();
+ if (json.uuid !== undefined) material.uuid = json.uuid;
+ if (json.name !== undefined) material.name = json.name;
+ if (json.color !== undefined && material.color !== undefined) material.color.setHex(json.color);
+ if (json.roughness !== undefined) material.roughness = json.roughness;
+ if (json.metalness !== undefined) material.metalness = json.metalness;
+ if (json.sheenTint !== undefined) material.sheenTint = new Color().setHex(json.sheenTint);
+ if (json.emissive !== undefined && material.emissive !== undefined) material.emissive.setHex(json.emissive);
+ if (json.specular !== undefined && material.specular !== undefined) material.specular.setHex(json.specular);
+ if (json.specularIntensity !== undefined) material.specularIntensity = json.specularIntensity;
+ if (json.specularTint !== undefined && material.specularTint !== undefined) material.specularTint.setHex(json.specularTint);
+ if (json.shininess !== undefined) material.shininess = json.shininess;
+ if (json.clearcoat !== undefined) material.clearcoat = json.clearcoat;
+ if (json.clearcoatRoughness !== undefined) material.clearcoatRoughness = json.clearcoatRoughness;
+ if (json.transmission !== undefined) material.transmission = json.transmission;
+ if (json.thickness !== undefined) material.thickness = json.thickness;
+ if (json.attenuationDistance !== undefined) material.attenuationDistance = json.attenuationDistance;
+ if (json.attenuationTint !== undefined && material.attenuationTint !== undefined) material.attenuationTint.setHex(json.attenuationTint);
+ if (json.fog !== undefined) material.fog = json.fog;
+ if (json.flatShading !== undefined) material.flatShading = json.flatShading;
+ if (json.blending !== undefined) material.blending = json.blending;
+ if (json.combine !== undefined) material.combine = json.combine;
+ if (json.side !== undefined) material.side = json.side;
+ if (json.shadowSide !== undefined) material.shadowSide = json.shadowSide;
+ if (json.opacity !== undefined) material.opacity = json.opacity;
+ if (json.format !== undefined) material.format = json.format;
+ if (json.transparent !== undefined) material.transparent = json.transparent;
+ if (json.alphaTest !== undefined) material.alphaTest = json.alphaTest;
+ if (json.depthTest !== undefined) material.depthTest = json.depthTest;
+ if (json.depthWrite !== undefined) material.depthWrite = json.depthWrite;
+ if (json.colorWrite !== undefined) material.colorWrite = json.colorWrite;
+ if (json.stencilWrite !== undefined) material.stencilWrite = json.stencilWrite;
+ if (json.stencilWriteMask !== undefined) material.stencilWriteMask = json.stencilWriteMask;
+ if (json.stencilFunc !== undefined) material.stencilFunc = json.stencilFunc;
+ if (json.stencilRef !== undefined) material.stencilRef = json.stencilRef;
+ if (json.stencilFuncMask !== undefined) material.stencilFuncMask = json.stencilFuncMask;
+ if (json.stencilFail !== undefined) material.stencilFail = json.stencilFail;
+ if (json.stencilZFail !== undefined) material.stencilZFail = json.stencilZFail;
+ if (json.stencilZPass !== undefined) material.stencilZPass = json.stencilZPass;
+ if (json.wireframe !== undefined) material.wireframe = json.wireframe;
+ if (json.wireframeLinewidth !== undefined) material.wireframeLinewidth = json.wireframeLinewidth;
+ if (json.wireframeLinecap !== undefined) material.wireframeLinecap = json.wireframeLinecap;
+ if (json.wireframeLinejoin !== undefined) material.wireframeLinejoin = json.wireframeLinejoin;
+ if (json.rotation !== undefined) material.rotation = json.rotation;
+ if (json.linewidth !== 1) material.linewidth = json.linewidth;
+ if (json.dashSize !== undefined) material.dashSize = json.dashSize;
+ if (json.gapSize !== undefined) material.gapSize = json.gapSize;
+ if (json.scale !== undefined) material.scale = json.scale;
+ if (json.polygonOffset !== undefined) material.polygonOffset = json.polygonOffset;
+ if (json.polygonOffsetFactor !== undefined) material.polygonOffsetFactor = json.polygonOffsetFactor;
+ if (json.polygonOffsetUnits !== undefined) material.polygonOffsetUnits = json.polygonOffsetUnits;
+ if (json.dithering !== undefined) material.dithering = json.dithering;
+ if (json.alphaToCoverage !== undefined) material.alphaToCoverage = json.alphaToCoverage;
+ if (json.premultipliedAlpha !== undefined) material.premultipliedAlpha = json.premultipliedAlpha;
+ if (json.visible !== undefined) material.visible = json.visible;
+ if (json.toneMapped !== undefined) material.toneMapped = json.toneMapped;
+ if (json.userData !== undefined) material.userData = json.userData;
+
+ if (json.vertexColors !== undefined) {
+ if (typeof json.vertexColors === 'number') {
+ material.vertexColors = json.vertexColors > 0 ? true : false;
+ } else {
+ material.vertexColors = json.vertexColors;
+ }
+ } // Shader Material
- shBasis[4] = 1.092548 * x * y;
- shBasis[5] = 1.092548 * y * z;
- shBasis[6] = 0.315392 * (3 * z * z - 1);
- shBasis[7] = 1.092548 * x * z;
- shBasis[8] = 0.546274 * (x * x - y * y);
- }
- }
+ if (json.uniforms !== undefined) {
+ for (const name in json.uniforms) {
+ const uniform = json.uniforms[name];
+ material.uniforms[name] = {};
- SphericalHarmonics3.prototype.isSphericalHarmonics3 = true;
+ switch (uniform.type) {
+ case 't':
+ material.uniforms[name].value = getTexture(uniform.value);
+ break;
- class LightProbe extends Light {
- constructor(sh = new SphericalHarmonics3(), intensity = 1) {
- super(undefined, intensity);
- this.sh = sh;
- }
+ case 'c':
+ material.uniforms[name].value = new Color().setHex(uniform.value);
+ break;
- copy(source) {
- super.copy(source);
- this.sh.copy(source.sh);
- return this;
- }
+ case 'v2':
+ material.uniforms[name].value = new Vector2().fromArray(uniform.value);
+ break;
- fromJSON(json) {
- this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON();
+ case 'v3':
+ material.uniforms[name].value = new Vector3().fromArray(uniform.value);
+ break;
- this.sh.fromArray(json.sh);
- return this;
- }
+ case 'v4':
+ material.uniforms[name].value = new Vector4().fromArray(uniform.value);
+ break;
- toJSON(meta) {
- const data = super.toJSON(meta);
- data.object.sh = this.sh.toArray();
- return data;
- }
+ case 'm3':
+ material.uniforms[name].value = new Matrix3().fromArray(uniform.value);
+ break;
- }
+ case 'm4':
+ material.uniforms[name].value = new Matrix4().fromArray(uniform.value);
+ break;
- LightProbe.prototype.isLightProbe = true;
+ default:
+ material.uniforms[name].value = uniform.value;
+ }
+ }
+ }
- class MaterialLoader extends Loader {
- constructor(manager) {
- super(manager);
- this.textures = {};
- }
+ if (json.defines !== undefined) material.defines = json.defines;
+ if (json.vertexShader !== undefined) material.vertexShader = json.vertexShader;
+ if (json.fragmentShader !== undefined) material.fragmentShader = json.fragmentShader;
- load(url, onLoad, onProgress, onError) {
- const scope = this;
- const loader = new FileLoader(scope.manager);
- loader.setPath(scope.path);
- loader.setRequestHeader(scope.requestHeader);
- loader.setWithCredentials(scope.withCredentials);
- loader.load(url, function (text) {
- try {
- onLoad(scope.parse(JSON.parse(text)));
- } catch (e) {
- if (onError) {
- onError(e);
- } else {
- console.error(e);
- }
+ if (json.extensions !== undefined) {
+ for (const key in json.extensions) {
+ material.extensions[key] = json.extensions[key];
+ }
+ } // Deprecated
- scope.manager.itemError(url);
- }
- }, onProgress, onError);
- }
- parse(json) {
- const textures = this.textures;
-
- function getTexture(name) {
- if (textures[name] === undefined) {
- console.warn('THREE.MaterialLoader: Undefined texture', name);
- }
-
- return textures[name];
- }
-
- const material = new Materials[json.type]();
- if (json.uuid !== undefined) material.uuid = json.uuid;
- if (json.name !== undefined) material.name = json.name;
- if (json.color !== undefined && material.color !== undefined) material.color.setHex(json.color);
- if (json.roughness !== undefined) material.roughness = json.roughness;
- if (json.metalness !== undefined) material.metalness = json.metalness;
- if (json.sheenTint !== undefined) material.sheenTint = new Color().setHex(json.sheenTint);
- if (json.emissive !== undefined && material.emissive !== undefined) material.emissive.setHex(json.emissive);
- if (json.specular !== undefined && material.specular !== undefined) material.specular.setHex(json.specular);
- if (json.specularIntensity !== undefined) material.specularIntensity = json.specularIntensity;
- if (json.specularTint !== undefined && material.specularTint !== undefined) material.specularTint.setHex(json.specularTint);
- if (json.shininess !== undefined) material.shininess = json.shininess;
- if (json.clearcoat !== undefined) material.clearcoat = json.clearcoat;
- if (json.clearcoatRoughness !== undefined) material.clearcoatRoughness = json.clearcoatRoughness;
- if (json.transmission !== undefined) material.transmission = json.transmission;
- if (json.thickness !== undefined) material.thickness = json.thickness;
- if (json.attenuationDistance !== undefined) material.attenuationDistance = json.attenuationDistance;
- if (json.attenuationTint !== undefined && material.attenuationTint !== undefined) material.attenuationTint.setHex(json.attenuationTint);
- if (json.fog !== undefined) material.fog = json.fog;
- if (json.flatShading !== undefined) material.flatShading = json.flatShading;
- if (json.blending !== undefined) material.blending = json.blending;
- if (json.combine !== undefined) material.combine = json.combine;
- if (json.side !== undefined) material.side = json.side;
- if (json.shadowSide !== undefined) material.shadowSide = json.shadowSide;
- if (json.opacity !== undefined) material.opacity = json.opacity;
- if (json.format !== undefined) material.format = json.format;
- if (json.transparent !== undefined) material.transparent = json.transparent;
- if (json.alphaTest !== undefined) material.alphaTest = json.alphaTest;
- if (json.depthTest !== undefined) material.depthTest = json.depthTest;
- if (json.depthWrite !== undefined) material.depthWrite = json.depthWrite;
- if (json.colorWrite !== undefined) material.colorWrite = json.colorWrite;
- if (json.stencilWrite !== undefined) material.stencilWrite = json.stencilWrite;
- if (json.stencilWriteMask !== undefined) material.stencilWriteMask = json.stencilWriteMask;
- if (json.stencilFunc !== undefined) material.stencilFunc = json.stencilFunc;
- if (json.stencilRef !== undefined) material.stencilRef = json.stencilRef;
- if (json.stencilFuncMask !== undefined) material.stencilFuncMask = json.stencilFuncMask;
- if (json.stencilFail !== undefined) material.stencilFail = json.stencilFail;
- if (json.stencilZFail !== undefined) material.stencilZFail = json.stencilZFail;
- if (json.stencilZPass !== undefined) material.stencilZPass = json.stencilZPass;
- if (json.wireframe !== undefined) material.wireframe = json.wireframe;
- if (json.wireframeLinewidth !== undefined) material.wireframeLinewidth = json.wireframeLinewidth;
- if (json.wireframeLinecap !== undefined) material.wireframeLinecap = json.wireframeLinecap;
- if (json.wireframeLinejoin !== undefined) material.wireframeLinejoin = json.wireframeLinejoin;
- if (json.rotation !== undefined) material.rotation = json.rotation;
- if (json.linewidth !== 1) material.linewidth = json.linewidth;
- if (json.dashSize !== undefined) material.dashSize = json.dashSize;
- if (json.gapSize !== undefined) material.gapSize = json.gapSize;
- if (json.scale !== undefined) material.scale = json.scale;
- if (json.polygonOffset !== undefined) material.polygonOffset = json.polygonOffset;
- if (json.polygonOffsetFactor !== undefined) material.polygonOffsetFactor = json.polygonOffsetFactor;
- if (json.polygonOffsetUnits !== undefined) material.polygonOffsetUnits = json.polygonOffsetUnits;
- if (json.dithering !== undefined) material.dithering = json.dithering;
- if (json.alphaToCoverage !== undefined) material.alphaToCoverage = json.alphaToCoverage;
- if (json.premultipliedAlpha !== undefined) material.premultipliedAlpha = json.premultipliedAlpha;
- if (json.visible !== undefined) material.visible = json.visible;
- if (json.toneMapped !== undefined) material.toneMapped = json.toneMapped;
- if (json.userData !== undefined) material.userData = json.userData;
-
- if (json.vertexColors !== undefined) {
- if (typeof json.vertexColors === 'number') {
- material.vertexColors = json.vertexColors > 0 ? true : false;
- } else {
- material.vertexColors = json.vertexColors;
- }
- } // Shader Material
+ if (json.shading !== undefined) material.flatShading = json.shading === 1; // THREE.FlatShading
+ // for PointsMaterial
+ if (json.size !== undefined) material.size = json.size;
+ if (json.sizeAttenuation !== undefined) material.sizeAttenuation = json.sizeAttenuation; // maps
- if (json.uniforms !== undefined) {
- for (const name in json.uniforms) {
- const uniform = json.uniforms[name];
- material.uniforms[name] = {};
+ if (json.map !== undefined) material.map = getTexture(json.map);
+ if (json.matcap !== undefined) material.matcap = getTexture(json.matcap);
+ if (json.alphaMap !== undefined) material.alphaMap = getTexture(json.alphaMap);
+ if (json.bumpMap !== undefined) material.bumpMap = getTexture(json.bumpMap);
+ if (json.bumpScale !== undefined) material.bumpScale = json.bumpScale;
+ if (json.normalMap !== undefined) material.normalMap = getTexture(json.normalMap);
+ if (json.normalMapType !== undefined) material.normalMapType = json.normalMapType;
- switch (uniform.type) {
- case 't':
- material.uniforms[name].value = getTexture(uniform.value);
- break;
+ if (json.normalScale !== undefined) {
+ let normalScale = json.normalScale;
- case 'c':
- material.uniforms[name].value = new Color().setHex(uniform.value);
- break;
+ if (Array.isArray(normalScale) === false) {
+ // Blender exporter used to export a scalar. See #7459
+ normalScale = [normalScale, normalScale];
+ }
- case 'v2':
- material.uniforms[name].value = new Vector2().fromArray(uniform.value);
- break;
+ material.normalScale = new Vector2().fromArray(normalScale);
+ }
- case 'v3':
- material.uniforms[name].value = new Vector3().fromArray(uniform.value);
- break;
+ if (json.displacementMap !== undefined) material.displacementMap = getTexture(json.displacementMap);
+ if (json.displacementScale !== undefined) material.displacementScale = json.displacementScale;
+ if (json.displacementBias !== undefined) material.displacementBias = json.displacementBias;
+ if (json.roughnessMap !== undefined) material.roughnessMap = getTexture(json.roughnessMap);
+ if (json.metalnessMap !== undefined) material.metalnessMap = getTexture(json.metalnessMap);
+ if (json.emissiveMap !== undefined) material.emissiveMap = getTexture(json.emissiveMap);
+ if (json.emissiveIntensity !== undefined) material.emissiveIntensity = json.emissiveIntensity;
+ if (json.specularMap !== undefined) material.specularMap = getTexture(json.specularMap);
+ if (json.specularIntensityMap !== undefined) material.specularIntensityMap = getTexture(json.specularIntensityMap);
+ if (json.specularTintMap !== undefined) material.specularTintMap = getTexture(json.specularTintMap);
+ if (json.envMap !== undefined) material.envMap = getTexture(json.envMap);
+ if (json.envMapIntensity !== undefined) material.envMapIntensity = json.envMapIntensity;
+ if (json.reflectivity !== undefined) material.reflectivity = json.reflectivity;
+ if (json.refractionRatio !== undefined) material.refractionRatio = json.refractionRatio;
+ if (json.lightMap !== undefined) material.lightMap = getTexture(json.lightMap);
+ if (json.lightMapIntensity !== undefined) material.lightMapIntensity = json.lightMapIntensity;
+ if (json.aoMap !== undefined) material.aoMap = getTexture(json.aoMap);
+ if (json.aoMapIntensity !== undefined) material.aoMapIntensity = json.aoMapIntensity;
+ if (json.gradientMap !== undefined) material.gradientMap = getTexture(json.gradientMap);
+ if (json.clearcoatMap !== undefined) material.clearcoatMap = getTexture(json.clearcoatMap);
+ if (json.clearcoatRoughnessMap !== undefined) material.clearcoatRoughnessMap = getTexture(json.clearcoatRoughnessMap);
+ if (json.clearcoatNormalMap !== undefined) material.clearcoatNormalMap = getTexture(json.clearcoatNormalMap);
+ if (json.clearcoatNormalScale !== undefined) material.clearcoatNormalScale = new Vector2().fromArray(json.clearcoatNormalScale);
+ if (json.transmissionMap !== undefined) material.transmissionMap = getTexture(json.transmissionMap);
+ if (json.thicknessMap !== undefined) material.thicknessMap = getTexture(json.thicknessMap);
+ return material;
+ }
+
+ setTextures(value) {
+ this.textures = value;
+ return this;
+ }
- case 'v4':
- material.uniforms[name].value = new Vector4().fromArray(uniform.value);
- break;
+ }
- case 'm3':
- material.uniforms[name].value = new Matrix3().fromArray(uniform.value);
- break;
+ class LoaderUtils {
+ static decodeText(array) {
+ if (typeof TextDecoder !== 'undefined') {
+ return new TextDecoder().decode(array);
+ } // Avoid the String.fromCharCode.apply(null, array) shortcut, which
+ // throws a "maximum call stack size exceeded" error for large arrays.
- case 'm4':
- material.uniforms[name].value = new Matrix4().fromArray(uniform.value);
- break;
- default:
- material.uniforms[name].value = uniform.value;
- }
- }
- }
+ let s = '';
- if (json.defines !== undefined) material.defines = json.defines;
- if (json.vertexShader !== undefined) material.vertexShader = json.vertexShader;
- if (json.fragmentShader !== undefined) material.fragmentShader = json.fragmentShader;
+ for (let i = 0, il = array.length; i < il; i++) {
+ // Implicitly assumes little-endian.
+ s += String.fromCharCode(array[i]);
+ }
- if (json.extensions !== undefined) {
- for (const key in json.extensions) {
- material.extensions[key] = json.extensions[key];
+ try {
+ // merges multi-byte utf-8 characters.
+ return decodeURIComponent(escape(s));
+ } catch (e) {
+ // see #16358
+ return s;
+ }
}
- } // Deprecated
+ static extractUrlBase(url) {
+ const index = url.lastIndexOf('/');
+ if (index === -1) return './';
+ return url.substr(0, index + 1);
+ }
- if (json.shading !== undefined) material.flatShading = json.shading === 1; // THREE.FlatShading
- // for PointsMaterial
+ }
- if (json.size !== undefined) material.size = json.size;
- if (json.sizeAttenuation !== undefined) material.sizeAttenuation = json.sizeAttenuation; // maps
+ class InstancedBufferGeometry extends BufferGeometry {
+ constructor() {
+ super();
+ this.type = 'InstancedBufferGeometry';
+ this.instanceCount = Infinity;
+ }
- if (json.map !== undefined) material.map = getTexture(json.map);
- if (json.matcap !== undefined) material.matcap = getTexture(json.matcap);
- if (json.alphaMap !== undefined) material.alphaMap = getTexture(json.alphaMap);
- if (json.bumpMap !== undefined) material.bumpMap = getTexture(json.bumpMap);
- if (json.bumpScale !== undefined) material.bumpScale = json.bumpScale;
- if (json.normalMap !== undefined) material.normalMap = getTexture(json.normalMap);
- if (json.normalMapType !== undefined) material.normalMapType = json.normalMapType;
+ copy(source) {
+ super.copy(source);
+ this.instanceCount = source.instanceCount;
+ return this;
+ }
- if (json.normalScale !== undefined) {
- let normalScale = json.normalScale;
+ clone() {
+ return new this.constructor().copy(this);
+ }
- if (Array.isArray(normalScale) === false) {
- // Blender exporter used to export a scalar. See #7459
- normalScale = [normalScale, normalScale];
+ toJSON() {
+ const data = super.toJSON(this);
+ data.instanceCount = this.instanceCount;
+ data.isInstancedBufferGeometry = true;
+ return data;
}
- material.normalScale = new Vector2().fromArray(normalScale);
}
- if (json.displacementMap !== undefined) material.displacementMap = getTexture(json.displacementMap);
- if (json.displacementScale !== undefined) material.displacementScale = json.displacementScale;
- if (json.displacementBias !== undefined) material.displacementBias = json.displacementBias;
- if (json.roughnessMap !== undefined) material.roughnessMap = getTexture(json.roughnessMap);
- if (json.metalnessMap !== undefined) material.metalnessMap = getTexture(json.metalnessMap);
- if (json.emissiveMap !== undefined) material.emissiveMap = getTexture(json.emissiveMap);
- if (json.emissiveIntensity !== undefined) material.emissiveIntensity = json.emissiveIntensity;
- if (json.specularMap !== undefined) material.specularMap = getTexture(json.specularMap);
- if (json.specularIntensityMap !== undefined) material.specularIntensityMap = getTexture(json.specularIntensityMap);
- if (json.specularTintMap !== undefined) material.specularTintMap = getTexture(json.specularTintMap);
- if (json.envMap !== undefined) material.envMap = getTexture(json.envMap);
- if (json.envMapIntensity !== undefined) material.envMapIntensity = json.envMapIntensity;
- if (json.reflectivity !== undefined) material.reflectivity = json.reflectivity;
- if (json.refractionRatio !== undefined) material.refractionRatio = json.refractionRatio;
- if (json.lightMap !== undefined) material.lightMap = getTexture(json.lightMap);
- if (json.lightMapIntensity !== undefined) material.lightMapIntensity = json.lightMapIntensity;
- if (json.aoMap !== undefined) material.aoMap = getTexture(json.aoMap);
- if (json.aoMapIntensity !== undefined) material.aoMapIntensity = json.aoMapIntensity;
- if (json.gradientMap !== undefined) material.gradientMap = getTexture(json.gradientMap);
- if (json.clearcoatMap !== undefined) material.clearcoatMap = getTexture(json.clearcoatMap);
- if (json.clearcoatRoughnessMap !== undefined) material.clearcoatRoughnessMap = getTexture(json.clearcoatRoughnessMap);
- if (json.clearcoatNormalMap !== undefined) material.clearcoatNormalMap = getTexture(json.clearcoatNormalMap);
- if (json.clearcoatNormalScale !== undefined) material.clearcoatNormalScale = new Vector2().fromArray(json.clearcoatNormalScale);
- if (json.transmissionMap !== undefined) material.transmissionMap = getTexture(json.transmissionMap);
- if (json.thicknessMap !== undefined) material.thicknessMap = getTexture(json.thicknessMap);
- return material;
- }
-
- setTextures(value) {
- this.textures = value;
- return this;
- }
+ InstancedBufferGeometry.prototype.isInstancedBufferGeometry = true;
- }
+ class BufferGeometryLoader extends Loader {
+ constructor(manager) {
+ super(manager);
+ }
- class LoaderUtils {
- static decodeText(array) {
- if (typeof TextDecoder !== 'undefined') {
- return new TextDecoder().decode(array);
- } // Avoid the String.fromCharCode.apply(null, array) shortcut, which
- // throws a "maximum call stack size exceeded" error for large arrays.
+ load(url, onLoad, onProgress, onError) {
+ const scope = this;
+ const loader = new FileLoader(scope.manager);
+ loader.setPath(scope.path);
+ loader.setRequestHeader(scope.requestHeader);
+ loader.setWithCredentials(scope.withCredentials);
+ loader.load(url, function (text) {
+ try {
+ onLoad(scope.parse(JSON.parse(text)));
+ } catch (e) {
+ if (onError) {
+ onError(e);
+ } else {
+ console.error(e);
+ }
+ scope.manager.itemError(url);
+ }
+ }, onProgress, onError);
+ }
+
+ parse(json) {
+ const interleavedBufferMap = {};
+ const arrayBufferMap = {};
+
+ function getInterleavedBuffer(json, uuid) {
+ if (interleavedBufferMap[uuid] !== undefined) return interleavedBufferMap[uuid];
+ const interleavedBuffers = json.interleavedBuffers;
+ const interleavedBuffer = interleavedBuffers[uuid];
+ const buffer = getArrayBuffer(json, interleavedBuffer.buffer);
+ const array = getTypedArray(interleavedBuffer.type, buffer);
+ const ib = new InterleavedBuffer(array, interleavedBuffer.stride);
+ ib.uuid = interleavedBuffer.uuid;
+ interleavedBufferMap[uuid] = ib;
+ return ib;
+ }
- let s = '';
+ function getArrayBuffer(json, uuid) {
+ if (arrayBufferMap[uuid] !== undefined) return arrayBufferMap[uuid];
+ const arrayBuffers = json.arrayBuffers;
+ const arrayBuffer = arrayBuffers[uuid];
+ const ab = new Uint32Array(arrayBuffer).buffer;
+ arrayBufferMap[uuid] = ab;
+ return ab;
+ }
- for (let i = 0, il = array.length; i < il; i++) {
- // Implicitly assumes little-endian.
- s += String.fromCharCode(array[i]);
- }
+ const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry();
+ const index = json.data.index;
- try {
- // merges multi-byte utf-8 characters.
- return decodeURIComponent(escape(s));
- } catch (e) {
- // see #16358
- return s;
- }
- }
+ if (index !== undefined) {
+ const typedArray = getTypedArray(index.type, index.array);
+ geometry.setIndex(new BufferAttribute(typedArray, 1));
+ }
- static extractUrlBase(url) {
- const index = url.lastIndexOf('/');
- if (index === -1) return './';
- return url.substr(0, index + 1);
- }
+ const attributes = json.data.attributes;
- }
+ for (const key in attributes) {
+ const attribute = attributes[key];
+ let bufferAttribute;
- class InstancedBufferGeometry extends BufferGeometry {
- constructor() {
- super();
- this.type = 'InstancedBufferGeometry';
- this.instanceCount = Infinity;
- }
+ if (attribute.isInterleavedBufferAttribute) {
+ const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data);
+ bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized);
+ } else {
+ const typedArray = getTypedArray(attribute.type, attribute.array);
+ const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute;
+ bufferAttribute = new bufferAttributeConstr(typedArray, attribute.itemSize, attribute.normalized);
+ }
- copy(source) {
- super.copy(source);
- this.instanceCount = source.instanceCount;
- return this;
- }
+ if (attribute.name !== undefined) bufferAttribute.name = attribute.name;
+ if (attribute.usage !== undefined) bufferAttribute.setUsage(attribute.usage);
- clone() {
- return new this.constructor().copy(this);
- }
+ if (attribute.updateRange !== undefined) {
+ bufferAttribute.updateRange.offset = attribute.updateRange.offset;
+ bufferAttribute.updateRange.count = attribute.updateRange.count;
+ }
- toJSON() {
- const data = super.toJSON(this);
- data.instanceCount = this.instanceCount;
- data.isInstancedBufferGeometry = true;
- return data;
- }
+ geometry.setAttribute(key, bufferAttribute);
+ }
- }
+ const morphAttributes = json.data.morphAttributes;
- InstancedBufferGeometry.prototype.isInstancedBufferGeometry = true;
+ if (morphAttributes) {
+ for (const key in morphAttributes) {
+ const attributeArray = morphAttributes[key];
+ const array = [];
- class BufferGeometryLoader extends Loader {
- constructor(manager) {
- super(manager);
- }
+ for (let i = 0, il = attributeArray.length; i < il; i++) {
+ const attribute = attributeArray[i];
+ let bufferAttribute;
- load(url, onLoad, onProgress, onError) {
- const scope = this;
- const loader = new FileLoader(scope.manager);
- loader.setPath(scope.path);
- loader.setRequestHeader(scope.requestHeader);
- loader.setWithCredentials(scope.withCredentials);
- loader.load(url, function (text) {
- try {
- onLoad(scope.parse(JSON.parse(text)));
- } catch (e) {
- if (onError) {
- onError(e);
- } else {
- console.error(e);
- }
+ if (attribute.isInterleavedBufferAttribute) {
+ const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data);
+ bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized);
+ } else {
+ const typedArray = getTypedArray(attribute.type, attribute.array);
+ bufferAttribute = new BufferAttribute(typedArray, attribute.itemSize, attribute.normalized);
+ }
- scope.manager.itemError(url);
- }
- }, onProgress, onError);
- }
+ if (attribute.name !== undefined) bufferAttribute.name = attribute.name;
+ array.push(bufferAttribute);
+ }
- parse(json) {
- const interleavedBufferMap = {};
- const arrayBufferMap = {};
+ geometry.morphAttributes[key] = array;
+ }
+ }
- function getInterleavedBuffer(json, uuid) {
- if (interleavedBufferMap[uuid] !== undefined) return interleavedBufferMap[uuid];
- const interleavedBuffers = json.interleavedBuffers;
- const interleavedBuffer = interleavedBuffers[uuid];
- const buffer = getArrayBuffer(json, interleavedBuffer.buffer);
- const array = getTypedArray(interleavedBuffer.type, buffer);
- const ib = new InterleavedBuffer(array, interleavedBuffer.stride);
- ib.uuid = interleavedBuffer.uuid;
- interleavedBufferMap[uuid] = ib;
- return ib;
- }
+ const morphTargetsRelative = json.data.morphTargetsRelative;
- function getArrayBuffer(json, uuid) {
- if (arrayBufferMap[uuid] !== undefined) return arrayBufferMap[uuid];
- const arrayBuffers = json.arrayBuffers;
- const arrayBuffer = arrayBuffers[uuid];
- const ab = new Uint32Array(arrayBuffer).buffer;
- arrayBufferMap[uuid] = ab;
- return ab;
- }
+ if (morphTargetsRelative) {
+ geometry.morphTargetsRelative = true;
+ }
- const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry();
- const index = json.data.index;
+ const groups = json.data.groups || json.data.drawcalls || json.data.offsets;
- if (index !== undefined) {
- const typedArray = getTypedArray(index.type, index.array);
- geometry.setIndex(new BufferAttribute(typedArray, 1));
- }
+ if (groups !== undefined) {
+ for (let i = 0, n = groups.length; i !== n; ++i) {
+ const group = groups[i];
+ geometry.addGroup(group.start, group.count, group.materialIndex);
+ }
+ }
- const attributes = json.data.attributes;
+ const boundingSphere = json.data.boundingSphere;
- for (const key in attributes) {
- const attribute = attributes[key];
- let bufferAttribute;
+ if (boundingSphere !== undefined) {
+ const center = new Vector3();
- if (attribute.isInterleavedBufferAttribute) {
- const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data);
- bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized);
- } else {
- const typedArray = getTypedArray(attribute.type, attribute.array);
- const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute;
- bufferAttribute = new bufferAttributeConstr(typedArray, attribute.itemSize, attribute.normalized);
- }
+ if (boundingSphere.center !== undefined) {
+ center.fromArray(boundingSphere.center);
+ }
- if (attribute.name !== undefined) bufferAttribute.name = attribute.name;
- if (attribute.usage !== undefined) bufferAttribute.setUsage(attribute.usage);
+ geometry.boundingSphere = new Sphere(center, boundingSphere.radius);
+ }
- if (attribute.updateRange !== undefined) {
- bufferAttribute.updateRange.offset = attribute.updateRange.offset;
- bufferAttribute.updateRange.count = attribute.updateRange.count;
+ if (json.name) geometry.name = json.name;
+ if (json.userData) geometry.userData = json.userData;
+ return geometry;
}
- geometry.setAttribute(key, bufferAttribute);
}
- const morphAttributes = json.data.morphAttributes;
-
- if (morphAttributes) {
- for (const key in morphAttributes) {
- const attributeArray = morphAttributes[key];
- const array = [];
+ class ObjectLoader extends Loader {
+ constructor(manager) {
+ super(manager);
+ }
- for (let i = 0, il = attributeArray.length; i < il; i++) {
- const attribute = attributeArray[i];
- let bufferAttribute;
+ load(url, onLoad, onProgress, onError) {
+ const scope = this;
+ const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path;
+ this.resourcePath = this.resourcePath || path;
+ const loader = new FileLoader(this.manager);
+ loader.setPath(this.path);
+ loader.setRequestHeader(this.requestHeader);
+ loader.setWithCredentials(this.withCredentials);
+ loader.load(url, function (text) {
+ let json = null;
- if (attribute.isInterleavedBufferAttribute) {
- const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data);
- bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized);
- } else {
- const typedArray = getTypedArray(attribute.type, attribute.array);
- bufferAttribute = new BufferAttribute(typedArray, attribute.itemSize, attribute.normalized);
+ try {
+ json = JSON.parse(text);
+ } catch (error) {
+ if (onError !== undefined) onError(error);
+ console.error('THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message);
+ return;
}
- if (attribute.name !== undefined) bufferAttribute.name = attribute.name;
- array.push(bufferAttribute);
- }
-
- geometry.morphAttributes[key] = array;
- }
- }
-
- const morphTargetsRelative = json.data.morphTargetsRelative;
-
- if (morphTargetsRelative) {
- geometry.morphTargetsRelative = true;
- }
+ const metadata = json.metadata;
- const groups = json.data.groups || json.data.drawcalls || json.data.offsets;
+ if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') {
+ console.error('THREE.ObjectLoader: Can\'t load ' + url);
+ return;
+ }
- if (groups !== undefined) {
- for (let i = 0, n = groups.length; i !== n; ++i) {
- const group = groups[i];
- geometry.addGroup(group.start, group.count, group.materialIndex);
+ scope.parse(json, onLoad);
+ }, onProgress, onError);
}
- }
- const boundingSphere = json.data.boundingSphere;
+ async loadAsync(url, onProgress) {
+ const scope = this;
+ const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path;
+ this.resourcePath = this.resourcePath || path;
+ const loader = new FileLoader(this.manager);
+ loader.setPath(this.path);
+ loader.setRequestHeader(this.requestHeader);
+ loader.setWithCredentials(this.withCredentials);
+ const text = await loader.loadAsync(url, onProgress);
+ const json = JSON.parse(text);
+ const metadata = json.metadata;
- if (boundingSphere !== undefined) {
- const center = new Vector3();
+ if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') {
+ throw new Error('THREE.ObjectLoader: Can\'t load ' + url);
+ }
- if (boundingSphere.center !== undefined) {
- center.fromArray(boundingSphere.center);
+ return await scope.parseAsync(json);
}
- geometry.boundingSphere = new Sphere(center, boundingSphere.radius);
- }
-
- if (json.name) geometry.name = json.name;
- if (json.userData) geometry.userData = json.userData;
- return geometry;
- }
-
- }
-
- class ObjectLoader extends Loader {
- constructor(manager) {
- super(manager);
- }
+ parse(json, onLoad) {
+ const animations = this.parseAnimations(json.animations);
+ const shapes = this.parseShapes(json.shapes);
+ const geometries = this.parseGeometries(json.geometries, shapes);
+ const images = this.parseImages(json.images, function () {
+ if (onLoad !== undefined) onLoad(object);
+ });
+ const textures = this.parseTextures(json.textures, images);
+ const materials = this.parseMaterials(json.materials, textures);
+ const object = this.parseObject(json.object, geometries, materials, textures, animations);
+ const skeletons = this.parseSkeletons(json.skeletons, object);
+ this.bindSkeletons(object, skeletons); //
+
+ if (onLoad !== undefined) {
+ let hasImages = false;
+
+ for (const uuid in images) {
+ if (images[uuid] instanceof HTMLImageElement) {
+ hasImages = true;
+ break;
+ }
+ }
- load(url, onLoad, onProgress, onError) {
- const scope = this;
- const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path;
- this.resourcePath = this.resourcePath || path;
- const loader = new FileLoader(this.manager);
- loader.setPath(this.path);
- loader.setRequestHeader(this.requestHeader);
- loader.setWithCredentials(this.withCredentials);
- loader.load(url, function (text) {
- let json = null;
+ if (hasImages === false) onLoad(object);
+ }
- try {
- json = JSON.parse(text);
- } catch (error) {
- if (onError !== undefined) onError(error);
- console.error('THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message);
- return;
+ return object;
}
- const metadata = json.metadata;
-
- if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') {
- console.error('THREE.ObjectLoader: Can\'t load ' + url);
- return;
+ async parseAsync(json) {
+ const animations = this.parseAnimations(json.animations);
+ const shapes = this.parseShapes(json.shapes);
+ const geometries = this.parseGeometries(json.geometries, shapes);
+ const images = await this.parseImagesAsync(json.images);
+ const textures = this.parseTextures(json.textures, images);
+ const materials = this.parseMaterials(json.materials, textures);
+ const object = this.parseObject(json.object, geometries, materials, textures, animations);
+ const skeletons = this.parseSkeletons(json.skeletons, object);
+ this.bindSkeletons(object, skeletons);
+ return object;
}
- scope.parse(json, onLoad);
- }, onProgress, onError);
- }
-
- async loadAsync(url, onProgress) {
- const scope = this;
- const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path;
- this.resourcePath = this.resourcePath || path;
- const loader = new FileLoader(this.manager);
- loader.setPath(this.path);
- loader.setRequestHeader(this.requestHeader);
- loader.setWithCredentials(this.withCredentials);
- const text = await loader.loadAsync(url, onProgress);
- const json = JSON.parse(text);
- const metadata = json.metadata;
+ parseShapes(json) {
+ const shapes = {};
- if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') {
- throw new Error('THREE.ObjectLoader: Can\'t load ' + url);
- }
-
- return await scope.parseAsync(json);
- }
-
- parse(json, onLoad) {
- const animations = this.parseAnimations(json.animations);
- const shapes = this.parseShapes(json.shapes);
- const geometries = this.parseGeometries(json.geometries, shapes);
- const images = this.parseImages(json.images, function () {
- if (onLoad !== undefined) onLoad(object);
- });
- const textures = this.parseTextures(json.textures, images);
- const materials = this.parseMaterials(json.materials, textures);
- const object = this.parseObject(json.object, geometries, materials, textures, animations);
- const skeletons = this.parseSkeletons(json.skeletons, object);
- this.bindSkeletons(object, skeletons); //
-
- if (onLoad !== undefined) {
- let hasImages = false;
-
- for (const uuid in images) {
- if (images[uuid] instanceof HTMLImageElement) {
- hasImages = true;
- break;
+ if (json !== undefined) {
+ for (let i = 0, l = json.length; i < l; i++) {
+ const shape = new Shape().fromJSON(json[i]);
+ shapes[shape.uuid] = shape;
+ }
}
- }
- if (hasImages === false) onLoad(object);
- }
-
- return object;
- }
-
- async parseAsync(json) {
- const animations = this.parseAnimations(json.animations);
- const shapes = this.parseShapes(json.shapes);
- const geometries = this.parseGeometries(json.geometries, shapes);
- const images = await this.parseImagesAsync(json.images);
- const textures = this.parseTextures(json.textures, images);
- const materials = this.parseMaterials(json.materials, textures);
- const object = this.parseObject(json.object, geometries, materials, textures, animations);
- const skeletons = this.parseSkeletons(json.skeletons, object);
- this.bindSkeletons(object, skeletons);
- return object;
- }
-
- parseShapes(json) {
- const shapes = {};
-
- if (json !== undefined) {
- for (let i = 0, l = json.length; i < l; i++) {
- const shape = new Shape().fromJSON(json[i]);
- shapes[shape.uuid] = shape;
+ return shapes;
}
- }
- return shapes;
- }
+ parseSkeletons(json, object) {
+ const skeletons = {};
+ const bones = {}; // generate bone lookup table
- parseSkeletons(json, object) {
- const skeletons = {};
- const bones = {}; // generate bone lookup table
+ object.traverse(function (child) {
+ if (child.isBone) bones[child.uuid] = child;
+ }); // create skeletons
- object.traverse(function (child) {
- if (child.isBone) bones[child.uuid] = child;
- }); // create skeletons
+ if (json !== undefined) {
+ for (let i = 0, l = json.length; i < l; i++) {
+ const skeleton = new Skeleton().fromJSON(json[i], bones);
+ skeletons[skeleton.uuid] = skeleton;
+ }
+ }
- if (json !== undefined) {
- for (let i = 0, l = json.length; i < l; i++) {
- const skeleton = new Skeleton().fromJSON(json[i], bones);
- skeletons[skeleton.uuid] = skeleton;
+ return skeletons;
}
- }
- return skeletons;
- }
+ parseGeometries(json, shapes) {
+ const geometries = {};
- parseGeometries(json, shapes) {
- const geometries = {};
+ if (json !== undefined) {
+ const bufferGeometryLoader = new BufferGeometryLoader();
- if (json !== undefined) {
- const bufferGeometryLoader = new BufferGeometryLoader();
+ for (let i = 0, l = json.length; i < l; i++) {
+ let geometry;
+ const data = json[i];
- for (let i = 0, l = json.length; i < l; i++) {
- let geometry;
- const data = json[i];
+ switch (data.type) {
+ case 'BufferGeometry':
+ case 'InstancedBufferGeometry':
+ geometry = bufferGeometryLoader.parse(data);
+ break;
- switch (data.type) {
- case 'BufferGeometry':
- case 'InstancedBufferGeometry':
- geometry = bufferGeometryLoader.parse(data);
- break;
+ case 'Geometry':
+ console.error('THREE.ObjectLoader: The legacy Geometry type is no longer supported.');
+ break;
- case 'Geometry':
- console.error('THREE.ObjectLoader: The legacy Geometry type is no longer supported.');
- break;
+ default:
+ if (data.type in Geometries) {
+ geometry = Geometries[data.type].fromJSON(data, shapes);
+ } else {
+ console.warn(`THREE.ObjectLoader: Unsupported geometry type "${data.type}"`);
+ }
- default:
- if (data.type in Geometries) {
- geometry = Geometries[data.type].fromJSON(data, shapes);
- } else {
- console.warn(`THREE.ObjectLoader: Unsupported geometry type "${data.type}"`);
}
+ geometry.uuid = data.uuid;
+ if (data.name !== undefined) geometry.name = data.name;
+ if (geometry.isBufferGeometry === true && data.userData !== undefined) geometry.userData = data.userData;
+ geometries[data.uuid] = geometry;
+ }
}
- geometry.uuid = data.uuid;
- if (data.name !== undefined) geometry.name = data.name;
- if (geometry.isBufferGeometry === true && data.userData !== undefined) geometry.userData = data.userData;
- geometries[data.uuid] = geometry;
+ return geometries;
}
- }
- return geometries;
- }
+ parseMaterials(json, textures) {
+ const cache = {}; // MultiMaterial
- parseMaterials(json, textures) {
- const cache = {}; // MultiMaterial
+ const materials = {};
- const materials = {};
+ if (json !== undefined) {
+ const loader = new MaterialLoader();
+ loader.setTextures(textures);
- if (json !== undefined) {
- const loader = new MaterialLoader();
- loader.setTextures(textures);
+ for (let i = 0, l = json.length; i < l; i++) {
+ const data = json[i];
- for (let i = 0, l = json.length; i < l; i++) {
- const data = json[i];
+ if (data.type === 'MultiMaterial') {
+ // Deprecated
+ const array = [];
- if (data.type === 'MultiMaterial') {
- // Deprecated
- const array = [];
+ for (let j = 0; j < data.materials.length; j++) {
+ const material = data.materials[j];
- for (let j = 0; j < data.materials.length; j++) {
- const material = data.materials[j];
+ if (cache[material.uuid] === undefined) {
+ cache[material.uuid] = loader.parse(material);
+ }
- if (cache[material.uuid] === undefined) {
- cache[material.uuid] = loader.parse(material);
- }
+ array.push(cache[material.uuid]);
+ }
- array.push(cache[material.uuid]);
- }
+ materials[data.uuid] = array;
+ } else {
+ if (cache[data.uuid] === undefined) {
+ cache[data.uuid] = loader.parse(data);
+ }
- materials[data.uuid] = array;
- } else {
- if (cache[data.uuid] === undefined) {
- cache[data.uuid] = loader.parse(data);
+ materials[data.uuid] = cache[data.uuid];
+ }
}
-
- materials[data.uuid] = cache[data.uuid];
}
+
+ return materials;
}
- }
- return materials;
- }
+ parseAnimations(json) {
+ const animations = {};
- parseAnimations(json) {
- const animations = {};
+ if (json !== undefined) {
+ for (let i = 0; i < json.length; i++) {
+ const data = json[i];
+ const clip = AnimationClip.parse(data);
+ animations[clip.uuid] = clip;
+ }
+ }
- if (json !== undefined) {
- for (let i = 0; i < json.length; i++) {
- const data = json[i];
- const clip = AnimationClip.parse(data);
- animations[clip.uuid] = clip;
+ return animations;
}
- }
- return animations;
- }
+ parseImages(json, onLoad) {
+ const scope = this;
+ const images = {};
+ let loader;
- parseImages(json, onLoad) {
- const scope = this;
- const images = {};
- let loader;
-
- function loadImage(url) {
- scope.manager.itemStart(url);
- return loader.load(url, function () {
- scope.manager.itemEnd(url);
- }, undefined, function () {
- scope.manager.itemError(url);
- scope.manager.itemEnd(url);
- });
- }
+ function loadImage(url) {
+ scope.manager.itemStart(url);
+ return loader.load(url, function () {
+ scope.manager.itemEnd(url);
+ }, undefined, function () {
+ scope.manager.itemError(url);
+ scope.manager.itemEnd(url);
+ });
+ }
- function deserializeImage(image) {
- if (typeof image === 'string') {
- const url = image;
- const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url;
- return loadImage(path);
- } else {
- if (image.data) {
- return {
- data: getTypedArray(image.type, image.data),
- width: image.width,
- height: image.height
- };
- } else {
- return null;
+ function deserializeImage(image) {
+ if (typeof image === 'string') {
+ const url = image;
+ const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url;
+ return loadImage(path);
+ } else {
+ if (image.data) {
+ return {
+ data: getTypedArray(image.type, image.data),
+ width: image.width,
+ height: image.height
+ };
+ } else {
+ return null;
+ }
+ }
}
- }
- }
- if (json !== undefined && json.length > 0) {
- const manager = new LoadingManager(onLoad);
- loader = new ImageLoader(manager);
- loader.setCrossOrigin(this.crossOrigin);
+ if (json !== undefined && json.length > 0) {
+ const manager = new LoadingManager(onLoad);
+ loader = new ImageLoader(manager);
+ loader.setCrossOrigin(this.crossOrigin);
+
+ for (let i = 0, il = json.length; i < il; i++) {
+ const image = json[i];
+ const url = image.url;
+
+ if (Array.isArray(url)) {
+ // load array of images e.g CubeTexture
+ images[image.uuid] = [];
+
+ for (let j = 0, jl = url.length; j < jl; j++) {
+ const currentUrl = url[j];
+ const deserializedImage = deserializeImage(currentUrl);
+
+ if (deserializedImage !== null) {
+ if (deserializedImage instanceof HTMLImageElement) {
+ images[image.uuid].push(deserializedImage);
+ } else {
+ // special case: handle array of data textures for cube textures
+ images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height));
+ }
+ }
+ }
+ } else {
+ // load single image
+ const deserializedImage = deserializeImage(image.url);
- for (let i = 0, il = json.length; i < il; i++) {
- const image = json[i];
- const url = image.url;
+ if (deserializedImage !== null) {
+ images[image.uuid] = deserializedImage;
+ }
+ }
+ }
+ }
- if (Array.isArray(url)) {
- // load array of images e.g CubeTexture
- images[image.uuid] = [];
+ return images;
+ }
- for (let j = 0, jl = url.length; j < jl; j++) {
- const currentUrl = url[j];
- const deserializedImage = deserializeImage(currentUrl);
+ async parseImagesAsync(json) {
+ const scope = this;
+ const images = {};
+ let loader;
- if (deserializedImage !== null) {
- if (deserializedImage instanceof HTMLImageElement) {
- images[image.uuid].push(deserializedImage);
- } else {
- // special case: handle array of data textures for cube textures
- images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height));
- }
+ async function deserializeImage(image) {
+ if (typeof image === 'string') {
+ const url = image;
+ const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url;
+ return await loader.loadAsync(path);
+ } else {
+ if (image.data) {
+ return {
+ data: getTypedArray(image.type, image.data),
+ width: image.width,
+ height: image.height
+ };
+ } else {
+ return null;
}
}
- } else {
- // load single image
- const deserializedImage = deserializeImage(image.url);
+ }
- if (deserializedImage !== null) {
- images[image.uuid] = deserializedImage;
+ if (json !== undefined && json.length > 0) {
+ loader = new ImageLoader(this.manager);
+ loader.setCrossOrigin(this.crossOrigin);
+
+ for (let i = 0, il = json.length; i < il; i++) {
+ const image = json[i];
+ const url = image.url;
+
+ if (Array.isArray(url)) {
+ // load array of images e.g CubeTexture
+ images[image.uuid] = [];
+
+ for (let j = 0, jl = url.length; j < jl; j++) {
+ const currentUrl = url[j];
+ const deserializedImage = await deserializeImage(currentUrl);
+
+ if (deserializedImage !== null) {
+ if (deserializedImage instanceof HTMLImageElement) {
+ images[image.uuid].push(deserializedImage);
+ } else {
+ // special case: handle array of data textures for cube textures
+ images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height));
+ }
+ }
+ }
+ } else {
+ // load single image
+ const deserializedImage = await deserializeImage(image.url);
+
+ if (deserializedImage !== null) {
+ images[image.uuid] = deserializedImage;
+ }
+ }
}
}
- }
- }
-
- return images;
- }
- async parseImagesAsync(json) {
- const scope = this;
- const images = {};
- let loader;
+ return images;
+ }
- async function deserializeImage(image) {
- if (typeof image === 'string') {
- const url = image;
- const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url;
- return await loader.loadAsync(path);
- } else {
- if (image.data) {
- return {
- data: getTypedArray(image.type, image.data),
- width: image.width,
- height: image.height
- };
- } else {
- return null;
+ parseTextures(json, images) {
+ function parseConstant(value, type) {
+ if (typeof value === 'number') return value;
+ console.warn('THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value);
+ return type[value];
}
- }
- }
- if (json !== undefined && json.length > 0) {
- loader = new ImageLoader(this.manager);
- loader.setCrossOrigin(this.crossOrigin);
+ const textures = {};
- for (let i = 0, il = json.length; i < il; i++) {
- const image = json[i];
- const url = image.url;
+ if (json !== undefined) {
+ for (let i = 0, l = json.length; i < l; i++) {
+ const data = json[i];
- if (Array.isArray(url)) {
- // load array of images e.g CubeTexture
- images[image.uuid] = [];
+ if (data.image === undefined) {
+ console.warn('THREE.ObjectLoader: No "image" specified for', data.uuid);
+ }
+
+ if (images[data.image] === undefined) {
+ console.warn('THREE.ObjectLoader: Undefined image', data.image);
+ }
- for (let j = 0, jl = url.length; j < jl; j++) {
- const currentUrl = url[j];
- const deserializedImage = await deserializeImage(currentUrl);
+ let texture;
+ const image = images[data.image];
- if (deserializedImage !== null) {
- if (deserializedImage instanceof HTMLImageElement) {
- images[image.uuid].push(deserializedImage);
+ if (Array.isArray(image)) {
+ texture = new CubeTexture(image);
+ if (image.length === 6) texture.needsUpdate = true;
+ } else {
+ if (image && image.data) {
+ texture = new DataTexture(image.data, image.width, image.height);
} else {
- // special case: handle array of data textures for cube textures
- images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height));
+ texture = new Texture(image);
}
+
+ if (image) texture.needsUpdate = true; // textures can have undefined image data
}
- }
- } else {
- // load single image
- const deserializedImage = await deserializeImage(image.url);
- if (deserializedImage !== null) {
- images[image.uuid] = deserializedImage;
+ texture.uuid = data.uuid;
+ if (data.name !== undefined) texture.name = data.name;
+ if (data.mapping !== undefined) texture.mapping = parseConstant(data.mapping, TEXTURE_MAPPING);
+ if (data.offset !== undefined) texture.offset.fromArray(data.offset);
+ if (data.repeat !== undefined) texture.repeat.fromArray(data.repeat);
+ if (data.center !== undefined) texture.center.fromArray(data.center);
+ if (data.rotation !== undefined) texture.rotation = data.rotation;
+
+ if (data.wrap !== undefined) {
+ texture.wrapS = parseConstant(data.wrap[0], TEXTURE_WRAPPING);
+ texture.wrapT = parseConstant(data.wrap[1], TEXTURE_WRAPPING);
+ }
+
+ if (data.format !== undefined) texture.format = data.format;
+ if (data.type !== undefined) texture.type = data.type;
+ if (data.encoding !== undefined) texture.encoding = data.encoding;
+ if (data.minFilter !== undefined) texture.minFilter = parseConstant(data.minFilter, TEXTURE_FILTER);
+ if (data.magFilter !== undefined) texture.magFilter = parseConstant(data.magFilter, TEXTURE_FILTER);
+ if (data.anisotropy !== undefined) texture.anisotropy = data.anisotropy;
+ if (data.flipY !== undefined) texture.flipY = data.flipY;
+ if (data.premultiplyAlpha !== undefined) texture.premultiplyAlpha = data.premultiplyAlpha;
+ if (data.unpackAlignment !== undefined) texture.unpackAlignment = data.unpackAlignment;
+ textures[data.uuid] = texture;
}
}
+
+ return textures;
}
- }
- return images;
- }
+ parseObject(data, geometries, materials, textures, animations) {
+ let object;
- parseTextures(json, images) {
- function parseConstant(value, type) {
- if (typeof value === 'number') return value;
- console.warn('THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value);
- return type[value];
- }
+ function getGeometry(name) {
+ if (geometries[name] === undefined) {
+ console.warn('THREE.ObjectLoader: Undefined geometry', name);
+ }
- const textures = {};
+ return geometries[name];
+ }
- if (json !== undefined) {
- for (let i = 0, l = json.length; i < l; i++) {
- const data = json[i];
+ function getMaterial(name) {
+ if (name === undefined) return undefined;
- if (data.image === undefined) {
- console.warn('THREE.ObjectLoader: No "image" specified for', data.uuid);
- }
+ if (Array.isArray(name)) {
+ const array = [];
- if (images[data.image] === undefined) {
- console.warn('THREE.ObjectLoader: Undefined image', data.image);
- }
+ for (let i = 0, l = name.length; i < l; i++) {
+ const uuid = name[i];
- let texture;
- const image = images[data.image];
+ if (materials[uuid] === undefined) {
+ console.warn('THREE.ObjectLoader: Undefined material', uuid);
+ }
- if (Array.isArray(image)) {
- texture = new CubeTexture(image);
- if (image.length === 6) texture.needsUpdate = true;
- } else {
- if (image && image.data) {
- texture = new DataTexture(image.data, image.width, image.height);
- } else {
- texture = new Texture(image);
+ array.push(materials[uuid]);
+ }
+
+ return array;
+ }
+
+ if (materials[name] === undefined) {
+ console.warn('THREE.ObjectLoader: Undefined material', name);
}
- if (image) texture.needsUpdate = true; // textures can have undefined image data
+ return materials[name];
}
- texture.uuid = data.uuid;
- if (data.name !== undefined) texture.name = data.name;
- if (data.mapping !== undefined) texture.mapping = parseConstant(data.mapping, TEXTURE_MAPPING);
- if (data.offset !== undefined) texture.offset.fromArray(data.offset);
- if (data.repeat !== undefined) texture.repeat.fromArray(data.repeat);
- if (data.center !== undefined) texture.center.fromArray(data.center);
- if (data.rotation !== undefined) texture.rotation = data.rotation;
+ function getTexture(uuid) {
+ if (textures[uuid] === undefined) {
+ console.warn('THREE.ObjectLoader: Undefined texture', uuid);
+ }
- if (data.wrap !== undefined) {
- texture.wrapS = parseConstant(data.wrap[0], TEXTURE_WRAPPING);
- texture.wrapT = parseConstant(data.wrap[1], TEXTURE_WRAPPING);
+ return textures[uuid];
}
- if (data.format !== undefined) texture.format = data.format;
- if (data.type !== undefined) texture.type = data.type;
- if (data.encoding !== undefined) texture.encoding = data.encoding;
- if (data.minFilter !== undefined) texture.minFilter = parseConstant(data.minFilter, TEXTURE_FILTER);
- if (data.magFilter !== undefined) texture.magFilter = parseConstant(data.magFilter, TEXTURE_FILTER);
- if (data.anisotropy !== undefined) texture.anisotropy = data.anisotropy;
- if (data.flipY !== undefined) texture.flipY = data.flipY;
- if (data.premultiplyAlpha !== undefined) texture.premultiplyAlpha = data.premultiplyAlpha;
- if (data.unpackAlignment !== undefined) texture.unpackAlignment = data.unpackAlignment;
- textures[data.uuid] = texture;
- }
- }
+ let geometry, material;
- return textures;
- }
+ switch (data.type) {
+ case 'Scene':
+ object = new Scene();
- parseObject(data, geometries, materials, textures, animations) {
- let object;
+ if (data.background !== undefined) {
+ if (Number.isInteger(data.background)) {
+ object.background = new Color(data.background);
+ } else {
+ object.background = getTexture(data.background);
+ }
+ }
- function getGeometry(name) {
- if (geometries[name] === undefined) {
- console.warn('THREE.ObjectLoader: Undefined geometry', name);
- }
+ if (data.environment !== undefined) {
+ object.environment = getTexture(data.environment);
+ }
- return geometries[name];
- }
+ if (data.fog !== undefined) {
+ if (data.fog.type === 'Fog') {
+ object.fog = new Fog(data.fog.color, data.fog.near, data.fog.far);
+ } else if (data.fog.type === 'FogExp2') {
+ object.fog = new FogExp2(data.fog.color, data.fog.density);
+ }
+ }
- function getMaterial(name) {
- if (name === undefined) return undefined;
+ break;
- if (Array.isArray(name)) {
- const array = [];
+ case 'PerspectiveCamera':
+ object = new PerspectiveCamera(data.fov, data.aspect, data.near, data.far);
+ if (data.focus !== undefined) object.focus = data.focus;
+ if (data.zoom !== undefined) object.zoom = data.zoom;
+ if (data.filmGauge !== undefined) object.filmGauge = data.filmGauge;
+ if (data.filmOffset !== undefined) object.filmOffset = data.filmOffset;
+ if (data.view !== undefined) object.view = Object.assign({}, data.view);
+ break;
- for (let i = 0, l = name.length; i < l; i++) {
- const uuid = name[i];
+ case 'OrthographicCamera':
+ object = new OrthographicCamera(data.left, data.right, data.top, data.bottom, data.near, data.far);
+ if (data.zoom !== undefined) object.zoom = data.zoom;
+ if (data.view !== undefined) object.view = Object.assign({}, data.view);
+ break;
- if (materials[uuid] === undefined) {
- console.warn('THREE.ObjectLoader: Undefined material', uuid);
- }
+ case 'AmbientLight':
+ object = new AmbientLight(data.color, data.intensity);
+ break;
- array.push(materials[uuid]);
- }
+ case 'DirectionalLight':
+ object = new DirectionalLight(data.color, data.intensity);
+ break;
- return array;
- }
+ case 'PointLight':
+ object = new PointLight(data.color, data.intensity, data.distance, data.decay);
+ break;
- if (materials[name] === undefined) {
- console.warn('THREE.ObjectLoader: Undefined material', name);
- }
+ case 'RectAreaLight':
+ object = new RectAreaLight(data.color, data.intensity, data.width, data.height);
+ break;
- return materials[name];
- }
+ case 'SpotLight':
+ object = new SpotLight(data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay);
+ break;
- function getTexture(uuid) {
- if (textures[uuid] === undefined) {
- console.warn('THREE.ObjectLoader: Undefined texture', uuid);
- }
+ case 'HemisphereLight':
+ object = new HemisphereLight(data.color, data.groundColor, data.intensity);
+ break;
- return textures[uuid];
- }
+ case 'LightProbe':
+ object = new LightProbe().fromJSON(data);
+ break;
- let geometry, material;
+ case 'SkinnedMesh':
+ geometry = getGeometry(data.geometry);
+ material = getMaterial(data.material);
+ object = new SkinnedMesh(geometry, material);
+ if (data.bindMode !== undefined) object.bindMode = data.bindMode;
+ if (data.bindMatrix !== undefined) object.bindMatrix.fromArray(data.bindMatrix);
+ if (data.skeleton !== undefined) object.skeleton = data.skeleton;
+ break;
- switch (data.type) {
- case 'Scene':
- object = new Scene();
+ case 'Mesh':
+ geometry = getGeometry(data.geometry);
+ material = getMaterial(data.material);
+ object = new Mesh(geometry, material);
+ break;
- if (data.background !== undefined) {
- if (Number.isInteger(data.background)) {
- object.background = new Color(data.background);
- } else {
- object.background = getTexture(data.background);
- }
- }
-
- if (data.environment !== undefined) {
- object.environment = getTexture(data.environment);
- }
-
- if (data.fog !== undefined) {
- if (data.fog.type === 'Fog') {
- object.fog = new Fog(data.fog.color, data.fog.near, data.fog.far);
- } else if (data.fog.type === 'FogExp2') {
- object.fog = new FogExp2(data.fog.color, data.fog.density);
- }
- }
-
- break;
-
- case 'PerspectiveCamera':
- object = new PerspectiveCamera(data.fov, data.aspect, data.near, data.far);
- if (data.focus !== undefined) object.focus = data.focus;
- if (data.zoom !== undefined) object.zoom = data.zoom;
- if (data.filmGauge !== undefined) object.filmGauge = data.filmGauge;
- if (data.filmOffset !== undefined) object.filmOffset = data.filmOffset;
- if (data.view !== undefined) object.view = Object.assign({}, data.view);
- break;
+ case 'InstancedMesh':
+ geometry = getGeometry(data.geometry);
+ material = getMaterial(data.material);
+ const count = data.count;
+ const instanceMatrix = data.instanceMatrix;
+ const instanceColor = data.instanceColor;
+ object = new InstancedMesh(geometry, material, count);
+ object.instanceMatrix = new InstancedBufferAttribute(new Float32Array(instanceMatrix.array), 16);
+ if (instanceColor !== undefined) object.instanceColor = new InstancedBufferAttribute(new Float32Array(instanceColor.array), instanceColor.itemSize);
+ break;
- case 'OrthographicCamera':
- object = new OrthographicCamera(data.left, data.right, data.top, data.bottom, data.near, data.far);
- if (data.zoom !== undefined) object.zoom = data.zoom;
- if (data.view !== undefined) object.view = Object.assign({}, data.view);
- break;
+ case 'LOD':
+ object = new LOD();
+ break;
- case 'AmbientLight':
- object = new AmbientLight(data.color, data.intensity);
- break;
+ case 'Line':
+ object = new Line(getGeometry(data.geometry), getMaterial(data.material));
+ break;
- case 'DirectionalLight':
- object = new DirectionalLight(data.color, data.intensity);
- break;
+ case 'LineLoop':
+ object = new LineLoop(getGeometry(data.geometry), getMaterial(data.material));
+ break;
- case 'PointLight':
- object = new PointLight(data.color, data.intensity, data.distance, data.decay);
- break;
+ case 'LineSegments':
+ object = new LineSegments(getGeometry(data.geometry), getMaterial(data.material));
+ break;
- case 'RectAreaLight':
- object = new RectAreaLight(data.color, data.intensity, data.width, data.height);
- break;
+ case 'PointCloud':
+ case 'Points':
+ object = new Points(getGeometry(data.geometry), getMaterial(data.material));
+ break;
- case 'SpotLight':
- object = new SpotLight(data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay);
- break;
+ case 'Sprite':
+ object = new Sprite(getMaterial(data.material));
+ break;
- case 'HemisphereLight':
- object = new HemisphereLight(data.color, data.groundColor, data.intensity);
- break;
+ case 'Group':
+ object = new Group();
+ break;
- case 'LightProbe':
- object = new LightProbe().fromJSON(data);
- break;
+ case 'Bone':
+ object = new Bone();
+ break;
- case 'SkinnedMesh':
- geometry = getGeometry(data.geometry);
- material = getMaterial(data.material);
- object = new SkinnedMesh(geometry, material);
- if (data.bindMode !== undefined) object.bindMode = data.bindMode;
- if (data.bindMatrix !== undefined) object.bindMatrix.fromArray(data.bindMatrix);
- if (data.skeleton !== undefined) object.skeleton = data.skeleton;
- break;
+ default:
+ object = new Object3D();
+ }
- case 'Mesh':
- geometry = getGeometry(data.geometry);
- material = getMaterial(data.material);
- object = new Mesh(geometry, material);
- break;
+ object.uuid = data.uuid;
+ if (data.name !== undefined) object.name = data.name;
- case 'InstancedMesh':
- geometry = getGeometry(data.geometry);
- material = getMaterial(data.material);
- const count = data.count;
- const instanceMatrix = data.instanceMatrix;
- const instanceColor = data.instanceColor;
- object = new InstancedMesh(geometry, material, count);
- object.instanceMatrix = new InstancedBufferAttribute(new Float32Array(instanceMatrix.array), 16);
- if (instanceColor !== undefined) object.instanceColor = new InstancedBufferAttribute(new Float32Array(instanceColor.array), instanceColor.itemSize);
- break;
+ if (data.matrix !== undefined) {
+ object.matrix.fromArray(data.matrix);
+ if (data.matrixAutoUpdate !== undefined) object.matrixAutoUpdate = data.matrixAutoUpdate;
+ if (object.matrixAutoUpdate) object.matrix.decompose(object.position, object.quaternion, object.scale);
+ } else {
+ if (data.position !== undefined) object.position.fromArray(data.position);
+ if (data.rotation !== undefined) object.rotation.fromArray(data.rotation);
+ if (data.quaternion !== undefined) object.quaternion.fromArray(data.quaternion);
+ if (data.scale !== undefined) object.scale.fromArray(data.scale);
+ }
- case 'LOD':
- object = new LOD();
- break;
+ if (data.castShadow !== undefined) object.castShadow = data.castShadow;
+ if (data.receiveShadow !== undefined) object.receiveShadow = data.receiveShadow;
- case 'Line':
- object = new Line(getGeometry(data.geometry), getMaterial(data.material));
- break;
+ if (data.shadow) {
+ if (data.shadow.bias !== undefined) object.shadow.bias = data.shadow.bias;
+ if (data.shadow.normalBias !== undefined) object.shadow.normalBias = data.shadow.normalBias;
+ if (data.shadow.radius !== undefined) object.shadow.radius = data.shadow.radius;
+ if (data.shadow.mapSize !== undefined) object.shadow.mapSize.fromArray(data.shadow.mapSize);
+ if (data.shadow.camera !== undefined) object.shadow.camera = this.parseObject(data.shadow.camera);
+ }
- case 'LineLoop':
- object = new LineLoop(getGeometry(data.geometry), getMaterial(data.material));
- break;
+ if (data.visible !== undefined) object.visible = data.visible;
+ if (data.frustumCulled !== undefined) object.frustumCulled = data.frustumCulled;
+ if (data.renderOrder !== undefined) object.renderOrder = data.renderOrder;
+ if (data.userData !== undefined) object.userData = data.userData;
+ if (data.layers !== undefined) object.layers.mask = data.layers;
- case 'LineSegments':
- object = new LineSegments(getGeometry(data.geometry), getMaterial(data.material));
- break;
-
- case 'PointCloud':
- case 'Points':
- object = new Points(getGeometry(data.geometry), getMaterial(data.material));
- break;
-
- case 'Sprite':
- object = new Sprite(getMaterial(data.material));
- break;
-
- case 'Group':
- object = new Group();
- break;
-
- case 'Bone':
- object = new Bone();
- break;
-
- default:
- object = new Object3D();
- }
-
- object.uuid = data.uuid;
- if (data.name !== undefined) object.name = data.name;
-
- if (data.matrix !== undefined) {
- object.matrix.fromArray(data.matrix);
- if (data.matrixAutoUpdate !== undefined) object.matrixAutoUpdate = data.matrixAutoUpdate;
- if (object.matrixAutoUpdate) object.matrix.decompose(object.position, object.quaternion, object.scale);
- } else {
- if (data.position !== undefined) object.position.fromArray(data.position);
- if (data.rotation !== undefined) object.rotation.fromArray(data.rotation);
- if (data.quaternion !== undefined) object.quaternion.fromArray(data.quaternion);
- if (data.scale !== undefined) object.scale.fromArray(data.scale);
- }
+ if (data.children !== undefined) {
+ const children = data.children;
- if (data.castShadow !== undefined) object.castShadow = data.castShadow;
- if (data.receiveShadow !== undefined) object.receiveShadow = data.receiveShadow;
+ for (let i = 0; i < children.length; i++) {
+ object.add(this.parseObject(children[i], geometries, materials, textures, animations));
+ }
+ }
- if (data.shadow) {
- if (data.shadow.bias !== undefined) object.shadow.bias = data.shadow.bias;
- if (data.shadow.normalBias !== undefined) object.shadow.normalBias = data.shadow.normalBias;
- if (data.shadow.radius !== undefined) object.shadow.radius = data.shadow.radius;
- if (data.shadow.mapSize !== undefined) object.shadow.mapSize.fromArray(data.shadow.mapSize);
- if (data.shadow.camera !== undefined) object.shadow.camera = this.parseObject(data.shadow.camera);
- }
+ if (data.animations !== undefined) {
+ const objectAnimations = data.animations;
- if (data.visible !== undefined) object.visible = data.visible;
- if (data.frustumCulled !== undefined) object.frustumCulled = data.frustumCulled;
- if (data.renderOrder !== undefined) object.renderOrder = data.renderOrder;
- if (data.userData !== undefined) object.userData = data.userData;
- if (data.layers !== undefined) object.layers.mask = data.layers;
+ for (let i = 0; i < objectAnimations.length; i++) {
+ const uuid = objectAnimations[i];
+ object.animations.push(animations[uuid]);
+ }
+ }
- if (data.children !== undefined) {
- const children = data.children;
+ if (data.type === 'LOD') {
+ if (data.autoUpdate !== undefined) object.autoUpdate = data.autoUpdate;
+ const levels = data.levels;
- for (let i = 0; i < children.length; i++) {
- object.add(this.parseObject(children[i], geometries, materials, textures, animations));
- }
- }
+ for (let l = 0; l < levels.length; l++) {
+ const level = levels[l];
+ const child = object.getObjectByProperty('uuid', level.object);
- if (data.animations !== undefined) {
- const objectAnimations = data.animations;
+ if (child !== undefined) {
+ object.addLevel(child, level.distance);
+ }
+ }
+ }
- for (let i = 0; i < objectAnimations.length; i++) {
- const uuid = objectAnimations[i];
- object.animations.push(animations[uuid]);
+ return object;
}
- }
-
- if (data.type === 'LOD') {
- if (data.autoUpdate !== undefined) object.autoUpdate = data.autoUpdate;
- const levels = data.levels;
- for (let l = 0; l < levels.length; l++) {
- const level = levels[l];
- const child = object.getObjectByProperty('uuid', level.object);
+ bindSkeletons(object, skeletons) {
+ if (Object.keys(skeletons).length === 0) return;
+ object.traverse(function (child) {
+ if (child.isSkinnedMesh === true && child.skeleton !== undefined) {
+ const skeleton = skeletons[child.skeleton];
- if (child !== undefined) {
- object.addLevel(child, level.distance);
- }
- }
- }
+ if (skeleton === undefined) {
+ console.warn('THREE.ObjectLoader: No skeleton found with UUID:', child.skeleton);
+ } else {
+ child.bind(skeleton, child.bindMatrix);
+ }
+ }
+ });
+ }
- return object;
- }
+ /* DEPRECATED */
- bindSkeletons(object, skeletons) {
- if (Object.keys(skeletons).length === 0) return;
- object.traverse(function (child) {
- if (child.isSkinnedMesh === true && child.skeleton !== undefined) {
- const skeleton = skeletons[child.skeleton];
- if (skeleton === undefined) {
- console.warn('THREE.ObjectLoader: No skeleton found with UUID:', child.skeleton);
- } else {
- child.bind(skeleton, child.bindMatrix);
- }
+ setTexturePath(value) {
+ console.warn('THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().');
+ return this.setResourcePath(value);
}
- });
- }
- /* DEPRECATED */
-
- setTexturePath(value) {
- console.warn('THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().');
- return this.setResourcePath(value);
- }
-
- }
+ }
- const TEXTURE_MAPPING = {
- UVMapping: UVMapping,
- CubeReflectionMapping: CubeReflectionMapping,
- CubeRefractionMapping: CubeRefractionMapping,
- EquirectangularReflectionMapping: EquirectangularReflectionMapping,
- EquirectangularRefractionMapping: EquirectangularRefractionMapping,
- CubeUVReflectionMapping: CubeUVReflectionMapping,
- CubeUVRefractionMapping: CubeUVRefractionMapping
- };
- const TEXTURE_WRAPPING = {
- RepeatWrapping: RepeatWrapping,
- ClampToEdgeWrapping: ClampToEdgeWrapping,
- MirroredRepeatWrapping: MirroredRepeatWrapping
- };
- const TEXTURE_FILTER = {
- NearestFilter: NearestFilter,
- NearestMipmapNearestFilter: NearestMipmapNearestFilter,
- NearestMipmapLinearFilter: NearestMipmapLinearFilter,
- LinearFilter: LinearFilter,
- LinearMipmapNearestFilter: LinearMipmapNearestFilter,
- LinearMipmapLinearFilter: LinearMipmapLinearFilter
- };
-
- class ImageBitmapLoader extends Loader {
- constructor(manager) {
- super(manager);
-
- if (typeof createImageBitmap === 'undefined') {
- console.warn('THREE.ImageBitmapLoader: createImageBitmap() not supported.');
- }
-
- if (typeof fetch === 'undefined') {
- console.warn('THREE.ImageBitmapLoader: fetch() not supported.');
- }
-
- this.options = {
- premultiplyAlpha: 'none'
+ const TEXTURE_MAPPING = {
+ UVMapping: UVMapping,
+ CubeReflectionMapping: CubeReflectionMapping,
+ CubeRefractionMapping: CubeRefractionMapping,
+ EquirectangularReflectionMapping: EquirectangularReflectionMapping,
+ EquirectangularRefractionMapping: EquirectangularRefractionMapping,
+ CubeUVReflectionMapping: CubeUVReflectionMapping,
+ CubeUVRefractionMapping: CubeUVRefractionMapping
+ };
+ const TEXTURE_WRAPPING = {
+ RepeatWrapping: RepeatWrapping,
+ ClampToEdgeWrapping: ClampToEdgeWrapping,
+ MirroredRepeatWrapping: MirroredRepeatWrapping
+ };
+ const TEXTURE_FILTER = {
+ NearestFilter: NearestFilter,
+ NearestMipmapNearestFilter: NearestMipmapNearestFilter,
+ NearestMipmapLinearFilter: NearestMipmapLinearFilter,
+ LinearFilter: LinearFilter,
+ LinearMipmapNearestFilter: LinearMipmapNearestFilter,
+ LinearMipmapLinearFilter: LinearMipmapLinearFilter
};
- }
- setOptions(options) {
- this.options = options;
- return this;
- }
+ class ImageBitmapLoader extends Loader {
+ constructor(manager) {
+ super(manager);
- load(url, onLoad, onProgress, onError) {
- if (url === undefined) url = '';
- if (this.path !== undefined) url = this.path + url;
- url = this.manager.resolveURL(url);
- const scope = this;
- const cached = Cache.get(url);
-
- if (cached !== undefined) {
- scope.manager.itemStart(url);
- setTimeout(function () {
- if (onLoad) onLoad(cached);
- scope.manager.itemEnd(url);
- }, 0);
- return cached;
- }
-
- const fetchOptions = {};
- fetchOptions.credentials = this.crossOrigin === 'anonymous' ? 'same-origin' : 'include';
- fetchOptions.headers = this.requestHeader;
- fetch(url, fetchOptions).then(function (res) {
- return res.blob();
- }).then(function (blob) {
- return createImageBitmap(blob, Object.assign(scope.options, {
- colorSpaceConversion: 'none'
- }));
- }).then(function (imageBitmap) {
- Cache.add(url, imageBitmap);
- if (onLoad) onLoad(imageBitmap);
- scope.manager.itemEnd(url);
- }).catch(function (e) {
- if (onError) onError(e);
- scope.manager.itemError(url);
- scope.manager.itemEnd(url);
- });
- scope.manager.itemStart(url);
- }
+ if (typeof createImageBitmap === 'undefined') {
+ console.warn('THREE.ImageBitmapLoader: createImageBitmap() not supported.');
+ }
- }
+ if (typeof fetch === 'undefined') {
+ console.warn('THREE.ImageBitmapLoader: fetch() not supported.');
+ }
- ImageBitmapLoader.prototype.isImageBitmapLoader = true;
+ this.options = {
+ premultiplyAlpha: 'none'
+ };
+ }
- class ShapePath {
- constructor() {
- this.type = 'ShapePath';
- this.color = new Color();
- this.subPaths = [];
- this.currentPath = null;
- }
+ setOptions(options) {
+ this.options = options;
+ return this;
+ }
- moveTo(x, y) {
- this.currentPath = new Path();
- this.subPaths.push(this.currentPath);
- this.currentPath.moveTo(x, y);
- return this;
- }
+ load(url, onLoad, onProgress, onError) {
+ if (url === undefined) url = '';
+ if (this.path !== undefined) url = this.path + url;
+ url = this.manager.resolveURL(url);
+ const scope = this;
+ const cached = Cache.get(url);
+
+ if (cached !== undefined) {
+ scope.manager.itemStart(url);
+ setTimeout(function () {
+ if (onLoad) onLoad(cached);
+ scope.manager.itemEnd(url);
+ }, 0);
+ return cached;
+ }
- lineTo(x, y) {
- this.currentPath.lineTo(x, y);
- return this;
- }
+ const fetchOptions = {};
+ fetchOptions.credentials = this.crossOrigin === 'anonymous' ? 'same-origin' : 'include';
+ fetchOptions.headers = this.requestHeader;
+ fetch(url, fetchOptions).then(function (res) {
+ return res.blob();
+ }).then(function (blob) {
+ return createImageBitmap(blob, Object.assign(scope.options, {
+ colorSpaceConversion: 'none'
+ }));
+ }).then(function (imageBitmap) {
+ Cache.add(url, imageBitmap);
+ if (onLoad) onLoad(imageBitmap);
+ scope.manager.itemEnd(url);
+ }).catch(function (e) {
+ if (onError) onError(e);
+ scope.manager.itemError(url);
+ scope.manager.itemEnd(url);
+ });
+ scope.manager.itemStart(url);
+ }
- quadraticCurveTo(aCPx, aCPy, aX, aY) {
- this.currentPath.quadraticCurveTo(aCPx, aCPy, aX, aY);
- return this;
- }
+ }
- bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) {
- this.currentPath.bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY);
- return this;
- }
+ ImageBitmapLoader.prototype.isImageBitmapLoader = true;
- splineThru(pts) {
- this.currentPath.splineThru(pts);
- return this;
- }
+ class ShapePath {
+ constructor() {
+ this.type = 'ShapePath';
+ this.color = new Color();
+ this.subPaths = [];
+ this.currentPath = null;
+ }
- toShapes(isCCW, noHoles) {
- function toShapesNoHoles(inSubpaths) {
- const shapes = [];
+ moveTo(x, y) {
+ this.currentPath = new Path();
+ this.subPaths.push(this.currentPath);
+ this.currentPath.moveTo(x, y);
+ return this;
+ }
- for (let i = 0, l = inSubpaths.length; i < l; i++) {
- const tmpPath = inSubpaths[i];
- const tmpShape = new Shape();
- tmpShape.curves = tmpPath.curves;
- shapes.push(tmpShape);
+ lineTo(x, y) {
+ this.currentPath.lineTo(x, y);
+ return this;
}
- return shapes;
- }
+ quadraticCurveTo(aCPx, aCPy, aX, aY) {
+ this.currentPath.quadraticCurveTo(aCPx, aCPy, aX, aY);
+ return this;
+ }
- function isPointInsidePolygon(inPt, inPolygon) {
- const polyLen = inPolygon.length; // inPt on polygon contour => immediate success or
- // toggling of inside/outside at every single! intersection point of an edge
- // with the horizontal line through inPt, left of inPt
- // not counting lowerY endpoints of edges and whole edges on that line
+ bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) {
+ this.currentPath.bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY);
+ return this;
+ }
- let inside = false;
+ splineThru(pts) {
+ this.currentPath.splineThru(pts);
+ return this;
+ }
- for (let p = polyLen - 1, q = 0; q < polyLen; p = q++) {
- let edgeLowPt = inPolygon[p];
- let edgeHighPt = inPolygon[q];
- let edgeDx = edgeHighPt.x - edgeLowPt.x;
- let edgeDy = edgeHighPt.y - edgeLowPt.y;
+ toShapes(isCCW, noHoles) {
+ function toShapesNoHoles(inSubpaths) {
+ const shapes = [];
- if (Math.abs(edgeDy) > Number.EPSILON) {
- // not parallel
- if (edgeDy < 0) {
- edgeLowPt = inPolygon[q];
- edgeDx = -edgeDx;
- edgeHighPt = inPolygon[p];
- edgeDy = -edgeDy;
+ for (let i = 0, l = inSubpaths.length; i < l; i++) {
+ const tmpPath = inSubpaths[i];
+ const tmpShape = new Shape();
+ tmpShape.curves = tmpPath.curves;
+ shapes.push(tmpShape);
}
- if (inPt.y < edgeLowPt.y || inPt.y > edgeHighPt.y) continue;
+ return shapes;
+ }
- if (inPt.y === edgeLowPt.y) {
- if (inPt.x === edgeLowPt.x) return true; // inPt is on contour ?
- // continue; // no intersection or edgeLowPt => doesn't count !!!
- } else {
- const perpEdge = edgeDy * (inPt.x - edgeLowPt.x) - edgeDx * (inPt.y - edgeLowPt.y);
- if (perpEdge === 0) return true; // inPt is on contour ?
+ function isPointInsidePolygon(inPt, inPolygon) {
+ const polyLen = inPolygon.length; // inPt on polygon contour => immediate success or
+ // toggling of inside/outside at every single! intersection point of an edge
+ // with the horizontal line through inPt, left of inPt
+ // not counting lowerY endpoints of edges and whole edges on that line
+
+ let inside = false;
+
+ for (let p = polyLen - 1, q = 0; q < polyLen; p = q++) {
+ let edgeLowPt = inPolygon[p];
+ let edgeHighPt = inPolygon[q];
+ let edgeDx = edgeHighPt.x - edgeLowPt.x;
+ let edgeDy = edgeHighPt.y - edgeLowPt.y;
+
+ if (Math.abs(edgeDy) > Number.EPSILON) {
+ // not parallel
+ if (edgeDy < 0) {
+ edgeLowPt = inPolygon[q];
+ edgeDx = -edgeDx;
+ edgeHighPt = inPolygon[p];
+ edgeDy = -edgeDy;
+ }
- if (perpEdge < 0) continue;
- inside = !inside; // true intersection left of inPt
- }
- } else {
- // parallel or collinear
- if (inPt.y !== edgeLowPt.y) continue; // parallel
- // edge lies on the same horizontal line as inPt
+ if (inPt.y < edgeLowPt.y || inPt.y > edgeHighPt.y) continue;
- if (edgeHighPt.x <= inPt.x && inPt.x <= edgeLowPt.x || edgeLowPt.x <= inPt.x && inPt.x <= edgeHighPt.x) return true; // inPt: Point on contour !
- // continue;
- }
- }
+ if (inPt.y === edgeLowPt.y) {
+ if (inPt.x === edgeLowPt.x) return true; // inPt is on contour ?
+ // continue; // no intersection or edgeLowPt => doesn't count !!!
+ } else {
+ const perpEdge = edgeDy * (inPt.x - edgeLowPt.x) - edgeDx * (inPt.y - edgeLowPt.y);
+ if (perpEdge === 0) return true; // inPt is on contour ?
- return inside;
- }
+ if (perpEdge < 0) continue;
+ inside = !inside; // true intersection left of inPt
+ }
+ } else {
+ // parallel or collinear
+ if (inPt.y !== edgeLowPt.y) continue; // parallel
+ // edge lies on the same horizontal line as inPt
- const isClockWise = ShapeUtils.isClockWise;
- const subPaths = this.subPaths;
- if (subPaths.length === 0) return [];
- if (noHoles === true) return toShapesNoHoles(subPaths);
- let solid, tmpPath, tmpShape;
- const shapes = [];
-
- if (subPaths.length === 1) {
- tmpPath = subPaths[0];
- tmpShape = new Shape();
- tmpShape.curves = tmpPath.curves;
- shapes.push(tmpShape);
- return shapes;
- }
-
- let holesFirst = !isClockWise(subPaths[0].getPoints());
- holesFirst = isCCW ? !holesFirst : holesFirst; // console.log("Holes first", holesFirst);
-
- const betterShapeHoles = [];
- const newShapes = [];
- let newShapeHoles = [];
- let mainIdx = 0;
- let tmpPoints;
- newShapes[mainIdx] = undefined;
- newShapeHoles[mainIdx] = [];
-
- for (let i = 0, l = subPaths.length; i < l; i++) {
- tmpPath = subPaths[i];
- tmpPoints = tmpPath.getPoints();
- solid = isClockWise(tmpPoints);
- solid = isCCW ? !solid : solid;
-
- if (solid) {
- if (!holesFirst && newShapes[mainIdx]) mainIdx++;
- newShapes[mainIdx] = {
- s: new Shape(),
- p: tmpPoints
- };
- newShapes[mainIdx].s.curves = tmpPath.curves;
- if (holesFirst) mainIdx++;
- newShapeHoles[mainIdx] = []; //console.log('cw', i);
- } else {
- newShapeHoles[mainIdx].push({
- h: tmpPath,
- p: tmpPoints[0]
- }); //console.log('ccw', i);
- }
- } // only Holes? -> probably all Shapes with wrong orientation
+ if (edgeHighPt.x <= inPt.x && inPt.x <= edgeLowPt.x || edgeLowPt.x <= inPt.x && inPt.x <= edgeHighPt.x) return true; // inPt: Point on contour !
+ // continue;
+ }
+ }
+
+ return inside;
+ }
+ const isClockWise = ShapeUtils.isClockWise;
+ const subPaths = this.subPaths;
+ if (subPaths.length === 0) return [];
+ if (noHoles === true) return toShapesNoHoles(subPaths);
+ let solid, tmpPath, tmpShape;
+ const shapes = [];
+
+ if (subPaths.length === 1) {
+ tmpPath = subPaths[0];
+ tmpShape = new Shape();
+ tmpShape.curves = tmpPath.curves;
+ shapes.push(tmpShape);
+ return shapes;
+ }
- if (!newShapes[0]) return toShapesNoHoles(subPaths);
+ let holesFirst = !isClockWise(subPaths[0].getPoints());
+ holesFirst = isCCW ? !holesFirst : holesFirst; // console.log("Holes first", holesFirst);
+
+ const betterShapeHoles = [];
+ const newShapes = [];
+ let newShapeHoles = [];
+ let mainIdx = 0;
+ let tmpPoints;
+ newShapes[mainIdx] = undefined;
+ newShapeHoles[mainIdx] = [];
+
+ for (let i = 0, l = subPaths.length; i < l; i++) {
+ tmpPath = subPaths[i];
+ tmpPoints = tmpPath.getPoints();
+ solid = isClockWise(tmpPoints);
+ solid = isCCW ? !solid : solid;
+
+ if (solid) {
+ if (!holesFirst && newShapes[mainIdx]) mainIdx++;
+ newShapes[mainIdx] = {
+ s: new Shape(),
+ p: tmpPoints
+ };
+ newShapes[mainIdx].s.curves = tmpPath.curves;
+ if (holesFirst) mainIdx++;
+ newShapeHoles[mainIdx] = []; //console.log('cw', i);
+ } else {
+ newShapeHoles[mainIdx].push({
+ h: tmpPath,
+ p: tmpPoints[0]
+ }); //console.log('ccw', i);
+ }
+ } // only Holes? -> probably all Shapes with wrong orientation
- if (newShapes.length > 1) {
- let ambiguous = false;
- const toChange = [];
- for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) {
- betterShapeHoles[sIdx] = [];
- }
+ if (!newShapes[0]) return toShapesNoHoles(subPaths);
- for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) {
- const sho = newShapeHoles[sIdx];
+ if (newShapes.length > 1) {
+ let ambiguous = false;
+ const toChange = [];
- for (let hIdx = 0; hIdx < sho.length; hIdx++) {
- const ho = sho[hIdx];
- let hole_unassigned = true;
+ for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) {
+ betterShapeHoles[sIdx] = [];
+ }
- for (let s2Idx = 0; s2Idx < newShapes.length; s2Idx++) {
- if (isPointInsidePolygon(ho.p, newShapes[s2Idx].p)) {
- if (sIdx !== s2Idx) toChange.push({
- froms: sIdx,
- tos: s2Idx,
- hole: hIdx
- });
+ for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) {
+ const sho = newShapeHoles[sIdx];
+
+ for (let hIdx = 0; hIdx < sho.length; hIdx++) {
+ const ho = sho[hIdx];
+ let hole_unassigned = true;
+
+ for (let s2Idx = 0; s2Idx < newShapes.length; s2Idx++) {
+ if (isPointInsidePolygon(ho.p, newShapes[s2Idx].p)) {
+ if (sIdx !== s2Idx) toChange.push({
+ froms: sIdx,
+ tos: s2Idx,
+ hole: hIdx
+ });
+
+ if (hole_unassigned) {
+ hole_unassigned = false;
+ betterShapeHoles[s2Idx].push(ho);
+ } else {
+ ambiguous = true;
+ }
+ }
+ }
if (hole_unassigned) {
- hole_unassigned = false;
- betterShapeHoles[s2Idx].push(ho);
- } else {
- ambiguous = true;
+ betterShapeHoles[sIdx].push(ho);
}
}
- }
+ } // console.log("ambiguous: ", ambiguous);
+
- if (hole_unassigned) {
- betterShapeHoles[sIdx].push(ho);
+ if (toChange.length > 0) {
+ // console.log("to change: ", toChange);
+ if (!ambiguous) newShapeHoles = betterShapeHoles;
}
}
- } // console.log("ambiguous: ", ambiguous);
+ let tmpHoles;
- if (toChange.length > 0) {
- // console.log("to change: ", toChange);
- if (!ambiguous) newShapeHoles = betterShapeHoles;
- }
- }
+ for (let i = 0, il = newShapes.length; i < il; i++) {
+ tmpShape = newShapes[i].s;
+ shapes.push(tmpShape);
+ tmpHoles = newShapeHoles[i];
- let tmpHoles;
+ for (let j = 0, jl = tmpHoles.length; j < jl; j++) {
+ tmpShape.holes.push(tmpHoles[j].h);
+ }
+ } //console.log("shape", shapes);
- for (let i = 0, il = newShapes.length; i < il; i++) {
- tmpShape = newShapes[i].s;
- shapes.push(tmpShape);
- tmpHoles = newShapeHoles[i];
- for (let j = 0, jl = tmpHoles.length; j < jl; j++) {
- tmpShape.holes.push(tmpHoles[j].h);
+ return shapes;
}
- } //console.log("shape", shapes);
+ }
- return shapes;
- }
+ class Font {
+ constructor(data) {
+ this.type = 'Font';
+ this.data = data;
+ }
- }
+ generateShapes(text, size = 100) {
+ const shapes = [];
+ const paths = createPaths(text, size, this.data);
- class Font {
- constructor(data) {
- this.type = 'Font';
- this.data = data;
- }
+ for (let p = 0, pl = paths.length; p < pl; p++) {
+ Array.prototype.push.apply(shapes, paths[p].toShapes());
+ }
- generateShapes(text, size = 100) {
- const shapes = [];
- const paths = createPaths(text, size, this.data);
+ return shapes;
+ }
- for (let p = 0, pl = paths.length; p < pl; p++) {
- Array.prototype.push.apply(shapes, paths[p].toShapes());
}
- return shapes;
- }
-
- }
+ function createPaths(text, size, data) {
+ const chars = Array.from(text);
+ const scale = size / data.resolution;
+ const line_height = (data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness) * scale;
+ const paths = [];
+ let offsetX = 0,
+ offsetY = 0;
- function createPaths(text, size, data) {
- const chars = Array.from(text);
- const scale = size / data.resolution;
- const line_height = (data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness) * scale;
- const paths = [];
- let offsetX = 0,
- offsetY = 0;
+ for (let i = 0; i < chars.length; i++) {
+ const char = chars[i];
- for (let i = 0; i < chars.length; i++) {
- const char = chars[i];
+ if (char === '\n') {
+ offsetX = 0;
+ offsetY -= line_height;
+ } else {
+ const ret = createPath(char, scale, offsetX, offsetY, data);
+ offsetX += ret.offsetX;
+ paths.push(ret.path);
+ }
+ }
- if (char === '\n') {
- offsetX = 0;
- offsetY -= line_height;
- } else {
- const ret = createPath(char, scale, offsetX, offsetY, data);
- offsetX += ret.offsetX;
- paths.push(ret.path);
+ return paths;
}
- }
-
- return paths;
- }
- function createPath(char, scale, offsetX, offsetY, data) {
- const glyph = data.glyphs[char] || data.glyphs['?'];
+ function createPath(char, scale, offsetX, offsetY, data) {
+ const glyph = data.glyphs[char] || data.glyphs['?'];
- if (!glyph) {
- console.error('THREE.Font: character "' + char + '" does not exists in font family ' + data.familyName + '.');
- return;
- }
+ if (!glyph) {
+ console.error('THREE.Font: character "' + char + '" does not exists in font family ' + data.familyName + '.');
+ return;
+ }
- const path = new ShapePath();
- let x, y, cpx, cpy, cpx1, cpy1, cpx2, cpy2;
+ const path = new ShapePath();
+ let x, y, cpx, cpy, cpx1, cpy1, cpx2, cpy2;
- if (glyph.o) {
- const outline = glyph._cachedOutline || (glyph._cachedOutline = glyph.o.split(' '));
+ if (glyph.o) {
+ const outline = glyph._cachedOutline || (glyph._cachedOutline = glyph.o.split(' '));
- for (let i = 0, l = outline.length; i < l;) {
- const action = outline[i++];
+ for (let i = 0, l = outline.length; i < l;) {
+ const action = outline[i++];
- switch (action) {
- case 'm':
- // moveTo
- x = outline[i++] * scale + offsetX;
- y = outline[i++] * scale + offsetY;
- path.moveTo(x, y);
- break;
+ switch (action) {
+ case 'm':
+ // moveTo
+ x = outline[i++] * scale + offsetX;
+ y = outline[i++] * scale + offsetY;
+ path.moveTo(x, y);
+ break;
- case 'l':
- // lineTo
- x = outline[i++] * scale + offsetX;
- y = outline[i++] * scale + offsetY;
- path.lineTo(x, y);
- break;
+ case 'l':
+ // lineTo
+ x = outline[i++] * scale + offsetX;
+ y = outline[i++] * scale + offsetY;
+ path.lineTo(x, y);
+ break;
- case 'q':
- // quadraticCurveTo
- cpx = outline[i++] * scale + offsetX;
- cpy = outline[i++] * scale + offsetY;
- cpx1 = outline[i++] * scale + offsetX;
- cpy1 = outline[i++] * scale + offsetY;
- path.quadraticCurveTo(cpx1, cpy1, cpx, cpy);
- break;
+ case 'q':
+ // quadraticCurveTo
+ cpx = outline[i++] * scale + offsetX;
+ cpy = outline[i++] * scale + offsetY;
+ cpx1 = outline[i++] * scale + offsetX;
+ cpy1 = outline[i++] * scale + offsetY;
+ path.quadraticCurveTo(cpx1, cpy1, cpx, cpy);
+ break;
- case 'b':
- // bezierCurveTo
- cpx = outline[i++] * scale + offsetX;
- cpy = outline[i++] * scale + offsetY;
- cpx1 = outline[i++] * scale + offsetX;
- cpy1 = outline[i++] * scale + offsetY;
- cpx2 = outline[i++] * scale + offsetX;
- cpy2 = outline[i++] * scale + offsetY;
- path.bezierCurveTo(cpx1, cpy1, cpx2, cpy2, cpx, cpy);
- break;
+ case 'b':
+ // bezierCurveTo
+ cpx = outline[i++] * scale + offsetX;
+ cpy = outline[i++] * scale + offsetY;
+ cpx1 = outline[i++] * scale + offsetX;
+ cpy1 = outline[i++] * scale + offsetY;
+ cpx2 = outline[i++] * scale + offsetX;
+ cpy2 = outline[i++] * scale + offsetY;
+ path.bezierCurveTo(cpx1, cpy1, cpx2, cpy2, cpx, cpy);
+ break;
+ }
+ }
}
- }
- }
-
- return {
- offsetX: glyph.ha * scale,
- path: path
- };
- }
-
- Font.prototype.isFont = true;
- class FontLoader extends Loader {
- constructor(manager) {
- super(manager);
- }
+ return {
+ offsetX: glyph.ha * scale,
+ path: path
+ };
+ }
- load(url, onLoad, onProgress, onError) {
- const scope = this;
- const loader = new FileLoader(this.manager);
- loader.setPath(this.path);
- loader.setRequestHeader(this.requestHeader);
- loader.setWithCredentials(scope.withCredentials);
- loader.load(url, function (text) {
- let json;
+ Font.prototype.isFont = true;
- try {
- json = JSON.parse(text);
- } catch (e) {
- console.warn('THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.');
- json = JSON.parse(text.substring(65, text.length - 2));
+ class FontLoader extends Loader {
+ constructor(manager) {
+ super(manager);
}
- const font = scope.parse(json);
- if (onLoad) onLoad(font);
- }, onProgress, onError);
- }
+ load(url, onLoad, onProgress, onError) {
+ const scope = this;
+ const loader = new FileLoader(this.manager);
+ loader.setPath(this.path);
+ loader.setRequestHeader(this.requestHeader);
+ loader.setWithCredentials(scope.withCredentials);
+ loader.load(url, function (text) {
+ let json;
- parse(json) {
- return new Font(json);
- }
+ try {
+ json = JSON.parse(text);
+ } catch (e) {
+ console.warn('THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.');
+ json = JSON.parse(text.substring(65, text.length - 2));
+ }
- }
+ const font = scope.parse(json);
+ if (onLoad) onLoad(font);
+ }, onProgress, onError);
+ }
- let _context;
+ parse(json) {
+ return new Font(json);
+ }
- const AudioContext = {
- getContext: function () {
- if (_context === undefined) {
- _context = new (window.AudioContext || window.webkitAudioContext)();
}
- return _context;
- },
- setContext: function (value) {
- _context = value;
- }
- };
-
- class AudioLoader extends Loader {
- constructor(manager) {
- super(manager);
- }
+ let _context;
- load(url, onLoad, onProgress, onError) {
- const scope = this;
- const loader = new FileLoader(this.manager);
- loader.setResponseType('arraybuffer');
- loader.setPath(this.path);
- loader.setRequestHeader(this.requestHeader);
- loader.setWithCredentials(this.withCredentials);
- loader.load(url, function (buffer) {
- try {
- // Create a copy of the buffer. The `decodeAudioData` method
- // detaches the buffer when complete, preventing reuse.
- const bufferCopy = buffer.slice(0);
- const context = AudioContext.getContext();
- context.decodeAudioData(bufferCopy, function (audioBuffer) {
- onLoad(audioBuffer);
- });
- } catch (e) {
- if (onError) {
- onError(e);
- } else {
- console.error(e);
+ const AudioContext = {
+ getContext: function () {
+ if (_context === undefined) {
+ _context = new (window.AudioContext || window.webkitAudioContext)();
}
- scope.manager.itemError(url);
+ return _context;
+ },
+ setContext: function (value) {
+ _context = value;
}
- }, onProgress, onError);
- }
+ };
- }
+ class AudioLoader extends Loader {
+ constructor(manager) {
+ super(manager);
+ }
+
+ load(url, onLoad, onProgress, onError) {
+ const scope = this;
+ const loader = new FileLoader(this.manager);
+ loader.setResponseType('arraybuffer');
+ loader.setPath(this.path);
+ loader.setRequestHeader(this.requestHeader);
+ loader.setWithCredentials(this.withCredentials);
+ loader.load(url, function (buffer) {
+ try {
+ // Create a copy of the buffer. The `decodeAudioData` method
+ // detaches the buffer when complete, preventing reuse.
+ const bufferCopy = buffer.slice(0);
+ const context = AudioContext.getContext();
+ context.decodeAudioData(bufferCopy, function (audioBuffer) {
+ onLoad(audioBuffer);
+ });
+ } catch (e) {
+ if (onError) {
+ onError(e);
+ } else {
+ console.error(e);
+ }
- class HemisphereLightProbe extends LightProbe {
- constructor(skyColor, groundColor, intensity = 1) {
- super(undefined, intensity);
- const color1 = new Color().set(skyColor);
- const color2 = new Color().set(groundColor);
- const sky = new Vector3(color1.r, color1.g, color1.b);
- const ground = new Vector3(color2.r, color2.g, color2.b); // without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI );
-
- const c0 = Math.sqrt(Math.PI);
- const c1 = c0 * Math.sqrt(0.75);
- this.sh.coefficients[0].copy(sky).add(ground).multiplyScalar(c0);
- this.sh.coefficients[1].copy(sky).sub(ground).multiplyScalar(c1);
- }
+ scope.manager.itemError(url);
+ }
+ }, onProgress, onError);
+ }
- }
+ }
- HemisphereLightProbe.prototype.isHemisphereLightProbe = true;
+ class HemisphereLightProbe extends LightProbe {
+ constructor(skyColor, groundColor, intensity = 1) {
+ super(undefined, intensity);
+ const color1 = new Color().set(skyColor);
+ const color2 = new Color().set(groundColor);
+ const sky = new Vector3(color1.r, color1.g, color1.b);
+ const ground = new Vector3(color2.r, color2.g, color2.b); // without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI );
- class AmbientLightProbe extends LightProbe {
- constructor(color, intensity = 1) {
- super(undefined, intensity);
- const color1 = new Color().set(color); // without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI );
+ const c0 = Math.sqrt(Math.PI);
+ const c1 = c0 * Math.sqrt(0.75);
+ this.sh.coefficients[0].copy(sky).add(ground).multiplyScalar(c0);
+ this.sh.coefficients[1].copy(sky).sub(ground).multiplyScalar(c1);
+ }
- this.sh.coefficients[0].set(color1.r, color1.g, color1.b).multiplyScalar(2 * Math.sqrt(Math.PI));
- }
+ }
- }
+ HemisphereLightProbe.prototype.isHemisphereLightProbe = true;
- AmbientLightProbe.prototype.isAmbientLightProbe = true;
-
- const _eyeRight = /*@__PURE__*/new Matrix4();
-
- const _eyeLeft = /*@__PURE__*/new Matrix4();
-
- class StereoCamera {
- constructor() {
- this.type = 'StereoCamera';
- this.aspect = 1;
- this.eyeSep = 0.064;
- this.cameraL = new PerspectiveCamera();
- this.cameraL.layers.enable(1);
- this.cameraL.matrixAutoUpdate = false;
- this.cameraR = new PerspectiveCamera();
- this.cameraR.layers.enable(2);
- this.cameraR.matrixAutoUpdate = false;
- this._cache = {
- focus: null,
- fov: null,
- aspect: null,
- near: null,
- far: null,
- zoom: null,
- eyeSep: null
- };
- }
+ class AmbientLightProbe extends LightProbe {
+ constructor(color, intensity = 1) {
+ super(undefined, intensity);
+ const color1 = new Color().set(color); // without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI );
- update(camera) {
- const cache = this._cache;
- const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep;
-
- if (needsUpdate) {
- cache.focus = camera.focus;
- cache.fov = camera.fov;
- cache.aspect = camera.aspect * this.aspect;
- cache.near = camera.near;
- cache.far = camera.far;
- cache.zoom = camera.zoom;
- cache.eyeSep = this.eyeSep; // Off-axis stereoscopic effect based on
- // http://paulbourke.net/stereographics/stereorender/
-
- const projectionMatrix = camera.projectionMatrix.clone();
- const eyeSepHalf = cache.eyeSep / 2;
- const eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus;
- const ymax = cache.near * Math.tan(DEG2RAD * cache.fov * 0.5) / cache.zoom;
- let xmin, xmax; // translate xOffset
-
- _eyeLeft.elements[12] = -eyeSepHalf;
- _eyeRight.elements[12] = eyeSepHalf; // for left eye
-
- xmin = -ymax * cache.aspect + eyeSepOnProjection;
- xmax = ymax * cache.aspect + eyeSepOnProjection;
- projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin);
- projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin);
- this.cameraL.projectionMatrix.copy(projectionMatrix); // for right eye
-
- xmin = -ymax * cache.aspect - eyeSepOnProjection;
- xmax = ymax * cache.aspect - eyeSepOnProjection;
- projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin);
- projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin);
- this.cameraR.projectionMatrix.copy(projectionMatrix);
- }
-
- this.cameraL.matrixWorld.copy(camera.matrixWorld).multiply(_eyeLeft);
- this.cameraR.matrixWorld.copy(camera.matrixWorld).multiply(_eyeRight);
- }
+ this.sh.coefficients[0].set(color1.r, color1.g, color1.b).multiplyScalar(2 * Math.sqrt(Math.PI));
+ }
- }
+ }
- class Clock {
- constructor(autoStart = true) {
- this.autoStart = autoStart;
- this.startTime = 0;
- this.oldTime = 0;
- this.elapsedTime = 0;
- this.running = false;
- }
+ AmbientLightProbe.prototype.isAmbientLightProbe = true;
- start() {
- this.startTime = now();
- this.oldTime = this.startTime;
- this.elapsedTime = 0;
- this.running = true;
- }
+ const _eyeRight = /*@__PURE__*/new Matrix4();
- stop() {
- this.getElapsedTime();
- this.running = false;
- this.autoStart = false;
- }
+ const _eyeLeft = /*@__PURE__*/new Matrix4();
- getElapsedTime() {
- this.getDelta();
- return this.elapsedTime;
- }
+ class StereoCamera {
+ constructor() {
+ this.type = 'StereoCamera';
+ this.aspect = 1;
+ this.eyeSep = 0.064;
+ this.cameraL = new PerspectiveCamera();
+ this.cameraL.layers.enable(1);
+ this.cameraL.matrixAutoUpdate = false;
+ this.cameraR = new PerspectiveCamera();
+ this.cameraR.layers.enable(2);
+ this.cameraR.matrixAutoUpdate = false;
+ this._cache = {
+ focus: null,
+ fov: null,
+ aspect: null,
+ near: null,
+ far: null,
+ zoom: null,
+ eyeSep: null
+ };
+ }
- getDelta() {
- let diff = 0;
+ update(camera) {
+ const cache = this._cache;
+ const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep;
+
+ if (needsUpdate) {
+ cache.focus = camera.focus;
+ cache.fov = camera.fov;
+ cache.aspect = camera.aspect * this.aspect;
+ cache.near = camera.near;
+ cache.far = camera.far;
+ cache.zoom = camera.zoom;
+ cache.eyeSep = this.eyeSep; // Off-axis stereoscopic effect based on
+ // http://paulbourke.net/stereographics/stereorender/
+
+ const projectionMatrix = camera.projectionMatrix.clone();
+ const eyeSepHalf = cache.eyeSep / 2;
+ const eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus;
+ const ymax = cache.near * Math.tan(DEG2RAD * cache.fov * 0.5) / cache.zoom;
+ let xmin, xmax; // translate xOffset
+
+ _eyeLeft.elements[12] = -eyeSepHalf;
+ _eyeRight.elements[12] = eyeSepHalf; // for left eye
+
+ xmin = -ymax * cache.aspect + eyeSepOnProjection;
+ xmax = ymax * cache.aspect + eyeSepOnProjection;
+ projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin);
+ projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin);
+ this.cameraL.projectionMatrix.copy(projectionMatrix); // for right eye
+
+ xmin = -ymax * cache.aspect - eyeSepOnProjection;
+ xmax = ymax * cache.aspect - eyeSepOnProjection;
+ projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin);
+ projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin);
+ this.cameraR.projectionMatrix.copy(projectionMatrix);
+ }
- if (this.autoStart && !this.running) {
- this.start();
- return 0;
- }
+ this.cameraL.matrixWorld.copy(camera.matrixWorld).multiply(_eyeLeft);
+ this.cameraR.matrixWorld.copy(camera.matrixWorld).multiply(_eyeRight);
+ }
- if (this.running) {
- const newTime = now();
- diff = (newTime - this.oldTime) / 1000;
- this.oldTime = newTime;
- this.elapsedTime += diff;
}
- return diff;
- }
-
- }
-
- function now() {
- return (typeof performance === 'undefined' ? Date : performance).now(); // see #10732
- }
+ class Clock {
+ constructor(autoStart = true) {
+ this.autoStart = autoStart;
+ this.startTime = 0;
+ this.oldTime = 0;
+ this.elapsedTime = 0;
+ this.running = false;
+ }
- const _position$1 = /*@__PURE__*/new Vector3();
+ start() {
+ this.startTime = now();
+ this.oldTime = this.startTime;
+ this.elapsedTime = 0;
+ this.running = true;
+ }
- const _quaternion$1 = /*@__PURE__*/new Quaternion();
+ stop() {
+ this.getElapsedTime();
+ this.running = false;
+ this.autoStart = false;
+ }
- const _scale$1 = /*@__PURE__*/new Vector3();
+ getElapsedTime() {
+ this.getDelta();
+ return this.elapsedTime;
+ }
- const _orientation$1 = /*@__PURE__*/new Vector3();
+ getDelta() {
+ let diff = 0;
- class AudioListener extends Object3D {
- constructor() {
- super();
- this.type = 'AudioListener';
- this.context = AudioContext.getContext();
- this.gain = this.context.createGain();
- this.gain.connect(this.context.destination);
- this.filter = null;
- this.timeDelta = 0; // private
+ if (this.autoStart && !this.running) {
+ this.start();
+ return 0;
+ }
- this._clock = new Clock();
- }
+ if (this.running) {
+ const newTime = now();
+ diff = (newTime - this.oldTime) / 1000;
+ this.oldTime = newTime;
+ this.elapsedTime += diff;
+ }
- getInput() {
- return this.gain;
- }
+ return diff;
+ }
- removeFilter() {
- if (this.filter !== null) {
- this.gain.disconnect(this.filter);
- this.filter.disconnect(this.context.destination);
- this.gain.connect(this.context.destination);
- this.filter = null;
}
- return this;
- }
-
- getFilter() {
- return this.filter;
- }
-
- setFilter(value) {
- if (this.filter !== null) {
- this.gain.disconnect(this.filter);
- this.filter.disconnect(this.context.destination);
- } else {
- this.gain.disconnect(this.context.destination);
+ function now() {
+ return (typeof performance === 'undefined' ? Date : performance).now(); // see #10732
}
- this.filter = value;
- this.gain.connect(this.filter);
- this.filter.connect(this.context.destination);
- return this;
- }
+ const _position$1 = /*@__PURE__*/new Vector3();
- getMasterVolume() {
- return this.gain.gain.value;
- }
+ const _quaternion$1 = /*@__PURE__*/new Quaternion();
- setMasterVolume(value) {
- this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01);
- return this;
- }
+ const _scale$1 = /*@__PURE__*/new Vector3();
- updateMatrixWorld(force) {
- super.updateMatrixWorld(force);
- const listener = this.context.listener;
- const up = this.up;
- this.timeDelta = this._clock.getDelta();
- this.matrixWorld.decompose(_position$1, _quaternion$1, _scale$1);
-
- _orientation$1.set(0, 0, -1).applyQuaternion(_quaternion$1);
-
- if (listener.positionX) {
- // code path for Chrome (see #14393)
- const endTime = this.context.currentTime + this.timeDelta;
- listener.positionX.linearRampToValueAtTime(_position$1.x, endTime);
- listener.positionY.linearRampToValueAtTime(_position$1.y, endTime);
- listener.positionZ.linearRampToValueAtTime(_position$1.z, endTime);
- listener.forwardX.linearRampToValueAtTime(_orientation$1.x, endTime);
- listener.forwardY.linearRampToValueAtTime(_orientation$1.y, endTime);
- listener.forwardZ.linearRampToValueAtTime(_orientation$1.z, endTime);
- listener.upX.linearRampToValueAtTime(up.x, endTime);
- listener.upY.linearRampToValueAtTime(up.y, endTime);
- listener.upZ.linearRampToValueAtTime(up.z, endTime);
- } else {
- listener.setPosition(_position$1.x, _position$1.y, _position$1.z);
- listener.setOrientation(_orientation$1.x, _orientation$1.y, _orientation$1.z, up.x, up.y, up.z);
- }
- }
+ const _orientation$1 = /*@__PURE__*/new Vector3();
- }
+ class AudioListener extends Object3D {
+ constructor() {
+ super();
+ this.type = 'AudioListener';
+ this.context = AudioContext.getContext();
+ this.gain = this.context.createGain();
+ this.gain.connect(this.context.destination);
+ this.filter = null;
+ this.timeDelta = 0; // private
- class Audio extends Object3D {
- constructor(listener) {
- super();
- this.type = 'Audio';
- this.listener = listener;
- this.context = listener.context;
- this.gain = this.context.createGain();
- this.gain.connect(listener.getInput());
- this.autoplay = false;
- this.buffer = null;
- this.detune = 0;
- this.loop = false;
- this.loopStart = 0;
- this.loopEnd = 0;
- this.offset = 0;
- this.duration = undefined;
- this.playbackRate = 1;
- this.isPlaying = false;
- this.hasPlaybackControl = true;
- this.source = null;
- this.sourceType = 'empty';
- this._startedAt = 0;
- this._progress = 0;
- this._connected = false;
- this.filters = [];
- }
+ this._clock = new Clock();
+ }
- getOutput() {
- return this.gain;
- }
+ getInput() {
+ return this.gain;
+ }
- setNodeSource(audioNode) {
- this.hasPlaybackControl = false;
- this.sourceType = 'audioNode';
- this.source = audioNode;
- this.connect();
- return this;
- }
+ removeFilter() {
+ if (this.filter !== null) {
+ this.gain.disconnect(this.filter);
+ this.filter.disconnect(this.context.destination);
+ this.gain.connect(this.context.destination);
+ this.filter = null;
+ }
- setMediaElementSource(mediaElement) {
- this.hasPlaybackControl = false;
- this.sourceType = 'mediaNode';
- this.source = this.context.createMediaElementSource(mediaElement);
- this.connect();
- return this;
- }
+ return this;
+ }
- setMediaStreamSource(mediaStream) {
- this.hasPlaybackControl = false;
- this.sourceType = 'mediaStreamNode';
- this.source = this.context.createMediaStreamSource(mediaStream);
- this.connect();
- return this;
- }
+ getFilter() {
+ return this.filter;
+ }
- setBuffer(audioBuffer) {
- this.buffer = audioBuffer;
- this.sourceType = 'buffer';
- if (this.autoplay) this.play();
- return this;
- }
+ setFilter(value) {
+ if (this.filter !== null) {
+ this.gain.disconnect(this.filter);
+ this.filter.disconnect(this.context.destination);
+ } else {
+ this.gain.disconnect(this.context.destination);
+ }
- play(delay = 0) {
- if (this.isPlaying === true) {
- console.warn('THREE.Audio: Audio is already playing.');
- return;
- }
-
- if (this.hasPlaybackControl === false) {
- console.warn('THREE.Audio: this Audio has no playback control.');
- return;
- }
-
- this._startedAt = this.context.currentTime + delay;
- const source = this.context.createBufferSource();
- source.buffer = this.buffer;
- source.loop = this.loop;
- source.loopStart = this.loopStart;
- source.loopEnd = this.loopEnd;
- source.onended = this.onEnded.bind(this);
- source.start(this._startedAt, this._progress + this.offset, this.duration);
- this.isPlaying = true;
- this.source = source;
- this.setDetune(this.detune);
- this.setPlaybackRate(this.playbackRate);
- return this.connect();
- }
+ this.filter = value;
+ this.gain.connect(this.filter);
+ this.filter.connect(this.context.destination);
+ return this;
+ }
- pause() {
- if (this.hasPlaybackControl === false) {
- console.warn('THREE.Audio: this Audio has no playback control.');
- return;
- }
+ getMasterVolume() {
+ return this.gain.gain.value;
+ }
- if (this.isPlaying === true) {
- // update current progress
- this._progress += Math.max(this.context.currentTime - this._startedAt, 0) * this.playbackRate;
+ setMasterVolume(value) {
+ this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01);
+ return this;
+ }
- if (this.loop === true) {
- // ensure _progress does not exceed duration with looped audios
- this._progress = this._progress % (this.duration || this.buffer.duration);
+ updateMatrixWorld(force) {
+ super.updateMatrixWorld(force);
+ const listener = this.context.listener;
+ const up = this.up;
+ this.timeDelta = this._clock.getDelta();
+ this.matrixWorld.decompose(_position$1, _quaternion$1, _scale$1);
+
+ _orientation$1.set(0, 0, -1).applyQuaternion(_quaternion$1);
+
+ if (listener.positionX) {
+ // code path for Chrome (see #14393)
+ const endTime = this.context.currentTime + this.timeDelta;
+ listener.positionX.linearRampToValueAtTime(_position$1.x, endTime);
+ listener.positionY.linearRampToValueAtTime(_position$1.y, endTime);
+ listener.positionZ.linearRampToValueAtTime(_position$1.z, endTime);
+ listener.forwardX.linearRampToValueAtTime(_orientation$1.x, endTime);
+ listener.forwardY.linearRampToValueAtTime(_orientation$1.y, endTime);
+ listener.forwardZ.linearRampToValueAtTime(_orientation$1.z, endTime);
+ listener.upX.linearRampToValueAtTime(up.x, endTime);
+ listener.upY.linearRampToValueAtTime(up.y, endTime);
+ listener.upZ.linearRampToValueAtTime(up.z, endTime);
+ } else {
+ listener.setPosition(_position$1.x, _position$1.y, _position$1.z);
+ listener.setOrientation(_orientation$1.x, _orientation$1.y, _orientation$1.z, up.x, up.y, up.z);
+ }
}
- this.source.stop();
- this.source.onended = null;
- this.isPlaying = false;
}
- return this;
- }
-
- stop() {
- if (this.hasPlaybackControl === false) {
- console.warn('THREE.Audio: this Audio has no playback control.');
- return;
- }
+ class Audio extends Object3D {
+ constructor(listener) {
+ super();
+ this.type = 'Audio';
+ this.listener = listener;
+ this.context = listener.context;
+ this.gain = this.context.createGain();
+ this.gain.connect(listener.getInput());
+ this.autoplay = false;
+ this.buffer = null;
+ this.detune = 0;
+ this.loop = false;
+ this.loopStart = 0;
+ this.loopEnd = 0;
+ this.offset = 0;
+ this.duration = undefined;
+ this.playbackRate = 1;
+ this.isPlaying = false;
+ this.hasPlaybackControl = true;
+ this.source = null;
+ this.sourceType = 'empty';
+ this._startedAt = 0;
+ this._progress = 0;
+ this._connected = false;
+ this.filters = [];
+ }
+
+ getOutput() {
+ return this.gain;
+ }
+
+ setNodeSource(audioNode) {
+ this.hasPlaybackControl = false;
+ this.sourceType = 'audioNode';
+ this.source = audioNode;
+ this.connect();
+ return this;
+ }
- this._progress = 0;
- this.source.stop();
- this.source.onended = null;
- this.isPlaying = false;
- return this;
- }
+ setMediaElementSource(mediaElement) {
+ this.hasPlaybackControl = false;
+ this.sourceType = 'mediaNode';
+ this.source = this.context.createMediaElementSource(mediaElement);
+ this.connect();
+ return this;
+ }
- connect() {
- if (this.filters.length > 0) {
- this.source.connect(this.filters[0]);
+ setMediaStreamSource(mediaStream) {
+ this.hasPlaybackControl = false;
+ this.sourceType = 'mediaStreamNode';
+ this.source = this.context.createMediaStreamSource(mediaStream);
+ this.connect();
+ return this;
+ }
- for (let i = 1, l = this.filters.length; i < l; i++) {
- this.filters[i - 1].connect(this.filters[i]);
+ setBuffer(audioBuffer) {
+ this.buffer = audioBuffer;
+ this.sourceType = 'buffer';
+ if (this.autoplay) this.play();
+ return this;
}
- this.filters[this.filters.length - 1].connect(this.getOutput());
- } else {
- this.source.connect(this.getOutput());
- }
+ play(delay = 0) {
+ if (this.isPlaying === true) {
+ console.warn('THREE.Audio: Audio is already playing.');
+ return;
+ }
- this._connected = true;
- return this;
- }
+ if (this.hasPlaybackControl === false) {
+ console.warn('THREE.Audio: this Audio has no playback control.');
+ return;
+ }
- disconnect() {
- if (this.filters.length > 0) {
- this.source.disconnect(this.filters[0]);
+ this._startedAt = this.context.currentTime + delay;
+ const source = this.context.createBufferSource();
+ source.buffer = this.buffer;
+ source.loop = this.loop;
+ source.loopStart = this.loopStart;
+ source.loopEnd = this.loopEnd;
+ source.onended = this.onEnded.bind(this);
+ source.start(this._startedAt, this._progress + this.offset, this.duration);
+ this.isPlaying = true;
+ this.source = source;
+ this.setDetune(this.detune);
+ this.setPlaybackRate(this.playbackRate);
+ return this.connect();
+ }
+
+ pause() {
+ if (this.hasPlaybackControl === false) {
+ console.warn('THREE.Audio: this Audio has no playback control.');
+ return;
+ }
- for (let i = 1, l = this.filters.length; i < l; i++) {
- this.filters[i - 1].disconnect(this.filters[i]);
- }
+ if (this.isPlaying === true) {
+ // update current progress
+ this._progress += Math.max(this.context.currentTime - this._startedAt, 0) * this.playbackRate;
- this.filters[this.filters.length - 1].disconnect(this.getOutput());
- } else {
- this.source.disconnect(this.getOutput());
- }
+ if (this.loop === true) {
+ // ensure _progress does not exceed duration with looped audios
+ this._progress = this._progress % (this.duration || this.buffer.duration);
+ }
- this._connected = false;
- return this;
- }
+ this.source.stop();
+ this.source.onended = null;
+ this.isPlaying = false;
+ }
- getFilters() {
- return this.filters;
- }
+ return this;
+ }
- setFilters(value) {
- if (!value) value = [];
+ stop() {
+ if (this.hasPlaybackControl === false) {
+ console.warn('THREE.Audio: this Audio has no playback control.');
+ return;
+ }
- if (this._connected === true) {
- this.disconnect();
- this.filters = value.slice();
- this.connect();
- } else {
- this.filters = value.slice();
- }
+ this._progress = 0;
+ this.source.stop();
+ this.source.onended = null;
+ this.isPlaying = false;
+ return this;
+ }
- return this;
- }
+ connect() {
+ if (this.filters.length > 0) {
+ this.source.connect(this.filters[0]);
- setDetune(value) {
- this.detune = value;
- if (this.source.detune === undefined) return; // only set detune when available
+ for (let i = 1, l = this.filters.length; i < l; i++) {
+ this.filters[i - 1].connect(this.filters[i]);
+ }
- if (this.isPlaying === true) {
- this.source.detune.setTargetAtTime(this.detune, this.context.currentTime, 0.01);
- }
+ this.filters[this.filters.length - 1].connect(this.getOutput());
+ } else {
+ this.source.connect(this.getOutput());
+ }
- return this;
- }
+ this._connected = true;
+ return this;
+ }
- getDetune() {
- return this.detune;
- }
+ disconnect() {
+ if (this.filters.length > 0) {
+ this.source.disconnect(this.filters[0]);
- getFilter() {
- return this.getFilters()[0];
- }
+ for (let i = 1, l = this.filters.length; i < l; i++) {
+ this.filters[i - 1].disconnect(this.filters[i]);
+ }
- setFilter(filter) {
- return this.setFilters(filter ? [filter] : []);
- }
+ this.filters[this.filters.length - 1].disconnect(this.getOutput());
+ } else {
+ this.source.disconnect(this.getOutput());
+ }
- setPlaybackRate(value) {
- if (this.hasPlaybackControl === false) {
- console.warn('THREE.Audio: this Audio has no playback control.');
- return;
- }
+ this._connected = false;
+ return this;
+ }
- this.playbackRate = value;
+ getFilters() {
+ return this.filters;
+ }
- if (this.isPlaying === true) {
- this.source.playbackRate.setTargetAtTime(this.playbackRate, this.context.currentTime, 0.01);
- }
+ setFilters(value) {
+ if (!value) value = [];
- return this;
- }
+ if (this._connected === true) {
+ this.disconnect();
+ this.filters = value.slice();
+ this.connect();
+ } else {
+ this.filters = value.slice();
+ }
- getPlaybackRate() {
- return this.playbackRate;
- }
+ return this;
+ }
- onEnded() {
- this.isPlaying = false;
- }
+ setDetune(value) {
+ this.detune = value;
+ if (this.source.detune === undefined) return; // only set detune when available
- getLoop() {
- if (this.hasPlaybackControl === false) {
- console.warn('THREE.Audio: this Audio has no playback control.');
- return false;
- }
+ if (this.isPlaying === true) {
+ this.source.detune.setTargetAtTime(this.detune, this.context.currentTime, 0.01);
+ }
- return this.loop;
- }
+ return this;
+ }
- setLoop(value) {
- if (this.hasPlaybackControl === false) {
- console.warn('THREE.Audio: this Audio has no playback control.');
- return;
- }
+ getDetune() {
+ return this.detune;
+ }
- this.loop = value;
+ getFilter() {
+ return this.getFilters()[0];
+ }
- if (this.isPlaying === true) {
- this.source.loop = this.loop;
- }
+ setFilter(filter) {
+ return this.setFilters(filter ? [filter] : []);
+ }
- return this;
- }
+ setPlaybackRate(value) {
+ if (this.hasPlaybackControl === false) {
+ console.warn('THREE.Audio: this Audio has no playback control.');
+ return;
+ }
- setLoopStart(value) {
- this.loopStart = value;
- return this;
- }
+ this.playbackRate = value;
- setLoopEnd(value) {
- this.loopEnd = value;
- return this;
- }
+ if (this.isPlaying === true) {
+ this.source.playbackRate.setTargetAtTime(this.playbackRate, this.context.currentTime, 0.01);
+ }
- getVolume() {
- return this.gain.gain.value;
- }
+ return this;
+ }
- setVolume(value) {
- this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01);
- return this;
- }
+ getPlaybackRate() {
+ return this.playbackRate;
+ }
- }
+ onEnded() {
+ this.isPlaying = false;
+ }
- const _position = /*@__PURE__*/new Vector3();
+ getLoop() {
+ if (this.hasPlaybackControl === false) {
+ console.warn('THREE.Audio: this Audio has no playback control.');
+ return false;
+ }
- const _quaternion = /*@__PURE__*/new Quaternion();
+ return this.loop;
+ }
- const _scale = /*@__PURE__*/new Vector3();
+ setLoop(value) {
+ if (this.hasPlaybackControl === false) {
+ console.warn('THREE.Audio: this Audio has no playback control.');
+ return;
+ }
- const _orientation = /*@__PURE__*/new Vector3();
+ this.loop = value;
- class PositionalAudio extends Audio {
- constructor(listener) {
- super(listener);
- this.panner = this.context.createPanner();
- this.panner.panningModel = 'HRTF';
- this.panner.connect(this.gain);
- }
+ if (this.isPlaying === true) {
+ this.source.loop = this.loop;
+ }
- getOutput() {
- return this.panner;
- }
+ return this;
+ }
- getRefDistance() {
- return this.panner.refDistance;
- }
+ setLoopStart(value) {
+ this.loopStart = value;
+ return this;
+ }
- setRefDistance(value) {
- this.panner.refDistance = value;
- return this;
- }
+ setLoopEnd(value) {
+ this.loopEnd = value;
+ return this;
+ }
- getRolloffFactor() {
- return this.panner.rolloffFactor;
- }
+ getVolume() {
+ return this.gain.gain.value;
+ }
- setRolloffFactor(value) {
- this.panner.rolloffFactor = value;
- return this;
- }
+ setVolume(value) {
+ this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01);
+ return this;
+ }
- getDistanceModel() {
- return this.panner.distanceModel;
- }
+ }
- setDistanceModel(value) {
- this.panner.distanceModel = value;
- return this;
- }
+ const _position = /*@__PURE__*/new Vector3();
- getMaxDistance() {
- return this.panner.maxDistance;
- }
+ const _quaternion = /*@__PURE__*/new Quaternion();
- setMaxDistance(value) {
- this.panner.maxDistance = value;
- return this;
- }
+ const _scale = /*@__PURE__*/new Vector3();
- setDirectionalCone(coneInnerAngle, coneOuterAngle, coneOuterGain) {
- this.panner.coneInnerAngle = coneInnerAngle;
- this.panner.coneOuterAngle = coneOuterAngle;
- this.panner.coneOuterGain = coneOuterGain;
- return this;
- }
+ const _orientation = /*@__PURE__*/new Vector3();
+
+ class PositionalAudio extends Audio {
+ constructor(listener) {
+ super(listener);
+ this.panner = this.context.createPanner();
+ this.panner.panningModel = 'HRTF';
+ this.panner.connect(this.gain);
+ }
- updateMatrixWorld(force) {
- super.updateMatrixWorld(force);
- if (this.hasPlaybackControl === true && this.isPlaying === false) return;
- this.matrixWorld.decompose(_position, _quaternion, _scale);
+ getOutput() {
+ return this.panner;
+ }
- _orientation.set(0, 0, 1).applyQuaternion(_quaternion);
+ getRefDistance() {
+ return this.panner.refDistance;
+ }
- const panner = this.panner;
+ setRefDistance(value) {
+ this.panner.refDistance = value;
+ return this;
+ }
+
+ getRolloffFactor() {
+ return this.panner.rolloffFactor;
+ }
+
+ setRolloffFactor(value) {
+ this.panner.rolloffFactor = value;
+ return this;
+ }
+
+ getDistanceModel() {
+ return this.panner.distanceModel;
+ }
+
+ setDistanceModel(value) {
+ this.panner.distanceModel = value;
+ return this;
+ }
+
+ getMaxDistance() {
+ return this.panner.maxDistance;
+ }
+
+ setMaxDistance(value) {
+ this.panner.maxDistance = value;
+ return this;
+ }
+
+ setDirectionalCone(coneInnerAngle, coneOuterAngle, coneOuterGain) {
+ this.panner.coneInnerAngle = coneInnerAngle;
+ this.panner.coneOuterAngle = coneOuterAngle;
+ this.panner.coneOuterGain = coneOuterGain;
+ return this;
+ }
+
+ updateMatrixWorld(force) {
+ super.updateMatrixWorld(force);
+ if (this.hasPlaybackControl === true && this.isPlaying === false) return;
+ this.matrixWorld.decompose(_position, _quaternion, _scale);
+
+ _orientation.set(0, 0, 1).applyQuaternion(_quaternion);
+
+ const panner = this.panner;
+
+ if (panner.positionX) {
+ // code path for Chrome and Firefox (see #14393)
+ const endTime = this.context.currentTime + this.listener.timeDelta;
+ panner.positionX.linearRampToValueAtTime(_position.x, endTime);
+ panner.positionY.linearRampToValueAtTime(_position.y, endTime);
+ panner.positionZ.linearRampToValueAtTime(_position.z, endTime);
+ panner.orientationX.linearRampToValueAtTime(_orientation.x, endTime);
+ panner.orientationY.linearRampToValueAtTime(_orientation.y, endTime);
+ panner.orientationZ.linearRampToValueAtTime(_orientation.z, endTime);
+ } else {
+ panner.setPosition(_position.x, _position.y, _position.z);
+ panner.setOrientation(_orientation.x, _orientation.y, _orientation.z);
+ }
+ }
- if (panner.positionX) {
- // code path for Chrome and Firefox (see #14393)
- const endTime = this.context.currentTime + this.listener.timeDelta;
- panner.positionX.linearRampToValueAtTime(_position.x, endTime);
- panner.positionY.linearRampToValueAtTime(_position.y, endTime);
- panner.positionZ.linearRampToValueAtTime(_position.z, endTime);
- panner.orientationX.linearRampToValueAtTime(_orientation.x, endTime);
- panner.orientationY.linearRampToValueAtTime(_orientation.y, endTime);
- panner.orientationZ.linearRampToValueAtTime(_orientation.z, endTime);
- } else {
- panner.setPosition(_position.x, _position.y, _position.z);
- panner.setOrientation(_orientation.x, _orientation.y, _orientation.z);
}
- }
- }
+ class AudioAnalyser {
+ constructor(audio, fftSize = 2048) {
+ this.analyser = audio.context.createAnalyser();
+ this.analyser.fftSize = fftSize;
+ this.data = new Uint8Array(this.analyser.frequencyBinCount);
+ audio.getOutput().connect(this.analyser);
+ }
- class AudioAnalyser {
- constructor(audio, fftSize = 2048) {
- this.analyser = audio.context.createAnalyser();
- this.analyser.fftSize = fftSize;
- this.data = new Uint8Array(this.analyser.frequencyBinCount);
- audio.getOutput().connect(this.analyser);
- }
+ getFrequencyData() {
+ this.analyser.getByteFrequencyData(this.data);
+ return this.data;
+ }
- getFrequencyData() {
- this.analyser.getByteFrequencyData(this.data);
- return this.data;
- }
+ getAverageFrequency() {
+ let value = 0;
+ const data = this.getFrequencyData();
+
+ for (let i = 0; i < data.length; i++) {
+ value += data[i];
+ }
- getAverageFrequency() {
- let value = 0;
- const data = this.getFrequencyData();
+ return value / data.length;
+ }
- for (let i = 0; i < data.length; i++) {
- value += data[i];
}
- return value / data.length;
- }
+ class PropertyMixer {
+ constructor(binding, typeName, valueSize) {
+ this.binding = binding;
+ this.valueSize = valueSize;
+ let mixFunction, mixFunctionAdditive, setIdentity; // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ]
+ //
+ // interpolators can use .buffer as their .result
+ // the data then goes to 'incoming'
+ //
+ // 'accu0' and 'accu1' are used frame-interleaved for
+ // the cumulative result and are compared to detect
+ // changes
+ //
+ // 'orig' stores the original state of the property
+ //
+ // 'add' is used for additive cumulative results
+ //
+ // 'work' is optional and is only present for quaternion types. It is used
+ // to store intermediate quaternion multiplication results
+
+ switch (typeName) {
+ case 'quaternion':
+ mixFunction = this._slerp;
+ mixFunctionAdditive = this._slerpAdditive;
+ setIdentity = this._setAdditiveIdentityQuaternion;
+ this.buffer = new Float64Array(valueSize * 6);
+ this._workIndex = 5;
+ break;
- }
+ case 'string':
+ case 'bool':
+ mixFunction = this._select; // Use the regular mix function and for additive on these types,
+ // additive is not relevant for non-numeric types
- class PropertyMixer {
- constructor(binding, typeName, valueSize) {
- this.binding = binding;
- this.valueSize = valueSize;
- let mixFunction, mixFunctionAdditive, setIdentity; // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ]
- //
- // interpolators can use .buffer as their .result
- // the data then goes to 'incoming'
- //
- // 'accu0' and 'accu1' are used frame-interleaved for
- // the cumulative result and are compared to detect
- // changes
- //
- // 'orig' stores the original state of the property
- //
- // 'add' is used for additive cumulative results
- //
- // 'work' is optional and is only present for quaternion types. It is used
- // to store intermediate quaternion multiplication results
-
- switch (typeName) {
- case 'quaternion':
- mixFunction = this._slerp;
- mixFunctionAdditive = this._slerpAdditive;
- setIdentity = this._setAdditiveIdentityQuaternion;
- this.buffer = new Float64Array(valueSize * 6);
- this._workIndex = 5;
- break;
-
- case 'string':
- case 'bool':
- mixFunction = this._select; // Use the regular mix function and for additive on these types,
- // additive is not relevant for non-numeric types
-
- mixFunctionAdditive = this._select;
- setIdentity = this._setAdditiveIdentityOther;
- this.buffer = new Array(valueSize * 5);
- break;
-
- default:
- mixFunction = this._lerp;
- mixFunctionAdditive = this._lerpAdditive;
- setIdentity = this._setAdditiveIdentityNumeric;
- this.buffer = new Float64Array(valueSize * 5);
- }
-
- this._mixBufferRegion = mixFunction;
- this._mixBufferRegionAdditive = mixFunctionAdditive;
- this._setIdentity = setIdentity;
- this._origIndex = 3;
- this._addIndex = 4;
- this.cumulativeWeight = 0;
- this.cumulativeWeightAdditive = 0;
- this.useCount = 0;
- this.referenceCount = 0;
- } // accumulate data in the 'incoming' region into 'accu<i>'
-
-
- accumulate(accuIndex, weight) {
- // note: happily accumulating nothing when weight = 0, the caller knows
- // the weight and shouldn't have made the call in the first place
- const buffer = this.buffer,
+ mixFunctionAdditive = this._select;
+ setIdentity = this._setAdditiveIdentityOther;
+ this.buffer = new Array(valueSize * 5);
+ break;
+
+ default:
+ mixFunction = this._lerp;
+ mixFunctionAdditive = this._lerpAdditive;
+ setIdentity = this._setAdditiveIdentityNumeric;
+ this.buffer = new Float64Array(valueSize * 5);
+ }
+
+ this._mixBufferRegion = mixFunction;
+ this._mixBufferRegionAdditive = mixFunctionAdditive;
+ this._setIdentity = setIdentity;
+ this._origIndex = 3;
+ this._addIndex = 4;
+ this.cumulativeWeight = 0;
+ this.cumulativeWeightAdditive = 0;
+ this.useCount = 0;
+ this.referenceCount = 0;
+ } // accumulate data in the 'incoming' region into 'accu<i>'
+
+
+ accumulate(accuIndex, weight) {
+ // note: happily accumulating nothing when weight = 0, the caller knows
+ // the weight and shouldn't have made the call in the first place
+ const buffer = this.buffer,
stride = this.valueSize,
offset = accuIndex * stride + stride;
- let currentWeight = this.cumulativeWeight;
+ let currentWeight = this.cumulativeWeight;
- if (currentWeight === 0) {
- // accuN := incoming * weight
- for (let i = 0; i !== stride; ++i) {
- buffer[offset + i] = buffer[i];
- }
+ if (currentWeight === 0) {
+ // accuN := incoming * weight
+ for (let i = 0; i !== stride; ++i) {
+ buffer[offset + i] = buffer[i];
+ }
- currentWeight = weight;
- } else {
- // accuN := accuN + incoming * weight
- currentWeight += weight;
- const mix = weight / currentWeight;
+ currentWeight = weight;
+ } else {
+ // accuN := accuN + incoming * weight
+ currentWeight += weight;
+ const mix = weight / currentWeight;
- this._mixBufferRegion(buffer, offset, 0, mix, stride);
- }
+ this._mixBufferRegion(buffer, offset, 0, mix, stride);
+ }
- this.cumulativeWeight = currentWeight;
- } // accumulate data in the 'incoming' region into 'add'
+ this.cumulativeWeight = currentWeight;
+ } // accumulate data in the 'incoming' region into 'add'
- accumulateAdditive(weight) {
- const buffer = this.buffer,
+ accumulateAdditive(weight) {
+ const buffer = this.buffer,
stride = this.valueSize,
offset = stride * this._addIndex;
- if (this.cumulativeWeightAdditive === 0) {
- // add = identity
- this._setIdentity();
- } // add := add + incoming * weight
+ if (this.cumulativeWeightAdditive === 0) {
+ // add = identity
+ this._setIdentity();
+ } // add := add + incoming * weight
- this._mixBufferRegionAdditive(buffer, offset, 0, weight, stride);
+ this._mixBufferRegionAdditive(buffer, offset, 0, weight, stride);
- this.cumulativeWeightAdditive += weight;
- } // apply the state of 'accu<i>' to the binding when accus differ
+ this.cumulativeWeightAdditive += weight;
+ } // apply the state of 'accu<i>' to the binding when accus differ
- apply(accuIndex) {
- const stride = this.valueSize,
+ apply(accuIndex) {
+ const stride = this.valueSize,
buffer = this.buffer,
offset = accuIndex * stride + stride,
weight = this.cumulativeWeight,
weightAdditive = this.cumulativeWeightAdditive,
binding = this.binding;
- this.cumulativeWeight = 0;
- this.cumulativeWeightAdditive = 0;
+ this.cumulativeWeight = 0;
+ this.cumulativeWeightAdditive = 0;
- if (weight < 1) {
- // accuN := accuN + original * ( 1 - cumulativeWeight )
- const originalValueOffset = stride * this._origIndex;
+ if (weight < 1) {
+ // accuN := accuN + original * ( 1 - cumulativeWeight )
+ const originalValueOffset = stride * this._origIndex;
- this._mixBufferRegion(buffer, offset, originalValueOffset, 1 - weight, stride);
- }
+ this._mixBufferRegion(buffer, offset, originalValueOffset, 1 - weight, stride);
+ }
- if (weightAdditive > 0) {
- // accuN := accuN + additive accuN
- this._mixBufferRegionAdditive(buffer, offset, this._addIndex * stride, 1, stride);
- }
+ if (weightAdditive > 0) {
+ // accuN := accuN + additive accuN
+ this._mixBufferRegionAdditive(buffer, offset, this._addIndex * stride, 1, stride);
+ }
- for (let i = stride, e = stride + stride; i !== e; ++i) {
- if (buffer[i] !== buffer[i + stride]) {
- // value has changed -> update scene graph
- binding.setValue(buffer, offset);
- break;
- }
- }
- } // remember the state of the bound property and copy it to both accus
+ for (let i = stride, e = stride + stride; i !== e; ++i) {
+ if (buffer[i] !== buffer[i + stride]) {
+ // value has changed -> update scene graph
+ binding.setValue(buffer, offset);
+ break;
+ }
+ }
+ } // remember the state of the bound property and copy it to both accus
- saveOriginalState() {
- const binding = this.binding;
- const buffer = this.buffer,
+ saveOriginalState() {
+ const binding = this.binding;
+ const buffer = this.buffer,
stride = this.valueSize,
originalValueOffset = stride * this._origIndex;
- binding.getValue(buffer, originalValueOffset); // accu[0..1] := orig -- initially detect changes against the original
+ binding.getValue(buffer, originalValueOffset); // accu[0..1] := orig -- initially detect changes against the original
- for (let i = stride, e = originalValueOffset; i !== e; ++i) {
- buffer[i] = buffer[originalValueOffset + i % stride];
- } // Add to identity for additive
+ for (let i = stride, e = originalValueOffset; i !== e; ++i) {
+ buffer[i] = buffer[originalValueOffset + i % stride];
+ } // Add to identity for additive
- this._setIdentity();
+ this._setIdentity();
- this.cumulativeWeight = 0;
- this.cumulativeWeightAdditive = 0;
- } // apply the state previously taken via 'saveOriginalState' to the binding
+ this.cumulativeWeight = 0;
+ this.cumulativeWeightAdditive = 0;
+ } // apply the state previously taken via 'saveOriginalState' to the binding
- restoreOriginalState() {
- const originalValueOffset = this.valueSize * 3;
- this.binding.setValue(this.buffer, originalValueOffset);
- }
+ restoreOriginalState() {
+ const originalValueOffset = this.valueSize * 3;
+ this.binding.setValue(this.buffer, originalValueOffset);
+ }
- _setAdditiveIdentityNumeric() {
- const startIndex = this._addIndex * this.valueSize;
- const endIndex = startIndex + this.valueSize;
+ _setAdditiveIdentityNumeric() {
+ const startIndex = this._addIndex * this.valueSize;
+ const endIndex = startIndex + this.valueSize;
- for (let i = startIndex; i < endIndex; i++) {
- this.buffer[i] = 0;
- }
- }
+ for (let i = startIndex; i < endIndex; i++) {
+ this.buffer[i] = 0;
+ }
+ }
- _setAdditiveIdentityQuaternion() {
- this._setAdditiveIdentityNumeric();
+ _setAdditiveIdentityQuaternion() {
+ this._setAdditiveIdentityNumeric();
- this.buffer[this._addIndex * this.valueSize + 3] = 1;
- }
+ this.buffer[this._addIndex * this.valueSize + 3] = 1;
+ }
- _setAdditiveIdentityOther() {
- const startIndex = this._origIndex * this.valueSize;
- const targetIndex = this._addIndex * this.valueSize;
+ _setAdditiveIdentityOther() {
+ const startIndex = this._origIndex * this.valueSize;
+ const targetIndex = this._addIndex * this.valueSize;
- for (let i = 0; i < this.valueSize; i++) {
- this.buffer[targetIndex + i] = this.buffer[startIndex + i];
- }
- } // mix functions
+ for (let i = 0; i < this.valueSize; i++) {
+ this.buffer[targetIndex + i] = this.buffer[startIndex + i];
+ }
+ } // mix functions
- _select(buffer, dstOffset, srcOffset, t, stride) {
- if (t >= 0.5) {
- for (let i = 0; i !== stride; ++i) {
- buffer[dstOffset + i] = buffer[srcOffset + i];
+ _select(buffer, dstOffset, srcOffset, t, stride) {
+ if (t >= 0.5) {
+ for (let i = 0; i !== stride; ++i) {
+ buffer[dstOffset + i] = buffer[srcOffset + i];
+ }
+ }
}
- }
- }
- _slerp(buffer, dstOffset, srcOffset, t) {
- Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t);
- }
+ _slerp(buffer, dstOffset, srcOffset, t) {
+ Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t);
+ }
- _slerpAdditive(buffer, dstOffset, srcOffset, t, stride) {
- const workOffset = this._workIndex * stride; // Store result in intermediate buffer offset
+ _slerpAdditive(buffer, dstOffset, srcOffset, t, stride) {
+ const workOffset = this._workIndex * stride; // Store result in intermediate buffer offset
- Quaternion.multiplyQuaternionsFlat(buffer, workOffset, buffer, dstOffset, buffer, srcOffset); // Slerp to the intermediate result
+ Quaternion.multiplyQuaternionsFlat(buffer, workOffset, buffer, dstOffset, buffer, srcOffset); // Slerp to the intermediate result
- Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t);
- }
+ Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t);
+ }
- _lerp(buffer, dstOffset, srcOffset, t, stride) {
- const s = 1 - t;
+ _lerp(buffer, dstOffset, srcOffset, t, stride) {
+ const s = 1 - t;
- for (let i = 0; i !== stride; ++i) {
- const j = dstOffset + i;
- buffer[j] = buffer[j] * s + buffer[srcOffset + i] * t;
- }
- }
+ for (let i = 0; i !== stride; ++i) {
+ const j = dstOffset + i;
+ buffer[j] = buffer[j] * s + buffer[srcOffset + i] * t;
+ }
+ }
- _lerpAdditive(buffer, dstOffset, srcOffset, t, stride) {
- for (let i = 0; i !== stride; ++i) {
- const j = dstOffset + i;
- buffer[j] = buffer[j] + buffer[srcOffset + i] * t;
- }
- }
+ _lerpAdditive(buffer, dstOffset, srcOffset, t, stride) {
+ for (let i = 0; i !== stride; ++i) {
+ const j = dstOffset + i;
+ buffer[j] = buffer[j] + buffer[srcOffset + i] * t;
+ }
+ }
- }
+ }
- // Characters [].:/ are reserved for track binding syntax.
- const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/';
+ // Characters [].:/ are reserved for track binding syntax.
+ const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/';
- const _reservedRe = new RegExp('[' + _RESERVED_CHARS_RE + ']', 'g'); // Attempts to allow node names from any language. ES5's `\w` regexp matches
- // only latin characters, and the unicode \p{L} is not yet supported. So
- // instead, we exclude reserved characters and match everything else.
+ const _reservedRe = new RegExp('[' + _RESERVED_CHARS_RE + ']', 'g'); // Attempts to allow node names from any language. ES5's `\w` regexp matches
+ // only latin characters, and the unicode \p{L} is not yet supported. So
+ // instead, we exclude reserved characters and match everything else.
- const _wordChar = '[^' + _RESERVED_CHARS_RE + ']';
+ const _wordChar = '[^' + _RESERVED_CHARS_RE + ']';
- const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace('\\.', '') + ']'; // Parent directories, delimited by '/' or ':'. Currently unused, but must
- // be matched to parse the rest of the track name.
+ const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace('\\.', '') + ']'; // Parent directories, delimited by '/' or ':'. Currently unused, but must
+ // be matched to parse the rest of the track name.
- const _directoryRe = /((?:WC+[\/:])*)/.source.replace('WC', _wordChar); // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'.
+ const _directoryRe = /((?:WC+[\/:])*)/.source.replace('WC', _wordChar); // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'.
- const _nodeRe = /(WCOD+)?/.source.replace('WCOD', _wordCharOrDot); // Object on target node, and accessor. May not contain reserved
- // characters. Accessor may contain any character except closing bracket.
+ const _nodeRe = /(WCOD+)?/.source.replace('WCOD', _wordCharOrDot); // Object on target node, and accessor. May not contain reserved
+ // characters. Accessor may contain any character except closing bracket.
- const _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace('WC', _wordChar); // Property and accessor. May not contain reserved characters. Accessor may
- // contain any non-bracket characters.
+ const _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace('WC', _wordChar); // Property and accessor. May not contain reserved characters. Accessor may
+ // contain any non-bracket characters.
- const _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace('WC', _wordChar);
+ const _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace('WC', _wordChar);
- const _trackRe = new RegExp('' + '^' + _directoryRe + _nodeRe + _objectRe + _propertyRe + '$');
+ const _trackRe = new RegExp('' + '^' + _directoryRe + _nodeRe + _objectRe + _propertyRe + '$');
- const _supportedObjectNames = ['material', 'materials', 'bones'];
+ const _supportedObjectNames = ['material', 'materials', 'bones'];
- class Composite {
- constructor(targetGroup, path, optionalParsedPath) {
- const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName(path);
- this._targetGroup = targetGroup;
- this._bindings = targetGroup.subscribe_(path, parsedPath);
- }
+ class Composite {
+ constructor(targetGroup, path, optionalParsedPath) {
+ const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName(path);
+ this._targetGroup = targetGroup;
+ this._bindings = targetGroup.subscribe_(path, parsedPath);
+ }
- getValue(array, offset) {
- this.bind(); // bind all binding
+ getValue(array, offset) {
+ this.bind(); // bind all binding
- const firstValidIndex = this._targetGroup.nCachedObjects_,
+ const firstValidIndex = this._targetGroup.nCachedObjects_,
binding = this._bindings[firstValidIndex]; // and only call .getValue on the first
- if (binding !== undefined) binding.getValue(array, offset);
- }
+ if (binding !== undefined) binding.getValue(array, offset);
+ }
- setValue(array, offset) {
- const bindings = this._bindings;
+ setValue(array, offset) {
+ const bindings = this._bindings;
- for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
- bindings[i].setValue(array, offset);
- }
- }
+ for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
+ bindings[i].setValue(array, offset);
+ }
+ }
- bind() {
- const bindings = this._bindings;
+ bind() {
+ const bindings = this._bindings;
- for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
- bindings[i].bind();
- }
- }
+ for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
+ bindings[i].bind();
+ }
+ }
- unbind() {
- const bindings = this._bindings;
+ unbind() {
+ const bindings = this._bindings;
- for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
- bindings[i].unbind();
- }
- }
+ for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
+ bindings[i].unbind();
+ }
+ }
- } // Note: This class uses a State pattern on a per-method basis:
- // 'bind' sets 'this.getValue' / 'setValue' and shadows the
- // prototype version of these methods with one that represents
- // the bound state. When the property is not found, the methods
- // become no-ops.
+ } // Note: This class uses a State pattern on a per-method basis:
+ // 'bind' sets 'this.getValue' / 'setValue' and shadows the
+ // prototype version of these methods with one that represents
+ // the bound state. When the property is not found, the methods
+ // become no-ops.
- class PropertyBinding {
- constructor(rootNode, path, parsedPath) {
- this.path = path;
- this.parsedPath = parsedPath || PropertyBinding.parseTrackName(path);
- this.node = PropertyBinding.findNode(rootNode, this.parsedPath.nodeName) || rootNode;
- this.rootNode = rootNode; // initial state of these methods that calls 'bind'
+ class PropertyBinding {
+ constructor(rootNode, path, parsedPath) {
+ this.path = path;
+ this.parsedPath = parsedPath || PropertyBinding.parseTrackName(path);
+ this.node = PropertyBinding.findNode(rootNode, this.parsedPath.nodeName) || rootNode;
+ this.rootNode = rootNode; // initial state of these methods that calls 'bind'
- this.getValue = this._getValue_unbound;
- this.setValue = this._setValue_unbound;
- }
+ this.getValue = this._getValue_unbound;
+ this.setValue = this._setValue_unbound;
+ }
- static create(root, path, parsedPath) {
- if (!(root && root.isAnimationObjectGroup)) {
- return new PropertyBinding(root, path, parsedPath);
- } else {
- return new PropertyBinding.Composite(root, path, parsedPath);
- }
- }
- /**
- * Replaces spaces with underscores and removes unsupported characters from
- * node names, to ensure compatibility with parseTrackName().
- *
- * @param {string} name Node name to be sanitized.
- * @return {string}
- */
+ static create(root, path, parsedPath) {
+ if (!(root && root.isAnimationObjectGroup)) {
+ return new PropertyBinding(root, path, parsedPath);
+ } else {
+ return new PropertyBinding.Composite(root, path, parsedPath);
+ }
+ }
+ /**
+ * Replaces spaces with underscores and removes unsupported characters from
+ * node names, to ensure compatibility with parseTrackName().
+ *
+ * @param {string} name Node name to be sanitized.
+ * @return {string}
+ */
- static sanitizeNodeName(name) {
- return name.replace(/\s/g, '_').replace(_reservedRe, '');
- }
- static parseTrackName(trackName) {
- const matches = _trackRe.exec(trackName);
+ static sanitizeNodeName(name) {
+ return name.replace(/\s/g, '_').replace(_reservedRe, '');
+ }
- if (!matches) {
- throw new Error('PropertyBinding: Cannot parse trackName: ' + trackName);
- }
+ static parseTrackName(trackName) {
+ const matches = _trackRe.exec(trackName);
- const results = {
- // directoryName: matches[ 1 ], // (tschw) currently unused
- nodeName: matches[2],
- objectName: matches[3],
- objectIndex: matches[4],
- propertyName: matches[5],
- // required
- propertyIndex: matches[6]
- };
- const lastDot = results.nodeName && results.nodeName.lastIndexOf('.');
+ if (!matches) {
+ throw new Error('PropertyBinding: Cannot parse trackName: ' + trackName);
+ }
+
+ const results = {
+ // directoryName: matches[ 1 ], // (tschw) currently unused
+ nodeName: matches[2],
+ objectName: matches[3],
+ objectIndex: matches[4],
+ propertyName: matches[5],
+ // required
+ propertyIndex: matches[6]
+ };
+ const lastDot = results.nodeName && results.nodeName.lastIndexOf('.');
- if (lastDot !== undefined && lastDot !== -1) {
- const objectName = results.nodeName.substring(lastDot + 1); // Object names must be checked against an allowlist. Otherwise, there
- // is no way to parse 'foo.bar.baz': 'baz' must be a property, but
- // 'bar' could be the objectName, or part of a nodeName (which can
- // include '.' characters).
+ if (lastDot !== undefined && lastDot !== -1) {
+ const objectName = results.nodeName.substring(lastDot + 1); // Object names must be checked against an allowlist. Otherwise, there
+ // is no way to parse 'foo.bar.baz': 'baz' must be a property, but
+ // 'bar' could be the objectName, or part of a nodeName (which can
+ // include '.' characters).
- if (_supportedObjectNames.indexOf(objectName) !== -1) {
- results.nodeName = results.nodeName.substring(0, lastDot);
- results.objectName = objectName;
+ if (_supportedObjectNames.indexOf(objectName) !== -1) {
+ results.nodeName = results.nodeName.substring(0, lastDot);
+ results.objectName = objectName;
+ }
+ }
+
+ if (results.propertyName === null || results.propertyName.length === 0) {
+ throw new Error('PropertyBinding: can not parse propertyName from trackName: ' + trackName);
+ }
+
+ return results;
}
- }
- if (results.propertyName === null || results.propertyName.length === 0) {
- throw new Error('PropertyBinding: can not parse propertyName from trackName: ' + trackName);
- }
+ static findNode(root, nodeName) {
+ if (!nodeName || nodeName === '' || nodeName === '.' || nodeName === -1 || nodeName === root.name || nodeName === root.uuid) {
+ return root;
+ } // search into skeleton bones.
- return results;
- }
- static findNode(root, nodeName) {
- if (!nodeName || nodeName === '' || nodeName === '.' || nodeName === -1 || nodeName === root.name || nodeName === root.uuid) {
- return root;
- } // search into skeleton bones.
+ if (root.skeleton) {
+ const bone = root.skeleton.getBoneByName(nodeName);
+ if (bone !== undefined) {
+ return bone;
+ }
+ } // search into node subtree.
- if (root.skeleton) {
- const bone = root.skeleton.getBoneByName(nodeName);
- if (bone !== undefined) {
- return bone;
- }
- } // search into node subtree.
+ if (root.children) {
+ const searchNodeSubtree = function (children) {
+ for (let i = 0; i < children.length; i++) {
+ const childNode = children[i];
+
+ if (childNode.name === nodeName || childNode.uuid === nodeName) {
+ return childNode;
+ }
+ const result = searchNodeSubtree(childNode.children);
+ if (result) return result;
+ }
- if (root.children) {
- const searchNodeSubtree = function (children) {
- for (let i = 0; i < children.length; i++) {
- const childNode = children[i];
+ return null;
+ };
- if (childNode.name === nodeName || childNode.uuid === nodeName) {
- return childNode;
- }
+ const subTreeNode = searchNodeSubtree(root.children);
- const result = searchNodeSubtree(childNode.children);
- if (result) return result;
+ if (subTreeNode) {
+ return subTreeNode;
+ }
}
return null;
- };
+ } // these are used to "bind" a nonexistent property
- const subTreeNode = searchNodeSubtree(root.children);
- if (subTreeNode) {
- return subTreeNode;
+ _getValue_unavailable() {
}
- }
- return null;
- } // these are used to "bind" a nonexistent property
+ _setValue_unavailable() {
+ } // Getters
- _getValue_unavailable() {}
+ _getValue_direct(buffer, offset) {
+ buffer[offset] = this.targetObject[this.propertyName];
+ }
- _setValue_unavailable() {} // Getters
+ _getValue_array(buffer, offset) {
+ const source = this.resolvedProperty;
+ for (let i = 0, n = source.length; i !== n; ++i) {
+ buffer[offset++] = source[i];
+ }
+ }
- _getValue_direct(buffer, offset) {
- buffer[offset] = this.targetObject[this.propertyName];
- }
+ _getValue_arrayElement(buffer, offset) {
+ buffer[offset] = this.resolvedProperty[this.propertyIndex];
+ }
- _getValue_array(buffer, offset) {
- const source = this.resolvedProperty;
+ _getValue_toArray(buffer, offset) {
+ this.resolvedProperty.toArray(buffer, offset);
+ } // Direct
- for (let i = 0, n = source.length; i !== n; ++i) {
- buffer[offset++] = source[i];
- }
- }
- _getValue_arrayElement(buffer, offset) {
- buffer[offset] = this.resolvedProperty[this.propertyIndex];
- }
+ _setValue_direct(buffer, offset) {
+ this.targetObject[this.propertyName] = buffer[offset];
+ }
- _getValue_toArray(buffer, offset) {
- this.resolvedProperty.toArray(buffer, offset);
- } // Direct
+ _setValue_direct_setNeedsUpdate(buffer, offset) {
+ this.targetObject[this.propertyName] = buffer[offset];
+ this.targetObject.needsUpdate = true;
+ }
+ _setValue_direct_setMatrixWorldNeedsUpdate(buffer, offset) {
+ this.targetObject[this.propertyName] = buffer[offset];
+ this.targetObject.matrixWorldNeedsUpdate = true;
+ } // EntireArray
- _setValue_direct(buffer, offset) {
- this.targetObject[this.propertyName] = buffer[offset];
- }
- _setValue_direct_setNeedsUpdate(buffer, offset) {
- this.targetObject[this.propertyName] = buffer[offset];
- this.targetObject.needsUpdate = true;
- }
+ _setValue_array(buffer, offset) {
+ const dest = this.resolvedProperty;
- _setValue_direct_setMatrixWorldNeedsUpdate(buffer, offset) {
- this.targetObject[this.propertyName] = buffer[offset];
- this.targetObject.matrixWorldNeedsUpdate = true;
- } // EntireArray
+ for (let i = 0, n = dest.length; i !== n; ++i) {
+ dest[i] = buffer[offset++];
+ }
+ }
+ _setValue_array_setNeedsUpdate(buffer, offset) {
+ const dest = this.resolvedProperty;
- _setValue_array(buffer, offset) {
- const dest = this.resolvedProperty;
+ for (let i = 0, n = dest.length; i !== n; ++i) {
+ dest[i] = buffer[offset++];
+ }
- for (let i = 0, n = dest.length; i !== n; ++i) {
- dest[i] = buffer[offset++];
- }
- }
+ this.targetObject.needsUpdate = true;
+ }
- _setValue_array_setNeedsUpdate(buffer, offset) {
- const dest = this.resolvedProperty;
+ _setValue_array_setMatrixWorldNeedsUpdate(buffer, offset) {
+ const dest = this.resolvedProperty;
- for (let i = 0, n = dest.length; i !== n; ++i) {
- dest[i] = buffer[offset++];
- }
+ for (let i = 0, n = dest.length; i !== n; ++i) {
+ dest[i] = buffer[offset++];
+ }
- this.targetObject.needsUpdate = true;
- }
+ this.targetObject.matrixWorldNeedsUpdate = true;
+ } // ArrayElement
- _setValue_array_setMatrixWorldNeedsUpdate(buffer, offset) {
- const dest = this.resolvedProperty;
- for (let i = 0, n = dest.length; i !== n; ++i) {
- dest[i] = buffer[offset++];
- }
+ _setValue_arrayElement(buffer, offset) {
+ this.resolvedProperty[this.propertyIndex] = buffer[offset];
+ }
- this.targetObject.matrixWorldNeedsUpdate = true;
- } // ArrayElement
+ _setValue_arrayElement_setNeedsUpdate(buffer, offset) {
+ this.resolvedProperty[this.propertyIndex] = buffer[offset];
+ this.targetObject.needsUpdate = true;
+ }
+ _setValue_arrayElement_setMatrixWorldNeedsUpdate(buffer, offset) {
+ this.resolvedProperty[this.propertyIndex] = buffer[offset];
+ this.targetObject.matrixWorldNeedsUpdate = true;
+ } // HasToFromArray
- _setValue_arrayElement(buffer, offset) {
- this.resolvedProperty[this.propertyIndex] = buffer[offset];
- }
- _setValue_arrayElement_setNeedsUpdate(buffer, offset) {
- this.resolvedProperty[this.propertyIndex] = buffer[offset];
- this.targetObject.needsUpdate = true;
- }
+ _setValue_fromArray(buffer, offset) {
+ this.resolvedProperty.fromArray(buffer, offset);
+ }
- _setValue_arrayElement_setMatrixWorldNeedsUpdate(buffer, offset) {
- this.resolvedProperty[this.propertyIndex] = buffer[offset];
- this.targetObject.matrixWorldNeedsUpdate = true;
- } // HasToFromArray
+ _setValue_fromArray_setNeedsUpdate(buffer, offset) {
+ this.resolvedProperty.fromArray(buffer, offset);
+ this.targetObject.needsUpdate = true;
+ }
+ _setValue_fromArray_setMatrixWorldNeedsUpdate(buffer, offset) {
+ this.resolvedProperty.fromArray(buffer, offset);
+ this.targetObject.matrixWorldNeedsUpdate = true;
+ }
- _setValue_fromArray(buffer, offset) {
- this.resolvedProperty.fromArray(buffer, offset);
- }
-
- _setValue_fromArray_setNeedsUpdate(buffer, offset) {
- this.resolvedProperty.fromArray(buffer, offset);
- this.targetObject.needsUpdate = true;
- }
-
- _setValue_fromArray_setMatrixWorldNeedsUpdate(buffer, offset) {
- this.resolvedProperty.fromArray(buffer, offset);
- this.targetObject.matrixWorldNeedsUpdate = true;
- }
+ _getValue_unbound(targetArray, offset) {
+ this.bind();
+ this.getValue(targetArray, offset);
+ }
- _getValue_unbound(targetArray, offset) {
- this.bind();
- this.getValue(targetArray, offset);
- }
+ _setValue_unbound(sourceArray, offset) {
+ this.bind();
+ this.setValue(sourceArray, offset);
+ } // create getter / setter pair for a property in the scene graph
- _setValue_unbound(sourceArray, offset) {
- this.bind();
- this.setValue(sourceArray, offset);
- } // create getter / setter pair for a property in the scene graph
+ bind() {
+ let targetObject = this.node;
+ const parsedPath = this.parsedPath;
+ const objectName = parsedPath.objectName;
+ const propertyName = parsedPath.propertyName;
+ let propertyIndex = parsedPath.propertyIndex;
- bind() {
- let targetObject = this.node;
- const parsedPath = this.parsedPath;
- const objectName = parsedPath.objectName;
- const propertyName = parsedPath.propertyName;
- let propertyIndex = parsedPath.propertyIndex;
+ if (!targetObject) {
+ targetObject = PropertyBinding.findNode(this.rootNode, parsedPath.nodeName) || this.rootNode;
+ this.node = targetObject;
+ } // set fail state so we can just 'return' on error
- if (!targetObject) {
- targetObject = PropertyBinding.findNode(this.rootNode, parsedPath.nodeName) || this.rootNode;
- this.node = targetObject;
- } // set fail state so we can just 'return' on error
+ this.getValue = this._getValue_unavailable;
+ this.setValue = this._setValue_unavailable; // ensure there is a value node
- this.getValue = this._getValue_unavailable;
- this.setValue = this._setValue_unavailable; // ensure there is a value node
+ if (!targetObject) {
+ console.error('THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.');
+ return;
+ }
- if (!targetObject) {
- console.error('THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.');
- return;
- }
+ if (objectName) {
+ let objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials....
- if (objectName) {
- let objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials....
+ switch (objectName) {
+ case 'materials':
+ if (!targetObject.material) {
+ console.error('THREE.PropertyBinding: Can not bind to material as node does not have a material.', this);
+ return;
+ }
- switch (objectName) {
- case 'materials':
- if (!targetObject.material) {
- console.error('THREE.PropertyBinding: Can not bind to material as node does not have a material.', this);
- return;
- }
+ if (!targetObject.material.materials) {
+ console.error('THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this);
+ return;
+ }
- if (!targetObject.material.materials) {
- console.error('THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this);
- return;
- }
+ targetObject = targetObject.material.materials;
+ break;
- targetObject = targetObject.material.materials;
- break;
+ case 'bones':
+ if (!targetObject.skeleton) {
+ console.error('THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this);
+ return;
+ } // potential future optimization: skip this if propertyIndex is already an integer
+ // and convert the integer string to a true integer.
- case 'bones':
- if (!targetObject.skeleton) {
- console.error('THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this);
- return;
- } // potential future optimization: skip this if propertyIndex is already an integer
- // and convert the integer string to a true integer.
+ targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices.
- targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices.
+ for (let i = 0; i < targetObject.length; i++) {
+ if (targetObject[i].name === objectIndex) {
+ objectIndex = i;
+ break;
+ }
+ }
- for (let i = 0; i < targetObject.length; i++) {
- if (targetObject[i].name === objectIndex) {
- objectIndex = i;
break;
- }
- }
- break;
+ default:
+ if (targetObject[objectName] === undefined) {
+ console.error('THREE.PropertyBinding: Can not bind to objectName of node undefined.', this);
+ return;
+ }
- default:
- if (targetObject[objectName] === undefined) {
- console.error('THREE.PropertyBinding: Can not bind to objectName of node undefined.', this);
- return;
+ targetObject = targetObject[objectName];
}
- targetObject = targetObject[objectName];
- }
+ if (objectIndex !== undefined) {
+ if (targetObject[objectIndex] === undefined) {
+ console.error('THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject);
+ return;
+ }
- if (objectIndex !== undefined) {
- if (targetObject[objectIndex] === undefined) {
- console.error('THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject);
- return;
- }
+ targetObject = targetObject[objectIndex];
+ }
+ } // resolve property
- targetObject = targetObject[objectIndex];
- }
- } // resolve property
+ const nodeProperty = targetObject[propertyName];
- const nodeProperty = targetObject[propertyName];
+ if (nodeProperty === undefined) {
+ const nodeName = parsedPath.nodeName;
+ console.error('THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + ' but it wasn\'t found.', targetObject);
+ return;
+ } // determine versioning scheme
- if (nodeProperty === undefined) {
- const nodeName = parsedPath.nodeName;
- console.error('THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + ' but it wasn\'t found.', targetObject);
- return;
- } // determine versioning scheme
+ let versioning = this.Versioning.None;
+ this.targetObject = targetObject;
- let versioning = this.Versioning.None;
- this.targetObject = targetObject;
+ if (targetObject.needsUpdate !== undefined) {
+ // material
+ versioning = this.Versioning.NeedsUpdate;
+ } else if (targetObject.matrixWorldNeedsUpdate !== undefined) {
+ // node transform
+ versioning = this.Versioning.MatrixWorldNeedsUpdate;
+ } // determine how the property gets bound
- if (targetObject.needsUpdate !== undefined) {
- // material
- versioning = this.Versioning.NeedsUpdate;
- } else if (targetObject.matrixWorldNeedsUpdate !== undefined) {
- // node transform
- versioning = this.Versioning.MatrixWorldNeedsUpdate;
- } // determine how the property gets bound
+ let bindingType = this.BindingType.Direct;
- let bindingType = this.BindingType.Direct;
+ if (propertyIndex !== undefined) {
+ // access a sub element of the property array (only primitives are supported right now)
+ if (propertyName === 'morphTargetInfluences') {
+ // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.
+ // support resolving morphTarget names into indices.
+ if (!targetObject.geometry) {
+ console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this);
+ return;
+ }
- if (propertyIndex !== undefined) {
- // access a sub element of the property array (only primitives are supported right now)
- if (propertyName === 'morphTargetInfluences') {
- // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.
- // support resolving morphTarget names into indices.
- if (!targetObject.geometry) {
- console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this);
- return;
- }
+ if (targetObject.geometry.isBufferGeometry) {
+ if (!targetObject.geometry.morphAttributes) {
+ console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this);
+ return;
+ }
- if (targetObject.geometry.isBufferGeometry) {
- if (!targetObject.geometry.morphAttributes) {
- console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this);
- return;
+ if (targetObject.morphTargetDictionary[propertyIndex] !== undefined) {
+ propertyIndex = targetObject.morphTargetDictionary[propertyIndex];
+ }
+ } else {
+ console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences on THREE.Geometry. Use THREE.BufferGeometry instead.', this);
+ return;
+ }
}
- if (targetObject.morphTargetDictionary[propertyIndex] !== undefined) {
- propertyIndex = targetObject.morphTargetDictionary[propertyIndex];
- }
+ bindingType = this.BindingType.ArrayElement;
+ this.resolvedProperty = nodeProperty;
+ this.propertyIndex = propertyIndex;
+ } else if (nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined) {
+ // must use copy for Object3D.Euler/Quaternion
+ bindingType = this.BindingType.HasFromToArray;
+ this.resolvedProperty = nodeProperty;
+ } else if (Array.isArray(nodeProperty)) {
+ bindingType = this.BindingType.EntireArray;
+ this.resolvedProperty = nodeProperty;
} else {
- console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences on THREE.Geometry. Use THREE.BufferGeometry instead.', this);
- return;
- }
+ this.propertyName = propertyName;
+ } // select getter / setter
+
+
+ this.getValue = this.GetterByBindingType[bindingType];
+ this.setValue = this.SetterByBindingTypeAndVersioning[bindingType][versioning];
}
- bindingType = this.BindingType.ArrayElement;
- this.resolvedProperty = nodeProperty;
- this.propertyIndex = propertyIndex;
- } else if (nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined) {
- // must use copy for Object3D.Euler/Quaternion
- bindingType = this.BindingType.HasFromToArray;
- this.resolvedProperty = nodeProperty;
- } else if (Array.isArray(nodeProperty)) {
- bindingType = this.BindingType.EntireArray;
- this.resolvedProperty = nodeProperty;
- } else {
- this.propertyName = propertyName;
- } // select getter / setter
+ unbind() {
+ this.node = null; // back to the prototype version of getValue / setValue
+ // note: avoiding to mutate the shape of 'this' via 'delete'
+ this.getValue = this._getValue_unbound;
+ this.setValue = this._setValue_unbound;
+ }
- this.getValue = this.GetterByBindingType[bindingType];
- this.setValue = this.SetterByBindingTypeAndVersioning[bindingType][versioning];
- }
+ }
- unbind() {
- this.node = null; // back to the prototype version of getValue / setValue
- // note: avoiding to mutate the shape of 'this' via 'delete'
+ PropertyBinding.Composite = Composite;
+ PropertyBinding.prototype.BindingType = {
+ Direct: 0,
+ EntireArray: 1,
+ ArrayElement: 2,
+ HasFromToArray: 3
+ };
+ PropertyBinding.prototype.Versioning = {
+ None: 0,
+ NeedsUpdate: 1,
+ MatrixWorldNeedsUpdate: 2
+ };
+ PropertyBinding.prototype.GetterByBindingType = [PropertyBinding.prototype._getValue_direct, PropertyBinding.prototype._getValue_array, PropertyBinding.prototype._getValue_arrayElement, PropertyBinding.prototype._getValue_toArray];
+ PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [[// Direct
+ PropertyBinding.prototype._setValue_direct, PropertyBinding.prototype._setValue_direct_setNeedsUpdate, PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate], [// EntireArray
+ PropertyBinding.prototype._setValue_array, PropertyBinding.prototype._setValue_array_setNeedsUpdate, PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate], [// ArrayElement
+ PropertyBinding.prototype._setValue_arrayElement, PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate, PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate], [// HasToFromArray
+ PropertyBinding.prototype._setValue_fromArray, PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate, PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate]];
- this.getValue = this._getValue_unbound;
- this.setValue = this._setValue_unbound;
- }
+ /**
+ *
+ * A group of objects that receives a shared animation state.
+ *
+ * Usage:
+ *
+ * - Add objects you would otherwise pass as 'root' to the
+ * constructor or the .clipAction method of AnimationMixer.
+ *
+ * - Instead pass this object as 'root'.
+ *
+ * - You can also add and remove objects later when the mixer
+ * is running.
+ *
+ * Note:
+ *
+ * Objects of this class appear as one object to the mixer,
+ * so cache control of the individual objects must be done
+ * on the group.
+ *
+ * Limitation:
+ *
+ * - The animated properties must be compatible among the
+ * all objects in the group.
+ *
+ * - A single property can either be controlled through a
+ * target group or directly, but not both.
+ */
- }
+ class AnimationObjectGroup {
+ constructor() {
+ this.uuid = generateUUID(); // cached objects followed by the active ones
- PropertyBinding.Composite = Composite;
- PropertyBinding.prototype.BindingType = {
- Direct: 0,
- EntireArray: 1,
- ArrayElement: 2,
- HasFromToArray: 3
- };
- PropertyBinding.prototype.Versioning = {
- None: 0,
- NeedsUpdate: 1,
- MatrixWorldNeedsUpdate: 2
- };
- PropertyBinding.prototype.GetterByBindingType = [PropertyBinding.prototype._getValue_direct, PropertyBinding.prototype._getValue_array, PropertyBinding.prototype._getValue_arrayElement, PropertyBinding.prototype._getValue_toArray];
- PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [[// Direct
- PropertyBinding.prototype._setValue_direct, PropertyBinding.prototype._setValue_direct_setNeedsUpdate, PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate], [// EntireArray
- PropertyBinding.prototype._setValue_array, PropertyBinding.prototype._setValue_array_setNeedsUpdate, PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate], [// ArrayElement
- PropertyBinding.prototype._setValue_arrayElement, PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate, PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate], [// HasToFromArray
- PropertyBinding.prototype._setValue_fromArray, PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate, PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate]];
-
- /**
- *
- * A group of objects that receives a shared animation state.
- *
- * Usage:
- *
- * - Add objects you would otherwise pass as 'root' to the
- * constructor or the .clipAction method of AnimationMixer.
- *
- * - Instead pass this object as 'root'.
- *
- * - You can also add and remove objects later when the mixer
- * is running.
- *
- * Note:
- *
- * Objects of this class appear as one object to the mixer,
- * so cache control of the individual objects must be done
- * on the group.
- *
- * Limitation:
- *
- * - The animated properties must be compatible among the
- * all objects in the group.
- *
- * - A single property can either be controlled through a
- * target group or directly, but not both.
- */
-
- class AnimationObjectGroup {
- constructor() {
- this.uuid = generateUUID(); // cached objects followed by the active ones
-
- this._objects = Array.prototype.slice.call(arguments);
- this.nCachedObjects_ = 0; // threshold
- // note: read by PropertyBinding.Composite
-
- const indices = {};
- this._indicesByUUID = indices; // for bookkeeping
-
- for (let i = 0, n = arguments.length; i !== n; ++i) {
- indices[arguments[i].uuid] = i;
- }
-
- this._paths = []; // inside: string
-
- this._parsedPaths = []; // inside: { we don't care, here }
-
- this._bindings = []; // inside: Array< PropertyBinding >
-
- this._bindingsIndicesByPath = {}; // inside: indices in these arrays
-
- const scope = this;
- this.stats = {
- objects: {
- get total() {
- return scope._objects.length;
- },
+ this._objects = Array.prototype.slice.call(arguments);
+ this.nCachedObjects_ = 0; // threshold
+ // note: read by PropertyBinding.Composite
- get inUse() {
- return this.total - scope.nCachedObjects_;
+ const indices = {};
+ this._indicesByUUID = indices; // for bookkeeping
+
+ for (let i = 0, n = arguments.length; i !== n; ++i) {
+ indices[arguments[i].uuid] = i;
}
- },
+ this._paths = []; // inside: string
- get bindingsPerObject() {
- return scope._bindings.length;
- }
+ this._parsedPaths = []; // inside: { we don't care, here }
- };
- }
+ this._bindings = []; // inside: Array< PropertyBinding >
+
+ this._bindingsIndicesByPath = {}; // inside: indices in these arrays
- add() {
- const objects = this._objects,
+ const scope = this;
+ this.stats = {
+ objects: {
+ get total() {
+ return scope._objects.length;
+ },
+
+ get inUse() {
+ return this.total - scope.nCachedObjects_;
+ }
+
+ },
+
+ get bindingsPerObject() {
+ return scope._bindings.length;
+ }
+
+ };
+ }
+
+ add() {
+ const objects = this._objects,
indicesByUUID = this._indicesByUUID,
paths = this._paths,
parsedPaths = this._parsedPaths,
bindings = this._bindings,
nBindings = bindings.length;
- let knownObject = undefined,
- nObjects = objects.length,
- nCachedObjects = this.nCachedObjects_;
+ let knownObject = undefined,
+ nObjects = objects.length,
+ nCachedObjects = this.nCachedObjects_;
- for (let i = 0, n = arguments.length; i !== n; ++i) {
- const object = arguments[i],
+ for (let i = 0, n = arguments.length; i !== n; ++i) {
+ const object = arguments[i],
uuid = object.uuid;
- let index = indicesByUUID[uuid];
+ let index = indicesByUUID[uuid];
- if (index === undefined) {
- // unknown object -> add it to the ACTIVE region
- index = nObjects++;
- indicesByUUID[uuid] = index;
- objects.push(object); // accounting is done, now do the same for all bindings
+ if (index === undefined) {
+ // unknown object -> add it to the ACTIVE region
+ index = nObjects++;
+ indicesByUUID[uuid] = index;
+ objects.push(object); // accounting is done, now do the same for all bindings
- for (let j = 0, m = nBindings; j !== m; ++j) {
- bindings[j].push(new PropertyBinding(object, paths[j], parsedPaths[j]));
- }
- } else if (index < nCachedObjects) {
- knownObject = objects[index]; // move existing object to the ACTIVE region
+ for (let j = 0, m = nBindings; j !== m; ++j) {
+ bindings[j].push(new PropertyBinding(object, paths[j], parsedPaths[j]));
+ }
+ } else if (index < nCachedObjects) {
+ knownObject = objects[index]; // move existing object to the ACTIVE region
- const firstActiveIndex = --nCachedObjects,
+ const firstActiveIndex = --nCachedObjects,
lastCachedObject = objects[firstActiveIndex];
- indicesByUUID[lastCachedObject.uuid] = index;
- objects[index] = lastCachedObject;
- indicesByUUID[uuid] = firstActiveIndex;
- objects[firstActiveIndex] = object; // accounting is done, now do the same for all bindings
+ indicesByUUID[lastCachedObject.uuid] = index;
+ objects[index] = lastCachedObject;
+ indicesByUUID[uuid] = firstActiveIndex;
+ objects[firstActiveIndex] = object; // accounting is done, now do the same for all bindings
- for (let j = 0, m = nBindings; j !== m; ++j) {
- const bindingsForPath = bindings[j],
+ for (let j = 0, m = nBindings; j !== m; ++j) {
+ const bindingsForPath = bindings[j],
lastCached = bindingsForPath[firstActiveIndex];
- let binding = bindingsForPath[index];
- bindingsForPath[index] = lastCached;
-
- if (binding === undefined) {
- // since we do not bother to create new bindings
- // for objects that are cached, the binding may
- // or may not exist
- binding = new PropertyBinding(object, paths[j], parsedPaths[j]);
- }
+ let binding = bindingsForPath[index];
+ bindingsForPath[index] = lastCached;
+
+ if (binding === undefined) {
+ // since we do not bother to create new bindings
+ // for objects that are cached, the binding may
+ // or may not exist
+ binding = new PropertyBinding(object, paths[j], parsedPaths[j]);
+ }
- bindingsForPath[firstActiveIndex] = binding;
- }
- } else if (objects[index] !== knownObject) {
- console.error('THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.');
- } // else the object is already where we want it to be
+ bindingsForPath[firstActiveIndex] = binding;
+ }
+ } else if (objects[index] !== knownObject) {
+ console.error('THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.');
+ } // else the object is already where we want it to be
- } // for arguments
+ } // for arguments
- this.nCachedObjects_ = nCachedObjects;
- }
+ this.nCachedObjects_ = nCachedObjects;
+ }
- remove() {
- const objects = this._objects,
+ remove() {
+ const objects = this._objects,
indicesByUUID = this._indicesByUUID,
bindings = this._bindings,
nBindings = bindings.length;
- let nCachedObjects = this.nCachedObjects_;
+ let nCachedObjects = this.nCachedObjects_;
- for (let i = 0, n = arguments.length; i !== n; ++i) {
- const object = arguments[i],
+ for (let i = 0, n = arguments.length; i !== n; ++i) {
+ const object = arguments[i],
uuid = object.uuid,
index = indicesByUUID[uuid];
- if (index !== undefined && index >= nCachedObjects) {
- // move existing object into the CACHED region
- const lastCachedIndex = nCachedObjects++,
+ if (index !== undefined && index >= nCachedObjects) {
+ // move existing object into the CACHED region
+ const lastCachedIndex = nCachedObjects++,
firstActiveObject = objects[lastCachedIndex];
- indicesByUUID[firstActiveObject.uuid] = index;
- objects[index] = firstActiveObject;
- indicesByUUID[uuid] = lastCachedIndex;
- objects[lastCachedIndex] = object; // accounting is done, now do the same for all bindings
+ indicesByUUID[firstActiveObject.uuid] = index;
+ objects[index] = firstActiveObject;
+ indicesByUUID[uuid] = lastCachedIndex;
+ objects[lastCachedIndex] = object; // accounting is done, now do the same for all bindings
- for (let j = 0, m = nBindings; j !== m; ++j) {
- const bindingsForPath = bindings[j],
+ for (let j = 0, m = nBindings; j !== m; ++j) {
+ const bindingsForPath = bindings[j],
firstActive = bindingsForPath[lastCachedIndex],
binding = bindingsForPath[index];
- bindingsForPath[index] = firstActive;
- bindingsForPath[lastCachedIndex] = binding;
- }
- }
- } // for arguments
+ bindingsForPath[index] = firstActive;
+ bindingsForPath[lastCachedIndex] = binding;
+ }
+ }
+ } // for arguments
- this.nCachedObjects_ = nCachedObjects;
- } // remove & forget
+ this.nCachedObjects_ = nCachedObjects;
+ } // remove & forget
- uncache() {
- const objects = this._objects,
+ uncache() {
+ const objects = this._objects,
indicesByUUID = this._indicesByUUID,
bindings = this._bindings,
nBindings = bindings.length;
- let nCachedObjects = this.nCachedObjects_,
- nObjects = objects.length;
+ let nCachedObjects = this.nCachedObjects_,
+ nObjects = objects.length;
- for (let i = 0, n = arguments.length; i !== n; ++i) {
- const object = arguments[i],
+ for (let i = 0, n = arguments.length; i !== n; ++i) {
+ const object = arguments[i],
uuid = object.uuid,
index = indicesByUUID[uuid];
- if (index !== undefined) {
- delete indicesByUUID[uuid];
+ if (index !== undefined) {
+ delete indicesByUUID[uuid];
- if (index < nCachedObjects) {
- // object is cached, shrink the CACHED region
- const firstActiveIndex = --nCachedObjects,
+ if (index < nCachedObjects) {
+ // object is cached, shrink the CACHED region
+ const firstActiveIndex = --nCachedObjects,
lastCachedObject = objects[firstActiveIndex],
lastIndex = --nObjects,
lastObject = objects[lastIndex]; // last cached object takes this object's place
- indicesByUUID[lastCachedObject.uuid] = index;
- objects[index] = lastCachedObject; // last object goes to the activated slot and pop
+ indicesByUUID[lastCachedObject.uuid] = index;
+ objects[index] = lastCachedObject; // last object goes to the activated slot and pop
- indicesByUUID[lastObject.uuid] = firstActiveIndex;
- objects[firstActiveIndex] = lastObject;
- objects.pop(); // accounting is done, now do the same for all bindings
+ indicesByUUID[lastObject.uuid] = firstActiveIndex;
+ objects[firstActiveIndex] = lastObject;
+ objects.pop(); // accounting is done, now do the same for all bindings
- for (let j = 0, m = nBindings; j !== m; ++j) {
- const bindingsForPath = bindings[j],
+ for (let j = 0, m = nBindings; j !== m; ++j) {
+ const bindingsForPath = bindings[j],
lastCached = bindingsForPath[firstActiveIndex],
last = bindingsForPath[lastIndex];
- bindingsForPath[index] = lastCached;
- bindingsForPath[firstActiveIndex] = last;
- bindingsForPath.pop();
- }
- } else {
- // object is active, just swap with the last and pop
- const lastIndex = --nObjects,
+ bindingsForPath[index] = lastCached;
+ bindingsForPath[firstActiveIndex] = last;
+ bindingsForPath.pop();
+ }
+ } else {
+ // object is active, just swap with the last and pop
+ const lastIndex = --nObjects,
lastObject = objects[lastIndex];
- if (lastIndex > 0) {
- indicesByUUID[lastObject.uuid] = index;
- }
+ if (lastIndex > 0) {
+ indicesByUUID[lastObject.uuid] = index;
+ }
- objects[index] = lastObject;
- objects.pop(); // accounting is done, now do the same for all bindings
+ objects[index] = lastObject;
+ objects.pop(); // accounting is done, now do the same for all bindings
- for (let j = 0, m = nBindings; j !== m; ++j) {
- const bindingsForPath = bindings[j];
- bindingsForPath[index] = bindingsForPath[lastIndex];
- bindingsForPath.pop();
- }
- } // cached or active
+ for (let j = 0, m = nBindings; j !== m; ++j) {
+ const bindingsForPath = bindings[j];
+ bindingsForPath[index] = bindingsForPath[lastIndex];
+ bindingsForPath.pop();
+ }
+ } // cached or active
- } // if object is known
+ } // if object is known
- } // for arguments
+ } // for arguments
- this.nCachedObjects_ = nCachedObjects;
- } // Internal interface used by befriended PropertyBinding.Composite:
+ this.nCachedObjects_ = nCachedObjects;
+ } // Internal interface used by befriended PropertyBinding.Composite:
- subscribe_(path, parsedPath) {
- // returns an array of bindings for the given path that is changed
- // according to the contained objects in the group
- const indicesByPath = this._bindingsIndicesByPath;
- let index = indicesByPath[path];
- const bindings = this._bindings;
- if (index !== undefined) return bindings[index];
- const paths = this._paths,
+ subscribe_(path, parsedPath) {
+ // returns an array of bindings for the given path that is changed
+ // according to the contained objects in the group
+ const indicesByPath = this._bindingsIndicesByPath;
+ let index = indicesByPath[path];
+ const bindings = this._bindings;
+ if (index !== undefined) return bindings[index];
+ const paths = this._paths,
parsedPaths = this._parsedPaths,
objects = this._objects,
nObjects = objects.length,
nCachedObjects = this.nCachedObjects_,
bindingsForPath = new Array(nObjects);
- index = bindings.length;
- indicesByPath[path] = index;
- paths.push(path);
- parsedPaths.push(parsedPath);
- bindings.push(bindingsForPath);
-
- for (let i = nCachedObjects, n = objects.length; i !== n; ++i) {
- const object = objects[i];
- bindingsForPath[i] = new PropertyBinding(object, path, parsedPath);
- }
+ index = bindings.length;
+ indicesByPath[path] = index;
+ paths.push(path);
+ parsedPaths.push(parsedPath);
+ bindings.push(bindingsForPath);
+
+ for (let i = nCachedObjects, n = objects.length; i !== n; ++i) {
+ const object = objects[i];
+ bindingsForPath[i] = new PropertyBinding(object, path, parsedPath);
+ }
- return bindingsForPath;
- }
+ return bindingsForPath;
+ }
- unsubscribe_(path) {
- // tells the group to forget about a property path and no longer
- // update the array previously obtained with 'subscribe_'
- const indicesByPath = this._bindingsIndicesByPath,
+ unsubscribe_(path) {
+ // tells the group to forget about a property path and no longer
+ // update the array previously obtained with 'subscribe_'
+ const indicesByPath = this._bindingsIndicesByPath,
index = indicesByPath[path];
- if (index !== undefined) {
- const paths = this._paths,
+ if (index !== undefined) {
+ const paths = this._paths,
parsedPaths = this._parsedPaths,
bindings = this._bindings,
lastBindingsIndex = bindings.length - 1,
lastBindings = bindings[lastBindingsIndex],
lastBindingsPath = path[lastBindingsIndex];
- indicesByPath[lastBindingsPath] = index;
- bindings[index] = lastBindings;
- bindings.pop();
- parsedPaths[index] = parsedPaths[lastBindingsIndex];
- parsedPaths.pop();
- paths[index] = paths[lastBindingsIndex];
- paths.pop();
- }
- }
+ indicesByPath[lastBindingsPath] = index;
+ bindings[index] = lastBindings;
+ bindings.pop();
+ parsedPaths[index] = parsedPaths[lastBindingsIndex];
+ parsedPaths.pop();
+ paths[index] = paths[lastBindingsIndex];
+ paths.pop();
+ }
+ }
- }
+ }
- AnimationObjectGroup.prototype.isAnimationObjectGroup = true;
+ AnimationObjectGroup.prototype.isAnimationObjectGroup = true;
- class AnimationAction {
- constructor(mixer, clip, localRoot = null, blendMode = clip.blendMode) {
- this._mixer = mixer;
- this._clip = clip;
- this._localRoot = localRoot;
- this.blendMode = blendMode;
- const tracks = clip.tracks,
+ class AnimationAction {
+ constructor(mixer, clip, localRoot = null, blendMode = clip.blendMode) {
+ this._mixer = mixer;
+ this._clip = clip;
+ this._localRoot = localRoot;
+ this.blendMode = blendMode;
+ const tracks = clip.tracks,
nTracks = tracks.length,
interpolants = new Array(nTracks);
- const interpolantSettings = {
- endingStart: ZeroCurvatureEnding,
- endingEnd: ZeroCurvatureEnding
- };
+ const interpolantSettings = {
+ endingStart: ZeroCurvatureEnding,
+ endingEnd: ZeroCurvatureEnding
+ };
- for (let i = 0; i !== nTracks; ++i) {
- const interpolant = tracks[i].createInterpolant(null);
- interpolants[i] = interpolant;
- interpolant.settings = interpolantSettings;
- }
+ for (let i = 0; i !== nTracks; ++i) {
+ const interpolant = tracks[i].createInterpolant(null);
+ interpolants[i] = interpolant;
+ interpolant.settings = interpolantSettings;
+ }
- this._interpolantSettings = interpolantSettings;
- this._interpolants = interpolants; // bound by the mixer
- // inside: PropertyMixer (managed by the mixer)
+ this._interpolantSettings = interpolantSettings;
+ this._interpolants = interpolants; // bound by the mixer
+ // inside: PropertyMixer (managed by the mixer)
- this._propertyBindings = new Array(nTracks);
- this._cacheIndex = null; // for the memory manager
+ this._propertyBindings = new Array(nTracks);
+ this._cacheIndex = null; // for the memory manager
- this._byClipCacheIndex = null; // for the memory manager
+ this._byClipCacheIndex = null; // for the memory manager
- this._timeScaleInterpolant = null;
- this._weightInterpolant = null;
- this.loop = LoopRepeat;
- this._loopCount = -1; // global mixer time when the action is to be started
- // it's set back to 'null' upon start of the action
+ this._timeScaleInterpolant = null;
+ this._weightInterpolant = null;
+ this.loop = LoopRepeat;
+ this._loopCount = -1; // global mixer time when the action is to be started
+ // it's set back to 'null' upon start of the action
- this._startTime = null; // scaled local time of the action
- // gets clamped or wrapped to 0..clip.duration according to loop
+ this._startTime = null; // scaled local time of the action
+ // gets clamped or wrapped to 0..clip.duration according to loop
- this.time = 0;
- this.timeScale = 1;
- this._effectiveTimeScale = 1;
- this.weight = 1;
- this._effectiveWeight = 1;
- this.repetitions = Infinity; // no. of repetitions when looping
+ this.time = 0;
+ this.timeScale = 1;
+ this._effectiveTimeScale = 1;
+ this.weight = 1;
+ this._effectiveWeight = 1;
+ this.repetitions = Infinity; // no. of repetitions when looping
- this.paused = false; // true -> zero effective time scale
+ this.paused = false; // true -> zero effective time scale
- this.enabled = true; // false -> zero effective weight
+ this.enabled = true; // false -> zero effective weight
- this.clampWhenFinished = false; // keep feeding the last frame?
+ this.clampWhenFinished = false; // keep feeding the last frame?
- this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate
+ this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate
- this.zeroSlopeAtEnd = true; // clips for start, loop and end
- } // State & Scheduling
+ this.zeroSlopeAtEnd = true; // clips for start, loop and end
+ } // State & Scheduling
- play() {
- this._mixer._activateAction(this);
+ play() {
+ this._mixer._activateAction(this);
- return this;
- }
+ return this;
+ }
- stop() {
- this._mixer._deactivateAction(this);
+ stop() {
+ this._mixer._deactivateAction(this);
- return this.reset();
- }
+ return this.reset();
+ }
- reset() {
- this.paused = false;
- this.enabled = true;
- this.time = 0; // restart clip
+ reset() {
+ this.paused = false;
+ this.enabled = true;
+ this.time = 0; // restart clip
- this._loopCount = -1; // forget previous loops
+ this._loopCount = -1; // forget previous loops
- this._startTime = null; // forget scheduling
+ this._startTime = null; // forget scheduling
- return this.stopFading().stopWarping();
- }
+ return this.stopFading().stopWarping();
+ }
- isRunning() {
- return this.enabled && !this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction(this);
- } // return true when play has been called
+ isRunning() {
+ return this.enabled && !this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction(this);
+ } // return true when play has been called
- isScheduled() {
- return this._mixer._isActiveAction(this);
- }
+ isScheduled() {
+ return this._mixer._isActiveAction(this);
+ }
- startAt(time) {
- this._startTime = time;
- return this;
- }
+ startAt(time) {
+ this._startTime = time;
+ return this;
+ }
- setLoop(mode, repetitions) {
- this.loop = mode;
- this.repetitions = repetitions;
- return this;
- } // Weight
- // set the weight stopping any scheduled fading
- // although .enabled = false yields an effective weight of zero, this
- // method does *not* change .enabled, because it would be confusing
+ setLoop(mode, repetitions) {
+ this.loop = mode;
+ this.repetitions = repetitions;
+ return this;
+ } // Weight
+ // set the weight stopping any scheduled fading
+ // although .enabled = false yields an effective weight of zero, this
+ // method does *not* change .enabled, because it would be confusing
- setEffectiveWeight(weight) {
- this.weight = weight; // note: same logic as when updated at runtime
+ setEffectiveWeight(weight) {
+ this.weight = weight; // note: same logic as when updated at runtime
- this._effectiveWeight = this.enabled ? weight : 0;
- return this.stopFading();
- } // return the weight considering fading and .enabled
+ this._effectiveWeight = this.enabled ? weight : 0;
+ return this.stopFading();
+ } // return the weight considering fading and .enabled
- getEffectiveWeight() {
- return this._effectiveWeight;
- }
+ getEffectiveWeight() {
+ return this._effectiveWeight;
+ }
- fadeIn(duration) {
- return this._scheduleFading(duration, 0, 1);
- }
+ fadeIn(duration) {
+ return this._scheduleFading(duration, 0, 1);
+ }
- fadeOut(duration) {
- return this._scheduleFading(duration, 1, 0);
- }
+ fadeOut(duration) {
+ return this._scheduleFading(duration, 1, 0);
+ }
- crossFadeFrom(fadeOutAction, duration, warp) {
- fadeOutAction.fadeOut(duration);
- this.fadeIn(duration);
+ crossFadeFrom(fadeOutAction, duration, warp) {
+ fadeOutAction.fadeOut(duration);
+ this.fadeIn(duration);
- if (warp) {
- const fadeInDuration = this._clip.duration,
+ if (warp) {
+ const fadeInDuration = this._clip.duration,
fadeOutDuration = fadeOutAction._clip.duration,
startEndRatio = fadeOutDuration / fadeInDuration,
endStartRatio = fadeInDuration / fadeOutDuration;
- fadeOutAction.warp(1.0, startEndRatio, duration);
- this.warp(endStartRatio, 1.0, duration);
- }
+ fadeOutAction.warp(1.0, startEndRatio, duration);
+ this.warp(endStartRatio, 1.0, duration);
+ }
- return this;
- }
+ return this;
+ }
- crossFadeTo(fadeInAction, duration, warp) {
- return fadeInAction.crossFadeFrom(this, duration, warp);
- }
+ crossFadeTo(fadeInAction, duration, warp) {
+ return fadeInAction.crossFadeFrom(this, duration, warp);
+ }
- stopFading() {
- const weightInterpolant = this._weightInterpolant;
+ stopFading() {
+ const weightInterpolant = this._weightInterpolant;
- if (weightInterpolant !== null) {
- this._weightInterpolant = null;
+ if (weightInterpolant !== null) {
+ this._weightInterpolant = null;
- this._mixer._takeBackControlInterpolant(weightInterpolant);
- }
+ this._mixer._takeBackControlInterpolant(weightInterpolant);
+ }
- return this;
- } // Time Scale Control
- // set the time scale stopping any scheduled warping
- // although .paused = true yields an effective time scale of zero, this
- // method does *not* change .paused, because it would be confusing
+ return this;
+ } // Time Scale Control
+ // set the time scale stopping any scheduled warping
+ // although .paused = true yields an effective time scale of zero, this
+ // method does *not* change .paused, because it would be confusing
- setEffectiveTimeScale(timeScale) {
- this.timeScale = timeScale;
- this._effectiveTimeScale = this.paused ? 0 : timeScale;
- return this.stopWarping();
- } // return the time scale considering warping and .paused
+ setEffectiveTimeScale(timeScale) {
+ this.timeScale = timeScale;
+ this._effectiveTimeScale = this.paused ? 0 : timeScale;
+ return this.stopWarping();
+ } // return the time scale considering warping and .paused
- getEffectiveTimeScale() {
- return this._effectiveTimeScale;
- }
+ getEffectiveTimeScale() {
+ return this._effectiveTimeScale;
+ }
- setDuration(duration) {
- this.timeScale = this._clip.duration / duration;
- return this.stopWarping();
- }
+ setDuration(duration) {
+ this.timeScale = this._clip.duration / duration;
+ return this.stopWarping();
+ }
- syncWith(action) {
- this.time = action.time;
- this.timeScale = action.timeScale;
- return this.stopWarping();
- }
+ syncWith(action) {
+ this.time = action.time;
+ this.timeScale = action.timeScale;
+ return this.stopWarping();
+ }
- halt(duration) {
- return this.warp(this._effectiveTimeScale, 0, duration);
- }
+ halt(duration) {
+ return this.warp(this._effectiveTimeScale, 0, duration);
+ }
- warp(startTimeScale, endTimeScale, duration) {
- const mixer = this._mixer,
+ warp(startTimeScale, endTimeScale, duration) {
+ const mixer = this._mixer,
now = mixer.time,
timeScale = this.timeScale;
- let interpolant = this._timeScaleInterpolant;
+ let interpolant = this._timeScaleInterpolant;
- if (interpolant === null) {
- interpolant = mixer._lendControlInterpolant();
- this._timeScaleInterpolant = interpolant;
- }
+ if (interpolant === null) {
+ interpolant = mixer._lendControlInterpolant();
+ this._timeScaleInterpolant = interpolant;
+ }
- const times = interpolant.parameterPositions,
+ const times = interpolant.parameterPositions,
values = interpolant.sampleValues;
- times[0] = now;
- times[1] = now + duration;
- values[0] = startTimeScale / timeScale;
- values[1] = endTimeScale / timeScale;
- return this;
- }
+ times[0] = now;
+ times[1] = now + duration;
+ values[0] = startTimeScale / timeScale;
+ values[1] = endTimeScale / timeScale;
+ return this;
+ }
- stopWarping() {
- const timeScaleInterpolant = this._timeScaleInterpolant;
+ stopWarping() {
+ const timeScaleInterpolant = this._timeScaleInterpolant;
- if (timeScaleInterpolant !== null) {
- this._timeScaleInterpolant = null;
+ if (timeScaleInterpolant !== null) {
+ this._timeScaleInterpolant = null;
- this._mixer._takeBackControlInterpolant(timeScaleInterpolant);
- }
+ this._mixer._takeBackControlInterpolant(timeScaleInterpolant);
+ }
- return this;
- } // Object Accessors
+ return this;
+ } // Object Accessors
- getMixer() {
- return this._mixer;
- }
+ getMixer() {
+ return this._mixer;
+ }
- getClip() {
- return this._clip;
- }
+ getClip() {
+ return this._clip;
+ }
- getRoot() {
- return this._localRoot || this._mixer._root;
- } // Interna
+ getRoot() {
+ return this._localRoot || this._mixer._root;
+ } // Interna
- _update(time, deltaTime, timeDirection, accuIndex) {
- // called by the mixer
- if (!this.enabled) {
- // call ._updateWeight() to update ._effectiveWeight
- this._updateWeight(time);
+ _update(time, deltaTime, timeDirection, accuIndex) {
+ // called by the mixer
+ if (!this.enabled) {
+ // call ._updateWeight() to update ._effectiveWeight
+ this._updateWeight(time);
- return;
- }
+ return;
+ }
- const startTime = this._startTime;
+ const startTime = this._startTime;
- if (startTime !== null) {
- // check for scheduled start of action
- const timeRunning = (time - startTime) * timeDirection;
+ if (startTime !== null) {
+ // check for scheduled start of action
+ const timeRunning = (time - startTime) * timeDirection;
- if (timeRunning < 0 || timeDirection === 0) {
- return; // yet to come / don't decide when delta = 0
- } // start
+ if (timeRunning < 0 || timeDirection === 0) {
+ return; // yet to come / don't decide when delta = 0
+ } // start
- this._startTime = null; // unschedule
+ this._startTime = null; // unschedule
- deltaTime = timeDirection * timeRunning;
- } // apply time scale and advance time
+ deltaTime = timeDirection * timeRunning;
+ } // apply time scale and advance time
- deltaTime *= this._updateTimeScale(time);
+ deltaTime *= this._updateTimeScale(time);
- const clipTime = this._updateTime(deltaTime); // note: _updateTime may disable the action resulting in
- // an effective weight of 0
+ const clipTime = this._updateTime(deltaTime); // note: _updateTime may disable the action resulting in
+ // an effective weight of 0
- const weight = this._updateWeight(time);
+ const weight = this._updateWeight(time);
- if (weight > 0) {
- const interpolants = this._interpolants;
- const propertyMixers = this._propertyBindings;
+ if (weight > 0) {
+ const interpolants = this._interpolants;
+ const propertyMixers = this._propertyBindings;
- switch (this.blendMode) {
- case AdditiveAnimationBlendMode:
- for (let j = 0, m = interpolants.length; j !== m; ++j) {
- interpolants[j].evaluate(clipTime);
- propertyMixers[j].accumulateAdditive(weight);
- }
+ switch (this.blendMode) {
+ case AdditiveAnimationBlendMode:
+ for (let j = 0, m = interpolants.length; j !== m; ++j) {
+ interpolants[j].evaluate(clipTime);
+ propertyMixers[j].accumulateAdditive(weight);
+ }
- break;
+ break;
- case NormalAnimationBlendMode:
- default:
- for (let j = 0, m = interpolants.length; j !== m; ++j) {
- interpolants[j].evaluate(clipTime);
- propertyMixers[j].accumulate(accuIndex, weight);
- }
+ case NormalAnimationBlendMode:
+ default:
+ for (let j = 0, m = interpolants.length; j !== m; ++j) {
+ interpolants[j].evaluate(clipTime);
+ propertyMixers[j].accumulate(accuIndex, weight);
+ }
+ }
+ }
}
- }
- }
- _updateWeight(time) {
- let weight = 0;
+ _updateWeight(time) {
+ let weight = 0;
- if (this.enabled) {
- weight = this.weight;
- const interpolant = this._weightInterpolant;
+ if (this.enabled) {
+ weight = this.weight;
+ const interpolant = this._weightInterpolant;
- if (interpolant !== null) {
- const interpolantValue = interpolant.evaluate(time)[0];
- weight *= interpolantValue;
+ if (interpolant !== null) {
+ const interpolantValue = interpolant.evaluate(time)[0];
+ weight *= interpolantValue;
- if (time > interpolant.parameterPositions[1]) {
- this.stopFading();
+ if (time > interpolant.parameterPositions[1]) {
+ this.stopFading();
- if (interpolantValue === 0) {
- // faded out, disable
- this.enabled = false;
+ if (interpolantValue === 0) {
+ // faded out, disable
+ this.enabled = false;
+ }
+ }
}
}
- }
- }
- this._effectiveWeight = weight;
- return weight;
- }
+ this._effectiveWeight = weight;
+ return weight;
+ }
- _updateTimeScale(time) {
- let timeScale = 0;
+ _updateTimeScale(time) {
+ let timeScale = 0;
- if (!this.paused) {
- timeScale = this.timeScale;
- const interpolant = this._timeScaleInterpolant;
+ if (!this.paused) {
+ timeScale = this.timeScale;
+ const interpolant = this._timeScaleInterpolant;
- if (interpolant !== null) {
- const interpolantValue = interpolant.evaluate(time)[0];
- timeScale *= interpolantValue;
+ if (interpolant !== null) {
+ const interpolantValue = interpolant.evaluate(time)[0];
+ timeScale *= interpolantValue;
- if (time > interpolant.parameterPositions[1]) {
- this.stopWarping();
+ if (time > interpolant.parameterPositions[1]) {
+ this.stopWarping();
- if (timeScale === 0) {
- // motion has halted, pause
- this.paused = true;
- } else {
- // warp done - apply final time scale
- this.timeScale = timeScale;
+ if (timeScale === 0) {
+ // motion has halted, pause
+ this.paused = true;
+ } else {
+ // warp done - apply final time scale
+ this.timeScale = timeScale;
+ }
+ }
}
}
+
+ this._effectiveTimeScale = timeScale;
+ return timeScale;
}
- }
- this._effectiveTimeScale = timeScale;
- return timeScale;
- }
+ _updateTime(deltaTime) {
+ const duration = this._clip.duration;
+ const loop = this.loop;
+ let time = this.time + deltaTime;
+ let loopCount = this._loopCount;
+ const pingPong = loop === LoopPingPong;
- _updateTime(deltaTime) {
- const duration = this._clip.duration;
- const loop = this.loop;
- let time = this.time + deltaTime;
- let loopCount = this._loopCount;
- const pingPong = loop === LoopPingPong;
+ if (deltaTime === 0) {
+ if (loopCount === -1) return time;
+ return pingPong && (loopCount & 1) === 1 ? duration - time : time;
+ }
- if (deltaTime === 0) {
- if (loopCount === -1) return time;
- return pingPong && (loopCount & 1) === 1 ? duration - time : time;
- }
+ if (loop === LoopOnce) {
+ if (loopCount === -1) {
+ // just started
+ this._loopCount = 0;
- if (loop === LoopOnce) {
- if (loopCount === -1) {
- // just started
- this._loopCount = 0;
+ this._setEndings(true, true, false);
+ }
- this._setEndings(true, true, false);
- }
+ handle_stop: {
+ if (time >= duration) {
+ time = duration;
+ } else if (time < 0) {
+ time = 0;
+ } else {
+ this.time = time;
+ break handle_stop;
+ }
- handle_stop: {
- if (time >= duration) {
- time = duration;
- } else if (time < 0) {
- time = 0;
+ if (this.clampWhenFinished) this.paused = true; else this.enabled = false;
+ this.time = time;
+
+ this._mixer.dispatchEvent({
+ type: 'finished',
+ action: this,
+ direction: deltaTime < 0 ? -1 : 1
+ });
+ }
} else {
- this.time = time;
- break handle_stop;
- }
+ // repetitive Repeat or PingPong
+ if (loopCount === -1) {
+ // just started
+ if (deltaTime >= 0) {
+ loopCount = 0;
- if (this.clampWhenFinished) this.paused = true;else this.enabled = false;
- this.time = time;
+ this._setEndings(true, this.repetitions === 0, pingPong);
+ } else {
+ // when looping in reverse direction, the initial
+ // transition through zero counts as a repetition,
+ // so leave loopCount at -1
+ this._setEndings(this.repetitions === 0, true, pingPong);
+ }
+ }
- this._mixer.dispatchEvent({
- type: 'finished',
- action: this,
- direction: deltaTime < 0 ? -1 : 1
- });
- }
- } else {
- // repetitive Repeat or PingPong
- if (loopCount === -1) {
- // just started
- if (deltaTime >= 0) {
- loopCount = 0;
+ if (time >= duration || time < 0) {
+ // wrap around
+ const loopDelta = Math.floor(time / duration); // signed
- this._setEndings(true, this.repetitions === 0, pingPong);
- } else {
- // when looping in reverse direction, the initial
- // transition through zero counts as a repetition,
- // so leave loopCount at -1
- this._setEndings(this.repetitions === 0, true, pingPong);
- }
- }
+ time -= duration * loopDelta;
+ loopCount += Math.abs(loopDelta);
+ const pending = this.repetitions - loopCount;
- if (time >= duration || time < 0) {
- // wrap around
- const loopDelta = Math.floor(time / duration); // signed
+ if (pending <= 0) {
+ // have to stop (switch state, clamp time, fire event)
+ if (this.clampWhenFinished) this.paused = true; else this.enabled = false;
+ time = deltaTime > 0 ? duration : 0;
+ this.time = time;
- time -= duration * loopDelta;
- loopCount += Math.abs(loopDelta);
- const pending = this.repetitions - loopCount;
+ this._mixer.dispatchEvent({
+ type: 'finished',
+ action: this,
+ direction: deltaTime > 0 ? 1 : -1
+ });
+ } else {
+ // keep running
+ if (pending === 1) {
+ // entering the last round
+ const atStart = deltaTime < 0;
- if (pending <= 0) {
- // have to stop (switch state, clamp time, fire event)
- if (this.clampWhenFinished) this.paused = true;else this.enabled = false;
- time = deltaTime > 0 ? duration : 0;
- this.time = time;
+ this._setEndings(atStart, !atStart, pingPong);
+ } else {
+ this._setEndings(false, false, pingPong);
+ }
- this._mixer.dispatchEvent({
- type: 'finished',
- action: this,
- direction: deltaTime > 0 ? 1 : -1
- });
- } else {
- // keep running
- if (pending === 1) {
- // entering the last round
- const atStart = deltaTime < 0;
+ this._loopCount = loopCount;
+ this.time = time;
- this._setEndings(atStart, !atStart, pingPong);
+ this._mixer.dispatchEvent({
+ type: 'loop',
+ action: this,
+ loopDelta: loopDelta
+ });
+ }
} else {
- this._setEndings(false, false, pingPong);
+ this.time = time;
}
- this._loopCount = loopCount;
- this.time = time;
-
- this._mixer.dispatchEvent({
- type: 'loop',
- action: this,
- loopDelta: loopDelta
- });
+ if (pingPong && (loopCount & 1) === 1) {
+ // invert time for the "pong round"
+ return duration - time;
+ }
}
- } else {
- this.time = time;
- }
- if (pingPong && (loopCount & 1) === 1) {
- // invert time for the "pong round"
- return duration - time;
+ return time;
}
- }
- return time;
- }
-
- _setEndings(atStart, atEnd, pingPong) {
- const settings = this._interpolantSettings;
+ _setEndings(atStart, atEnd, pingPong) {
+ const settings = this._interpolantSettings;
- if (pingPong) {
- settings.endingStart = ZeroSlopeEnding;
- settings.endingEnd = ZeroSlopeEnding;
- } else {
- // assuming for LoopOnce atStart == atEnd == true
- if (atStart) {
- settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding;
- } else {
- settings.endingStart = WrapAroundEnding;
- }
+ if (pingPong) {
+ settings.endingStart = ZeroSlopeEnding;
+ settings.endingEnd = ZeroSlopeEnding;
+ } else {
+ // assuming for LoopOnce atStart == atEnd == true
+ if (atStart) {
+ settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding;
+ } else {
+ settings.endingStart = WrapAroundEnding;
+ }
- if (atEnd) {
- settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding;
- } else {
- settings.endingEnd = WrapAroundEnding;
+ if (atEnd) {
+ settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding;
+ } else {
+ settings.endingEnd = WrapAroundEnding;
+ }
+ }
}
- }
- }
- _scheduleFading(duration, weightNow, weightThen) {
- const mixer = this._mixer,
+ _scheduleFading(duration, weightNow, weightThen) {
+ const mixer = this._mixer,
now = mixer.time;
- let interpolant = this._weightInterpolant;
+ let interpolant = this._weightInterpolant;
- if (interpolant === null) {
- interpolant = mixer._lendControlInterpolant();
- this._weightInterpolant = interpolant;
- }
+ if (interpolant === null) {
+ interpolant = mixer._lendControlInterpolant();
+ this._weightInterpolant = interpolant;
+ }
- const times = interpolant.parameterPositions,
+ const times = interpolant.parameterPositions,
values = interpolant.sampleValues;
- times[0] = now;
- values[0] = weightNow;
- times[1] = now + duration;
- values[1] = weightThen;
- return this;
- }
+ times[0] = now;
+ values[0] = weightNow;
+ times[1] = now + duration;
+ values[1] = weightThen;
+ return this;
+ }
- }
+ }
- class AnimationMixer extends EventDispatcher {
- constructor(root) {
- super();
- this._root = root;
+ class AnimationMixer extends EventDispatcher {
+ constructor(root) {
+ super();
+ this._root = root;
- this._initMemoryManager();
+ this._initMemoryManager();
- this._accuIndex = 0;
- this.time = 0;
- this.timeScale = 1.0;
- }
+ this._accuIndex = 0;
+ this.time = 0;
+ this.timeScale = 1.0;
+ }
- _bindAction(action, prototypeAction) {
- const root = action._localRoot || this._root,
+ _bindAction(action, prototypeAction) {
+ const root = action._localRoot || this._root,
tracks = action._clip.tracks,
nTracks = tracks.length,
bindings = action._propertyBindings,
interpolants = action._interpolants,
rootUuid = root.uuid,
bindingsByRoot = this._bindingsByRootAndName;
- let bindingsByName = bindingsByRoot[rootUuid];
+ let bindingsByName = bindingsByRoot[rootUuid];
- if (bindingsByName === undefined) {
- bindingsByName = {};
- bindingsByRoot[rootUuid] = bindingsByName;
- }
+ if (bindingsByName === undefined) {
+ bindingsByName = {};
+ bindingsByRoot[rootUuid] = bindingsByName;
+ }
- for (let i = 0; i !== nTracks; ++i) {
- const track = tracks[i],
+ for (let i = 0; i !== nTracks; ++i) {
+ const track = tracks[i],
trackName = track.name;
- let binding = bindingsByName[trackName];
+ let binding = bindingsByName[trackName];
- if (binding !== undefined) {
- bindings[i] = binding;
- } else {
- binding = bindings[i];
+ if (binding !== undefined) {
+ bindings[i] = binding;
+ } else {
+ binding = bindings[i];
+
+ if (binding !== undefined) {
+ // existing binding, make sure the cache knows
+ if (binding._cacheIndex === null) {
+ ++binding.referenceCount;
- if (binding !== undefined) {
- // existing binding, make sure the cache knows
- if (binding._cacheIndex === null) {
+ this._addInactiveBinding(binding, rootUuid, trackName);
+ }
+
+ continue;
+ }
+
+ const path = prototypeAction && prototypeAction._propertyBindings[i].binding.parsedPath;
+ binding = new PropertyMixer(PropertyBinding.create(root, trackName, path), track.ValueTypeName, track.getValueSize());
++binding.referenceCount;
this._addInactiveBinding(binding, rootUuid, trackName);
+
+ bindings[i] = binding;
}
- continue;
+ interpolants[i].resultBuffer = binding.buffer;
}
+ }
- const path = prototypeAction && prototypeAction._propertyBindings[i].binding.parsedPath;
- binding = new PropertyMixer(PropertyBinding.create(root, trackName, path), track.ValueTypeName, track.getValueSize());
- ++binding.referenceCount;
-
- this._addInactiveBinding(binding, rootUuid, trackName);
-
- bindings[i] = binding;
- }
-
- interpolants[i].resultBuffer = binding.buffer;
- }
- }
-
- _activateAction(action) {
- if (!this._isActiveAction(action)) {
- if (action._cacheIndex === null) {
- // this action has been forgotten by the cache, but the user
- // appears to be still using it -> rebind
- const rootUuid = (action._localRoot || this._root).uuid,
+ _activateAction(action) {
+ if (!this._isActiveAction(action)) {
+ if (action._cacheIndex === null) {
+ // this action has been forgotten by the cache, but the user
+ // appears to be still using it -> rebind
+ const rootUuid = (action._localRoot || this._root).uuid,
clipUuid = action._clip.uuid,
actionsForClip = this._actionsByClip[clipUuid];
- this._bindAction(action, actionsForClip && actionsForClip.knownActions[0]);
+ this._bindAction(action, actionsForClip && actionsForClip.knownActions[0]);
- this._addInactiveAction(action, clipUuid, rootUuid);
- }
+ this._addInactiveAction(action, clipUuid, rootUuid);
+ }
- const bindings = action._propertyBindings; // increment reference counts / sort out state
+ const bindings = action._propertyBindings; // increment reference counts / sort out state
- for (let i = 0, n = bindings.length; i !== n; ++i) {
- const binding = bindings[i];
+ for (let i = 0, n = bindings.length; i !== n; ++i) {
+ const binding = bindings[i];
- if (binding.useCount++ === 0) {
- this._lendBinding(binding);
+ if (binding.useCount++ === 0) {
+ this._lendBinding(binding);
- binding.saveOriginalState();
+ binding.saveOriginalState();
+ }
+ }
+
+ this._lendAction(action);
}
}
- this._lendAction(action);
- }
- }
+ _deactivateAction(action) {
+ if (this._isActiveAction(action)) {
+ const bindings = action._propertyBindings; // decrement reference counts / sort out state
- _deactivateAction(action) {
- if (this._isActiveAction(action)) {
- const bindings = action._propertyBindings; // decrement reference counts / sort out state
+ for (let i = 0, n = bindings.length; i !== n; ++i) {
+ const binding = bindings[i];
- for (let i = 0, n = bindings.length; i !== n; ++i) {
- const binding = bindings[i];
+ if (--binding.useCount === 0) {
+ binding.restoreOriginalState();
- if (--binding.useCount === 0) {
- binding.restoreOriginalState();
+ this._takeBackBinding(binding);
+ }
+ }
- this._takeBackBinding(binding);
+ this._takeBackAction(action);
}
- }
-
- this._takeBackAction(action);
- }
- } // Memory manager
+ } // Memory manager
- _initMemoryManager() {
- this._actions = []; // 'nActiveActions' followed by inactive ones
+ _initMemoryManager() {
+ this._actions = []; // 'nActiveActions' followed by inactive ones
- this._nActiveActions = 0;
- this._actionsByClip = {}; // inside:
- // {
- // knownActions: Array< AnimationAction > - used as prototypes
- // actionByRoot: AnimationAction - lookup
- // }
+ this._nActiveActions = 0;
+ this._actionsByClip = {}; // inside:
+ // {
+ // knownActions: Array< AnimationAction > - used as prototypes
+ // actionByRoot: AnimationAction - lookup
+ // }
- this._bindings = []; // 'nActiveBindings' followed by inactive ones
+ this._bindings = []; // 'nActiveBindings' followed by inactive ones
- this._nActiveBindings = 0;
- this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >
+ this._nActiveBindings = 0;
+ this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >
- this._controlInterpolants = []; // same game as above
+ this._controlInterpolants = []; // same game as above
- this._nActiveControlInterpolants = 0;
- const scope = this;
- this.stats = {
- actions: {
- get total() {
- return scope._actions.length;
- },
+ this._nActiveControlInterpolants = 0;
+ const scope = this;
+ this.stats = {
+ actions: {
+ get total() {
+ return scope._actions.length;
+ },
- get inUse() {
- return scope._nActiveActions;
- }
+ get inUse() {
+ return scope._nActiveActions;
+ }
- },
- bindings: {
- get total() {
- return scope._bindings.length;
- },
+ },
+ bindings: {
+ get total() {
+ return scope._bindings.length;
+ },
- get inUse() {
- return scope._nActiveBindings;
- }
+ get inUse() {
+ return scope._nActiveBindings;
+ }
- },
- controlInterpolants: {
- get total() {
- return scope._controlInterpolants.length;
- },
+ },
+ controlInterpolants: {
+ get total() {
+ return scope._controlInterpolants.length;
+ },
- get inUse() {
- return scope._nActiveControlInterpolants;
- }
+ get inUse() {
+ return scope._nActiveControlInterpolants;
+ }
- }
- };
- } // Memory management for AnimationAction objects
+ }
+ };
+ } // Memory management for AnimationAction objects
- _isActiveAction(action) {
- const index = action._cacheIndex;
- return index !== null && index < this._nActiveActions;
- }
+ _isActiveAction(action) {
+ const index = action._cacheIndex;
+ return index !== null && index < this._nActiveActions;
+ }
- _addInactiveAction(action, clipUuid, rootUuid) {
- const actions = this._actions,
+ _addInactiveAction(action, clipUuid, rootUuid) {
+ const actions = this._actions,
actionsByClip = this._actionsByClip;
- let actionsForClip = actionsByClip[clipUuid];
+ let actionsForClip = actionsByClip[clipUuid];
- if (actionsForClip === undefined) {
- actionsForClip = {
- knownActions: [action],
- actionByRoot: {}
- };
- action._byClipCacheIndex = 0;
- actionsByClip[clipUuid] = actionsForClip;
- } else {
- const knownActions = actionsForClip.knownActions;
- action._byClipCacheIndex = knownActions.length;
- knownActions.push(action);
- }
+ if (actionsForClip === undefined) {
+ actionsForClip = {
+ knownActions: [action],
+ actionByRoot: {}
+ };
+ action._byClipCacheIndex = 0;
+ actionsByClip[clipUuid] = actionsForClip;
+ } else {
+ const knownActions = actionsForClip.knownActions;
+ action._byClipCacheIndex = knownActions.length;
+ knownActions.push(action);
+ }
- action._cacheIndex = actions.length;
- actions.push(action);
- actionsForClip.actionByRoot[rootUuid] = action;
- }
+ action._cacheIndex = actions.length;
+ actions.push(action);
+ actionsForClip.actionByRoot[rootUuid] = action;
+ }
- _removeInactiveAction(action) {
- const actions = this._actions,
+ _removeInactiveAction(action) {
+ const actions = this._actions,
lastInactiveAction = actions[actions.length - 1],
cacheIndex = action._cacheIndex;
- lastInactiveAction._cacheIndex = cacheIndex;
- actions[cacheIndex] = lastInactiveAction;
- actions.pop();
- action._cacheIndex = null;
- const clipUuid = action._clip.uuid,
+ lastInactiveAction._cacheIndex = cacheIndex;
+ actions[cacheIndex] = lastInactiveAction;
+ actions.pop();
+ action._cacheIndex = null;
+ const clipUuid = action._clip.uuid,
actionsByClip = this._actionsByClip,
actionsForClip = actionsByClip[clipUuid],
knownActionsForClip = actionsForClip.knownActions,
lastKnownAction = knownActionsForClip[knownActionsForClip.length - 1],
byClipCacheIndex = action._byClipCacheIndex;
- lastKnownAction._byClipCacheIndex = byClipCacheIndex;
- knownActionsForClip[byClipCacheIndex] = lastKnownAction;
- knownActionsForClip.pop();
- action._byClipCacheIndex = null;
- const actionByRoot = actionsForClip.actionByRoot,
+ lastKnownAction._byClipCacheIndex = byClipCacheIndex;
+ knownActionsForClip[byClipCacheIndex] = lastKnownAction;
+ knownActionsForClip.pop();
+ action._byClipCacheIndex = null;
+ const actionByRoot = actionsForClip.actionByRoot,
rootUuid = (action._localRoot || this._root).uuid;
- delete actionByRoot[rootUuid];
+ delete actionByRoot[rootUuid];
- if (knownActionsForClip.length === 0) {
- delete actionsByClip[clipUuid];
- }
+ if (knownActionsForClip.length === 0) {
+ delete actionsByClip[clipUuid];
+ }
- this._removeInactiveBindingsForAction(action);
- }
+ this._removeInactiveBindingsForAction(action);
+ }
- _removeInactiveBindingsForAction(action) {
- const bindings = action._propertyBindings;
+ _removeInactiveBindingsForAction(action) {
+ const bindings = action._propertyBindings;
- for (let i = 0, n = bindings.length; i !== n; ++i) {
- const binding = bindings[i];
+ for (let i = 0, n = bindings.length; i !== n; ++i) {
+ const binding = bindings[i];
- if (--binding.referenceCount === 0) {
- this._removeInactiveBinding(binding);
+ if (--binding.referenceCount === 0) {
+ this._removeInactiveBinding(binding);
+ }
+ }
}
- }
- }
- _lendAction(action) {
- // [ active actions | inactive actions ]
- // [ active actions >| inactive actions ]
- // s a
- // <-swap->
- // a s
- const actions = this._actions,
+ _lendAction(action) {
+ // [ active actions | inactive actions ]
+ // [ active actions >| inactive actions ]
+ // s a
+ // <-swap->
+ // a s
+ const actions = this._actions,
prevIndex = action._cacheIndex,
lastActiveIndex = this._nActiveActions++,
firstInactiveAction = actions[lastActiveIndex];
- action._cacheIndex = lastActiveIndex;
- actions[lastActiveIndex] = action;
- firstInactiveAction._cacheIndex = prevIndex;
- actions[prevIndex] = firstInactiveAction;
- }
-
- _takeBackAction(action) {
- // [ active actions | inactive actions ]
- // [ active actions |< inactive actions ]
- // a s
- // <-swap->
- // s a
- const actions = this._actions,
+ action._cacheIndex = lastActiveIndex;
+ actions[lastActiveIndex] = action;
+ firstInactiveAction._cacheIndex = prevIndex;
+ actions[prevIndex] = firstInactiveAction;
+ }
+
+ _takeBackAction(action) {
+ // [ active actions | inactive actions ]
+ // [ active actions |< inactive actions ]
+ // a s
+ // <-swap->
+ // s a
+ const actions = this._actions,
prevIndex = action._cacheIndex,
firstInactiveIndex = --this._nActiveActions,
lastActiveAction = actions[firstInactiveIndex];
- action._cacheIndex = firstInactiveIndex;
- actions[firstInactiveIndex] = action;
- lastActiveAction._cacheIndex = prevIndex;
- actions[prevIndex] = lastActiveAction;
- } // Memory management for PropertyMixer objects
+ action._cacheIndex = firstInactiveIndex;
+ actions[firstInactiveIndex] = action;
+ lastActiveAction._cacheIndex = prevIndex;
+ actions[prevIndex] = lastActiveAction;
+ } // Memory management for PropertyMixer objects
- _addInactiveBinding(binding, rootUuid, trackName) {
- const bindingsByRoot = this._bindingsByRootAndName,
+ _addInactiveBinding(binding, rootUuid, trackName) {
+ const bindingsByRoot = this._bindingsByRootAndName,
bindings = this._bindings;
- let bindingByName = bindingsByRoot[rootUuid];
+ let bindingByName = bindingsByRoot[rootUuid];
- if (bindingByName === undefined) {
- bindingByName = {};
- bindingsByRoot[rootUuid] = bindingByName;
- }
+ if (bindingByName === undefined) {
+ bindingByName = {};
+ bindingsByRoot[rootUuid] = bindingByName;
+ }
- bindingByName[trackName] = binding;
- binding._cacheIndex = bindings.length;
- bindings.push(binding);
- }
+ bindingByName[trackName] = binding;
+ binding._cacheIndex = bindings.length;
+ bindings.push(binding);
+ }
- _removeInactiveBinding(binding) {
- const bindings = this._bindings,
+ _removeInactiveBinding(binding) {
+ const bindings = this._bindings,
propBinding = binding.binding,
rootUuid = propBinding.rootNode.uuid,
trackName = propBinding.path,
bindingByName = bindingsByRoot[rootUuid],
lastInactiveBinding = bindings[bindings.length - 1],
cacheIndex = binding._cacheIndex;
- lastInactiveBinding._cacheIndex = cacheIndex;
- bindings[cacheIndex] = lastInactiveBinding;
- bindings.pop();
- delete bindingByName[trackName];
+ lastInactiveBinding._cacheIndex = cacheIndex;
+ bindings[cacheIndex] = lastInactiveBinding;
+ bindings.pop();
+ delete bindingByName[trackName];
- if (Object.keys(bindingByName).length === 0) {
- delete bindingsByRoot[rootUuid];
- }
- }
+ if (Object.keys(bindingByName).length === 0) {
+ delete bindingsByRoot[rootUuid];
+ }
+ }
- _lendBinding(binding) {
- const bindings = this._bindings,
+ _lendBinding(binding) {
+ const bindings = this._bindings,
prevIndex = binding._cacheIndex,
lastActiveIndex = this._nActiveBindings++,
firstInactiveBinding = bindings[lastActiveIndex];
- binding._cacheIndex = lastActiveIndex;
- bindings[lastActiveIndex] = binding;
- firstInactiveBinding._cacheIndex = prevIndex;
- bindings[prevIndex] = firstInactiveBinding;
- }
+ binding._cacheIndex = lastActiveIndex;
+ bindings[lastActiveIndex] = binding;
+ firstInactiveBinding._cacheIndex = prevIndex;
+ bindings[prevIndex] = firstInactiveBinding;
+ }
- _takeBackBinding(binding) {
- const bindings = this._bindings,
+ _takeBackBinding(binding) {
+ const bindings = this._bindings,
prevIndex = binding._cacheIndex,
firstInactiveIndex = --this._nActiveBindings,
lastActiveBinding = bindings[firstInactiveIndex];
- binding._cacheIndex = firstInactiveIndex;
- bindings[firstInactiveIndex] = binding;
- lastActiveBinding._cacheIndex = prevIndex;
- bindings[prevIndex] = lastActiveBinding;
- } // Memory management of Interpolants for weight and time scale
+ binding._cacheIndex = firstInactiveIndex;
+ bindings[firstInactiveIndex] = binding;
+ lastActiveBinding._cacheIndex = prevIndex;
+ bindings[prevIndex] = lastActiveBinding;
+ } // Memory management of Interpolants for weight and time scale
- _lendControlInterpolant() {
- const interpolants = this._controlInterpolants,
+ _lendControlInterpolant() {
+ const interpolants = this._controlInterpolants,
lastActiveIndex = this._nActiveControlInterpolants++;
- let interpolant = interpolants[lastActiveIndex];
+ let interpolant = interpolants[lastActiveIndex];
- if (interpolant === undefined) {
- interpolant = new LinearInterpolant(new Float32Array(2), new Float32Array(2), 1, this._controlInterpolantsResultBuffer);
- interpolant.__cacheIndex = lastActiveIndex;
- interpolants[lastActiveIndex] = interpolant;
- }
+ if (interpolant === undefined) {
+ interpolant = new LinearInterpolant(new Float32Array(2), new Float32Array(2), 1, this._controlInterpolantsResultBuffer);
+ interpolant.__cacheIndex = lastActiveIndex;
+ interpolants[lastActiveIndex] = interpolant;
+ }
- return interpolant;
- }
+ return interpolant;
+ }
- _takeBackControlInterpolant(interpolant) {
- const interpolants = this._controlInterpolants,
+ _takeBackControlInterpolant(interpolant) {
+ const interpolants = this._controlInterpolants,
prevIndex = interpolant.__cacheIndex,
firstInactiveIndex = --this._nActiveControlInterpolants,
lastActiveInterpolant = interpolants[firstInactiveIndex];
- interpolant.__cacheIndex = firstInactiveIndex;
- interpolants[firstInactiveIndex] = interpolant;
- lastActiveInterpolant.__cacheIndex = prevIndex;
- interpolants[prevIndex] = lastActiveInterpolant;
- } // return an action for a clip optionally using a custom root target
- // object (this method allocates a lot of dynamic memory in case a
- // previously unknown clip/root combination is specified)
+ interpolant.__cacheIndex = firstInactiveIndex;
+ interpolants[firstInactiveIndex] = interpolant;
+ lastActiveInterpolant.__cacheIndex = prevIndex;
+ interpolants[prevIndex] = lastActiveInterpolant;
+ } // return an action for a clip optionally using a custom root target
+ // object (this method allocates a lot of dynamic memory in case a
+ // previously unknown clip/root combination is specified)
- clipAction(clip, optionalRoot, blendMode) {
- const root = optionalRoot || this._root,
+ clipAction(clip, optionalRoot, blendMode) {
+ const root = optionalRoot || this._root,
rootUuid = root.uuid;
- let clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip;
- const clipUuid = clipObject !== null ? clipObject.uuid : clip;
- const actionsForClip = this._actionsByClip[clipUuid];
- let prototypeAction = null;
-
- if (blendMode === undefined) {
- if (clipObject !== null) {
- blendMode = clipObject.blendMode;
- } else {
- blendMode = NormalAnimationBlendMode;
- }
- }
+ let clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip;
+ const clipUuid = clipObject !== null ? clipObject.uuid : clip;
+ const actionsForClip = this._actionsByClip[clipUuid];
+ let prototypeAction = null;
+
+ if (blendMode === undefined) {
+ if (clipObject !== null) {
+ blendMode = clipObject.blendMode;
+ } else {
+ blendMode = NormalAnimationBlendMode;
+ }
+ }
- if (actionsForClip !== undefined) {
- const existingAction = actionsForClip.actionByRoot[rootUuid];
+ if (actionsForClip !== undefined) {
+ const existingAction = actionsForClip.actionByRoot[rootUuid];
- if (existingAction !== undefined && existingAction.blendMode === blendMode) {
- return existingAction;
- } // we know the clip, so we don't have to parse all
- // the bindings again but can just copy
+ if (existingAction !== undefined && existingAction.blendMode === blendMode) {
+ return existingAction;
+ } // we know the clip, so we don't have to parse all
+ // the bindings again but can just copy
- prototypeAction = actionsForClip.knownActions[0]; // also, take the clip from the prototype action
+ prototypeAction = actionsForClip.knownActions[0]; // also, take the clip from the prototype action
- if (clipObject === null) clipObject = prototypeAction._clip;
- } // clip must be known when specified via string
+ if (clipObject === null) clipObject = prototypeAction._clip;
+ } // clip must be known when specified via string
- if (clipObject === null) return null; // allocate all resources required to run it
+ if (clipObject === null) return null; // allocate all resources required to run it
- const newAction = new AnimationAction(this, clipObject, optionalRoot, blendMode);
+ const newAction = new AnimationAction(this, clipObject, optionalRoot, blendMode);
- this._bindAction(newAction, prototypeAction); // and make the action known to the memory manager
+ this._bindAction(newAction, prototypeAction); // and make the action known to the memory manager
- this._addInactiveAction(newAction, clipUuid, rootUuid);
+ this._addInactiveAction(newAction, clipUuid, rootUuid);
- return newAction;
- } // get an existing action
+ return newAction;
+ } // get an existing action
- existingAction(clip, optionalRoot) {
- const root = optionalRoot || this._root,
+ existingAction(clip, optionalRoot) {
+ const root = optionalRoot || this._root,
rootUuid = root.uuid,
clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip,
clipUuid = clipObject ? clipObject.uuid : clip,
actionsForClip = this._actionsByClip[clipUuid];
- if (actionsForClip !== undefined) {
- return actionsForClip.actionByRoot[rootUuid] || null;
- }
+ if (actionsForClip !== undefined) {
+ return actionsForClip.actionByRoot[rootUuid] || null;
+ }
- return null;
- } // deactivates all previously scheduled actions
+ return null;
+ } // deactivates all previously scheduled actions
- stopAllAction() {
- const actions = this._actions,
+ stopAllAction() {
+ const actions = this._actions,
nActions = this._nActiveActions;
- for (let i = nActions - 1; i >= 0; --i) {
- actions[i].stop();
- }
+ for (let i = nActions - 1; i >= 0; --i) {
+ actions[i].stop();
+ }
- return this;
- } // advance the time and update apply the animation
+ return this;
+ } // advance the time and update apply the animation
- update(deltaTime) {
- deltaTime *= this.timeScale;
- const actions = this._actions,
+ update(deltaTime) {
+ deltaTime *= this.timeScale;
+ const actions = this._actions,
nActions = this._nActiveActions,
time = this.time += deltaTime,
timeDirection = Math.sign(deltaTime),
accuIndex = this._accuIndex ^= 1; // run active actions
- for (let i = 0; i !== nActions; ++i) {
- const action = actions[i];
+ for (let i = 0; i !== nActions; ++i) {
+ const action = actions[i];
- action._update(time, deltaTime, timeDirection, accuIndex);
- } // update scene graph
+ action._update(time, deltaTime, timeDirection, accuIndex);
+ } // update scene graph
- const bindings = this._bindings,
+ const bindings = this._bindings,
nBindings = this._nActiveBindings;
- for (let i = 0; i !== nBindings; ++i) {
- bindings[i].apply(accuIndex);
- }
+ for (let i = 0; i !== nBindings; ++i) {
+ bindings[i].apply(accuIndex);
+ }
- return this;
- } // Allows you to seek to a specific time in an animation.
+ return this;
+ } // Allows you to seek to a specific time in an animation.
- setTime(timeInSeconds) {
- this.time = 0; // Zero out time attribute for AnimationMixer object;
+ setTime(timeInSeconds) {
+ this.time = 0; // Zero out time attribute for AnimationMixer object;
- for (let i = 0; i < this._actions.length; i++) {
- this._actions[i].time = 0; // Zero out time attribute for all associated AnimationAction objects.
- }
+ for (let i = 0; i < this._actions.length; i++) {
+ this._actions[i].time = 0; // Zero out time attribute for all associated AnimationAction objects.
+ }
- return this.update(timeInSeconds); // Update used to set exact time. Returns "this" AnimationMixer object.
- } // return this mixer's root target object
+ return this.update(timeInSeconds); // Update used to set exact time. Returns "this" AnimationMixer object.
+ } // return this mixer's root target object
- getRoot() {
- return this._root;
- } // free all resources specific to a particular clip
+ getRoot() {
+ return this._root;
+ } // free all resources specific to a particular clip
- uncacheClip(clip) {
- const actions = this._actions,
+ uncacheClip(clip) {
+ const actions = this._actions,
clipUuid = clip.uuid,
actionsByClip = this._actionsByClip,
actionsForClip = actionsByClip[clipUuid];
- if (actionsForClip !== undefined) {
- // note: just calling _removeInactiveAction would mess up the
- // iteration state and also require updating the state we can
- // just throw away
- const actionsToRemove = actionsForClip.knownActions;
+ if (actionsForClip !== undefined) {
+ // note: just calling _removeInactiveAction would mess up the
+ // iteration state and also require updating the state we can
+ // just throw away
+ const actionsToRemove = actionsForClip.knownActions;
- for (let i = 0, n = actionsToRemove.length; i !== n; ++i) {
- const action = actionsToRemove[i];
+ for (let i = 0, n = actionsToRemove.length; i !== n; ++i) {
+ const action = actionsToRemove[i];
- this._deactivateAction(action);
+ this._deactivateAction(action);
- const cacheIndex = action._cacheIndex,
+ const cacheIndex = action._cacheIndex,
lastInactiveAction = actions[actions.length - 1];
- action._cacheIndex = null;
- action._byClipCacheIndex = null;
- lastInactiveAction._cacheIndex = cacheIndex;
- actions[cacheIndex] = lastInactiveAction;
- actions.pop();
+ action._cacheIndex = null;
+ action._byClipCacheIndex = null;
+ lastInactiveAction._cacheIndex = cacheIndex;
+ actions[cacheIndex] = lastInactiveAction;
+ actions.pop();
- this._removeInactiveBindingsForAction(action);
- }
+ this._removeInactiveBindingsForAction(action);
+ }
- delete actionsByClip[clipUuid];
- }
- } // free all resources specific to a particular root target object
+ delete actionsByClip[clipUuid];
+ }
+ } // free all resources specific to a particular root target object
- uncacheRoot(root) {
- const rootUuid = root.uuid,
+ uncacheRoot(root) {
+ const rootUuid = root.uuid,
actionsByClip = this._actionsByClip;
- for (const clipUuid in actionsByClip) {
- const actionByRoot = actionsByClip[clipUuid].actionByRoot,
+ for (const clipUuid in actionsByClip) {
+ const actionByRoot = actionsByClip[clipUuid].actionByRoot,
action = actionByRoot[rootUuid];
- if (action !== undefined) {
- this._deactivateAction(action);
+ if (action !== undefined) {
+ this._deactivateAction(action);
- this._removeInactiveAction(action);
- }
- }
+ this._removeInactiveAction(action);
+ }
+ }
- const bindingsByRoot = this._bindingsByRootAndName,
+ const bindingsByRoot = this._bindingsByRootAndName,
bindingByName = bindingsByRoot[rootUuid];
- if (bindingByName !== undefined) {
- for (const trackName in bindingByName) {
- const binding = bindingByName[trackName];
- binding.restoreOriginalState();
+ if (bindingByName !== undefined) {
+ for (const trackName in bindingByName) {
+ const binding = bindingByName[trackName];
+ binding.restoreOriginalState();
- this._removeInactiveBinding(binding);
- }
- }
- } // remove a targeted clip from the cache
+ this._removeInactiveBinding(binding);
+ }
+ }
+ } // remove a targeted clip from the cache
- uncacheAction(clip, optionalRoot) {
- const action = this.existingAction(clip, optionalRoot);
+ uncacheAction(clip, optionalRoot) {
+ const action = this.existingAction(clip, optionalRoot);
- if (action !== null) {
- this._deactivateAction(action);
+ if (action !== null) {
+ this._deactivateAction(action);
+
+ this._removeInactiveAction(action);
+ }
+ }
- this._removeInactiveAction(action);
}
- }
- }
+ AnimationMixer.prototype._controlInterpolantsResultBuffer = new Float32Array(1);
+
+ class Uniform {
+ constructor(value) {
+ if (typeof value === 'string') {
+ console.warn('THREE.Uniform: Type parameter is no longer needed.');
+ value = arguments[1];
+ }
+
+ this.value = value;
+ }
- AnimationMixer.prototype._controlInterpolantsResultBuffer = new Float32Array(1);
+ clone() {
+ return new Uniform(this.value.clone === undefined ? this.value : this.value.clone());
+ }
- class Uniform {
- constructor(value) {
- if (typeof value === 'string') {
- console.warn('THREE.Uniform: Type parameter is no longer needed.');
- value = arguments[1];
}
- this.value = value;
- }
+ class InstancedInterleavedBuffer extends InterleavedBuffer {
+ constructor(array, stride, meshPerAttribute = 1) {
+ super(array, stride);
+ this.meshPerAttribute = meshPerAttribute;
+ }
- clone() {
- return new Uniform(this.value.clone === undefined ? this.value : this.value.clone());
- }
+ copy(source) {
+ super.copy(source);
+ this.meshPerAttribute = source.meshPerAttribute;
+ return this;
+ }
- }
+ clone(data) {
+ const ib = super.clone(data);
+ ib.meshPerAttribute = this.meshPerAttribute;
+ return ib;
+ }
- class InstancedInterleavedBuffer extends InterleavedBuffer {
- constructor(array, stride, meshPerAttribute = 1) {
- super(array, stride);
- this.meshPerAttribute = meshPerAttribute;
- }
+ toJSON(data) {
+ const json = super.toJSON(data);
+ json.isInstancedInterleavedBuffer = true;
+ json.meshPerAttribute = this.meshPerAttribute;
+ return json;
+ }
- copy(source) {
- super.copy(source);
- this.meshPerAttribute = source.meshPerAttribute;
- return this;
- }
+ }
- clone(data) {
- const ib = super.clone(data);
- ib.meshPerAttribute = this.meshPerAttribute;
- return ib;
- }
+ InstancedInterleavedBuffer.prototype.isInstancedInterleavedBuffer = true;
- toJSON(data) {
- const json = super.toJSON(data);
- json.isInstancedInterleavedBuffer = true;
- json.meshPerAttribute = this.meshPerAttribute;
- return json;
- }
+ class GLBufferAttribute {
+ constructor(buffer, type, itemSize, elementSize, count) {
+ this.buffer = buffer;
+ this.type = type;
+ this.itemSize = itemSize;
+ this.elementSize = elementSize;
+ this.count = count;
+ this.version = 0;
+ }
- }
+ set needsUpdate(value) {
+ if (value === true) this.version++;
+ }
- InstancedInterleavedBuffer.prototype.isInstancedInterleavedBuffer = true;
+ setBuffer(buffer) {
+ this.buffer = buffer;
+ return this;
+ }
- class GLBufferAttribute {
- constructor(buffer, type, itemSize, elementSize, count) {
- this.buffer = buffer;
- this.type = type;
- this.itemSize = itemSize;
- this.elementSize = elementSize;
- this.count = count;
- this.version = 0;
- }
+ setType(type, elementSize) {
+ this.type = type;
+ this.elementSize = elementSize;
+ return this;
+ }
- set needsUpdate(value) {
- if (value === true) this.version++;
- }
+ setItemSize(itemSize) {
+ this.itemSize = itemSize;
+ return this;
+ }
- setBuffer(buffer) {
- this.buffer = buffer;
- return this;
- }
+ setCount(count) {
+ this.count = count;
+ return this;
+ }
- setType(type, elementSize) {
- this.type = type;
- this.elementSize = elementSize;
- return this;
- }
+ }
- setItemSize(itemSize) {
- this.itemSize = itemSize;
- return this;
- }
+ GLBufferAttribute.prototype.isGLBufferAttribute = true;
- setCount(count) {
- this.count = count;
- return this;
- }
+ class Raycaster {
+ constructor(origin, direction, near = 0, far = Infinity) {
+ this.ray = new Ray(origin, direction); // direction is assumed to be normalized (for accurate distance calculations)
- }
+ this.near = near;
+ this.far = far;
+ this.camera = null;
+ this.layers = new Layers();
+ this.params = {
+ Mesh: {},
+ Line: {
+ threshold: 1
+ },
+ LOD: {},
+ Points: {
+ threshold: 1
+ },
+ Sprite: {}
+ };
+ }
- GLBufferAttribute.prototype.isGLBufferAttribute = true;
+ set(origin, direction) {
+ // direction is assumed to be normalized (for accurate distance calculations)
+ this.ray.set(origin, direction);
+ }
- class Raycaster {
- constructor(origin, direction, near = 0, far = Infinity) {
- this.ray = new Ray(origin, direction); // direction is assumed to be normalized (for accurate distance calculations)
+ setFromCamera(coords, camera) {
+ if (camera && camera.isPerspectiveCamera) {
+ this.ray.origin.setFromMatrixPosition(camera.matrixWorld);
+ this.ray.direction.set(coords.x, coords.y, 0.5).unproject(camera).sub(this.ray.origin).normalize();
+ this.camera = camera;
+ } else if (camera && camera.isOrthographicCamera) {
+ this.ray.origin.set(coords.x, coords.y, (camera.near + camera.far) / (camera.near - camera.far)).unproject(camera); // set origin in plane of camera
- this.near = near;
- this.far = far;
- this.camera = null;
- this.layers = new Layers();
- this.params = {
- Mesh: {},
- Line: {
- threshold: 1
- },
- LOD: {},
- Points: {
- threshold: 1
- },
- Sprite: {}
- };
- }
+ this.ray.direction.set(0, 0, -1).transformDirection(camera.matrixWorld);
+ this.camera = camera;
+ } else {
+ console.error('THREE.Raycaster: Unsupported camera type: ' + camera.type);
+ }
+ }
- set(origin, direction) {
- // direction is assumed to be normalized (for accurate distance calculations)
- this.ray.set(origin, direction);
- }
+ intersectObject(object, recursive = false, intersects = []) {
+ intersectObject(object, this, intersects, recursive);
+ intersects.sort(ascSort);
+ return intersects;
+ }
- setFromCamera(coords, camera) {
- if (camera && camera.isPerspectiveCamera) {
- this.ray.origin.setFromMatrixPosition(camera.matrixWorld);
- this.ray.direction.set(coords.x, coords.y, 0.5).unproject(camera).sub(this.ray.origin).normalize();
- this.camera = camera;
- } else if (camera && camera.isOrthographicCamera) {
- this.ray.origin.set(coords.x, coords.y, (camera.near + camera.far) / (camera.near - camera.far)).unproject(camera); // set origin in plane of camera
+ intersectObjects(objects, recursive = false, intersects = []) {
+ for (let i = 0, l = objects.length; i < l; i++) {
+ intersectObject(objects[i], this, intersects, recursive);
+ }
- this.ray.direction.set(0, 0, -1).transformDirection(camera.matrixWorld);
- this.camera = camera;
- } else {
- console.error('THREE.Raycaster: Unsupported camera type: ' + camera.type);
- }
- }
+ intersects.sort(ascSort);
+ return intersects;
+ }
- intersectObject(object, recursive = false, intersects = []) {
- intersectObject(object, this, intersects, recursive);
- intersects.sort(ascSort);
- return intersects;
- }
+ }
- intersectObjects(objects, recursive = false, intersects = []) {
- for (let i = 0, l = objects.length; i < l; i++) {
- intersectObject(objects[i], this, intersects, recursive);
+ function ascSort(a, b) {
+ return a.distance - b.distance;
}
- intersects.sort(ascSort);
- return intersects;
- }
+ function intersectObject(object, raycaster, intersects, recursive) {
+ if (object.layers.test(raycaster.layers)) {
+ object.raycast(raycaster, intersects);
+ }
- }
+ if (recursive === true) {
+ const children = object.children;
- function ascSort(a, b) {
- return a.distance - b.distance;
- }
+ for (let i = 0, l = children.length; i < l; i++) {
+ intersectObject(children[i], raycaster, intersects, true);
+ }
+ }
+ }
- function intersectObject(object, raycaster, intersects, recursive) {
- if (object.layers.test(raycaster.layers)) {
- object.raycast(raycaster, intersects);
- }
+ /**
+ * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
+ *
+ * The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up.
+ * The azimuthal angle (theta) is measured from the positive z-axis.
+ */
- if (recursive === true) {
- const children = object.children;
+ class Spherical {
+ constructor(radius = 1, phi = 0, theta = 0) {
+ this.radius = radius;
+ this.phi = phi; // polar angle
- for (let i = 0, l = children.length; i < l; i++) {
- intersectObject(children[i], raycaster, intersects, true);
- }
- }
- }
+ this.theta = theta; // azimuthal angle
- /**
- * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
- *
- * The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up.
- * The azimuthal angle (theta) is measured from the positive z-axis.
- */
+ return this;
+ }
- class Spherical {
- constructor(radius = 1, phi = 0, theta = 0) {
- this.radius = radius;
- this.phi = phi; // polar angle
+ set(radius, phi, theta) {
+ this.radius = radius;
+ this.phi = phi;
+ this.theta = theta;
+ return this;
+ }
- this.theta = theta; // azimuthal angle
+ copy(other) {
+ this.radius = other.radius;
+ this.phi = other.phi;
+ this.theta = other.theta;
+ return this;
+ } // restrict phi to be betwee EPS and PI-EPS
- return this;
- }
- set(radius, phi, theta) {
- this.radius = radius;
- this.phi = phi;
- this.theta = theta;
- return this;
- }
+ makeSafe() {
+ const EPS = 0.000001;
+ this.phi = Math.max(EPS, Math.min(Math.PI - EPS, this.phi));
+ return this;
+ }
- copy(other) {
- this.radius = other.radius;
- this.phi = other.phi;
- this.theta = other.theta;
- return this;
- } // restrict phi to be betwee EPS and PI-EPS
+ setFromVector3(v) {
+ return this.setFromCartesianCoords(v.x, v.y, v.z);
+ }
+ setFromCartesianCoords(x, y, z) {
+ this.radius = Math.sqrt(x * x + y * y + z * z);
- makeSafe() {
- const EPS = 0.000001;
- this.phi = Math.max(EPS, Math.min(Math.PI - EPS, this.phi));
- return this;
- }
+ if (this.radius === 0) {
+ this.theta = 0;
+ this.phi = 0;
+ } else {
+ this.theta = Math.atan2(x, z);
+ this.phi = Math.acos(clamp(y / this.radius, -1, 1));
+ }
- setFromVector3(v) {
- return this.setFromCartesianCoords(v.x, v.y, v.z);
- }
+ return this;
+ }
- setFromCartesianCoords(x, y, z) {
- this.radius = Math.sqrt(x * x + y * y + z * z);
+ clone() {
+ return new this.constructor().copy(this);
+ }
- if (this.radius === 0) {
- this.theta = 0;
- this.phi = 0;
- } else {
- this.theta = Math.atan2(x, z);
- this.phi = Math.acos(clamp(y / this.radius, -1, 1));
}
- return this;
- }
+ /**
+ * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system
+ */
+ class Cylindrical {
+ constructor(radius = 1, theta = 0, y = 0) {
+ this.radius = radius; // distance from the origin to a point in the x-z plane
- clone() {
- return new this.constructor().copy(this);
- }
+ this.theta = theta; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis
- }
+ this.y = y; // height above the x-z plane
- /**
- * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system
- */
- class Cylindrical {
- constructor(radius = 1, theta = 0, y = 0) {
- this.radius = radius; // distance from the origin to a point in the x-z plane
+ return this;
+ }
- this.theta = theta; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis
+ set(radius, theta, y) {
+ this.radius = radius;
+ this.theta = theta;
+ this.y = y;
+ return this;
+ }
- this.y = y; // height above the x-z plane
+ copy(other) {
+ this.radius = other.radius;
+ this.theta = other.theta;
+ this.y = other.y;
+ return this;
+ }
- return this;
- }
+ setFromVector3(v) {
+ return this.setFromCartesianCoords(v.x, v.y, v.z);
+ }
- set(radius, theta, y) {
- this.radius = radius;
- this.theta = theta;
- this.y = y;
- return this;
- }
+ setFromCartesianCoords(x, y, z) {
+ this.radius = Math.sqrt(x * x + z * z);
+ this.theta = Math.atan2(x, z);
+ this.y = y;
+ return this;
+ }
- copy(other) {
- this.radius = other.radius;
- this.theta = other.theta;
- this.y = other.y;
- return this;
- }
+ clone() {
+ return new this.constructor().copy(this);
+ }
- setFromVector3(v) {
- return this.setFromCartesianCoords(v.x, v.y, v.z);
- }
+ }
- setFromCartesianCoords(x, y, z) {
- this.radius = Math.sqrt(x * x + z * z);
- this.theta = Math.atan2(x, z);
- this.y = y;
- return this;
- }
+ const _vector$4 = /*@__PURE__*/new Vector2();
- clone() {
- return new this.constructor().copy(this);
- }
+ class Box2 {
+ constructor(min = new Vector2(+Infinity, +Infinity), max = new Vector2(-Infinity, -Infinity)) {
+ this.min = min;
+ this.max = max;
+ }
- }
+ set(min, max) {
+ this.min.copy(min);
+ this.max.copy(max);
+ return this;
+ }
- const _vector$4 = /*@__PURE__*/new Vector2();
+ setFromPoints(points) {
+ this.makeEmpty();
- class Box2 {
- constructor(min = new Vector2(+Infinity, +Infinity), max = new Vector2(-Infinity, -Infinity)) {
- this.min = min;
- this.max = max;
- }
+ for (let i = 0, il = points.length; i < il; i++) {
+ this.expandByPoint(points[i]);
+ }
- set(min, max) {
- this.min.copy(min);
- this.max.copy(max);
- return this;
- }
+ return this;
+ }
- setFromPoints(points) {
- this.makeEmpty();
+ setFromCenterAndSize(center, size) {
+ const halfSize = _vector$4.copy(size).multiplyScalar(0.5);
- for (let i = 0, il = points.length; i < il; i++) {
- this.expandByPoint(points[i]);
- }
+ this.min.copy(center).sub(halfSize);
+ this.max.copy(center).add(halfSize);
+ return this;
+ }
- return this;
- }
+ clone() {
+ return new this.constructor().copy(this);
+ }
- setFromCenterAndSize(center, size) {
- const halfSize = _vector$4.copy(size).multiplyScalar(0.5);
+ copy(box) {
+ this.min.copy(box.min);
+ this.max.copy(box.max);
+ return this;
+ }
- this.min.copy(center).sub(halfSize);
- this.max.copy(center).add(halfSize);
- return this;
- }
+ makeEmpty() {
+ this.min.x = this.min.y = +Infinity;
+ this.max.x = this.max.y = -Infinity;
+ return this;
+ }
- clone() {
- return new this.constructor().copy(this);
- }
+ isEmpty() {
+ // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
+ return this.max.x < this.min.x || this.max.y < this.min.y;
+ }
- copy(box) {
- this.min.copy(box.min);
- this.max.copy(box.max);
- return this;
- }
+ getCenter(target) {
+ return this.isEmpty() ? target.set(0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5);
+ }
- makeEmpty() {
- this.min.x = this.min.y = +Infinity;
- this.max.x = this.max.y = -Infinity;
- return this;
- }
+ getSize(target) {
+ return this.isEmpty() ? target.set(0, 0) : target.subVectors(this.max, this.min);
+ }
- isEmpty() {
- // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
- return this.max.x < this.min.x || this.max.y < this.min.y;
- }
+ expandByPoint(point) {
+ this.min.min(point);
+ this.max.max(point);
+ return this;
+ }
- getCenter(target) {
- return this.isEmpty() ? target.set(0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5);
- }
+ expandByVector(vector) {
+ this.min.sub(vector);
+ this.max.add(vector);
+ return this;
+ }
- getSize(target) {
- return this.isEmpty() ? target.set(0, 0) : target.subVectors(this.max, this.min);
- }
+ expandByScalar(scalar) {
+ this.min.addScalar(-scalar);
+ this.max.addScalar(scalar);
+ return this;
+ }
- expandByPoint(point) {
- this.min.min(point);
- this.max.max(point);
- return this;
- }
+ containsPoint(point) {
+ return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ? false : true;
+ }
- expandByVector(vector) {
- this.min.sub(vector);
- this.max.add(vector);
- return this;
- }
+ containsBox(box) {
+ return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y;
+ }
- expandByScalar(scalar) {
- this.min.addScalar(-scalar);
- this.max.addScalar(scalar);
- return this;
- }
+ getParameter(point, target) {
+ // This can potentially have a divide by zero if the box
+ // has a size dimension of 0.
+ return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y));
+ }
- containsPoint(point) {
- return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ? false : true;
- }
+ intersectsBox(box) {
+ // using 4 splitting planes to rule out intersections
+ return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ? false : true;
+ }
- containsBox(box) {
- return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y;
- }
+ clampPoint(point, target) {
+ return target.copy(point).clamp(this.min, this.max);
+ }
- getParameter(point, target) {
- // This can potentially have a divide by zero if the box
- // has a size dimension of 0.
- return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y));
- }
+ distanceToPoint(point) {
+ const clampedPoint = _vector$4.copy(point).clamp(this.min, this.max);
- intersectsBox(box) {
- // using 4 splitting planes to rule out intersections
- return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ? false : true;
- }
+ return clampedPoint.sub(point).length();
+ }
- clampPoint(point, target) {
- return target.copy(point).clamp(this.min, this.max);
- }
+ intersect(box) {
+ this.min.max(box.min);
+ this.max.min(box.max);
+ return this;
+ }
- distanceToPoint(point) {
- const clampedPoint = _vector$4.copy(point).clamp(this.min, this.max);
+ union(box) {
+ this.min.min(box.min);
+ this.max.max(box.max);
+ return this;
+ }
- return clampedPoint.sub(point).length();
- }
+ translate(offset) {
+ this.min.add(offset);
+ this.max.add(offset);
+ return this;
+ }
- intersect(box) {
- this.min.max(box.min);
- this.max.min(box.max);
- return this;
- }
+ equals(box) {
+ return box.min.equals(this.min) && box.max.equals(this.max);
+ }
- union(box) {
- this.min.min(box.min);
- this.max.max(box.max);
- return this;
- }
+ }
- translate(offset) {
- this.min.add(offset);
- this.max.add(offset);
- return this;
- }
+ Box2.prototype.isBox2 = true;
- equals(box) {
- return box.min.equals(this.min) && box.max.equals(this.max);
- }
+ const _startP = /*@__PURE__*/new Vector3();
- }
+ const _startEnd = /*@__PURE__*/new Vector3();
- Box2.prototype.isBox2 = true;
+ class Line3 {
+ constructor(start = new Vector3(), end = new Vector3()) {
+ this.start = start;
+ this.end = end;
+ }
- const _startP = /*@__PURE__*/new Vector3();
+ set(start, end) {
+ this.start.copy(start);
+ this.end.copy(end);
+ return this;
+ }
- const _startEnd = /*@__PURE__*/new Vector3();
+ copy(line) {
+ this.start.copy(line.start);
+ this.end.copy(line.end);
+ return this;
+ }
- class Line3 {
- constructor(start = new Vector3(), end = new Vector3()) {
- this.start = start;
- this.end = end;
- }
+ getCenter(target) {
+ return target.addVectors(this.start, this.end).multiplyScalar(0.5);
+ }
- set(start, end) {
- this.start.copy(start);
- this.end.copy(end);
- return this;
- }
+ delta(target) {
+ return target.subVectors(this.end, this.start);
+ }
- copy(line) {
- this.start.copy(line.start);
- this.end.copy(line.end);
- return this;
- }
+ distanceSq() {
+ return this.start.distanceToSquared(this.end);
+ }
- getCenter(target) {
- return target.addVectors(this.start, this.end).multiplyScalar(0.5);
- }
+ distance() {
+ return this.start.distanceTo(this.end);
+ }
- delta(target) {
- return target.subVectors(this.end, this.start);
- }
+ at(t, target) {
+ return this.delta(target).multiplyScalar(t).add(this.start);
+ }
- distanceSq() {
- return this.start.distanceToSquared(this.end);
- }
+ closestPointToPointParameter(point, clampToLine) {
+ _startP.subVectors(point, this.start);
- distance() {
- return this.start.distanceTo(this.end);
- }
+ _startEnd.subVectors(this.end, this.start);
- at(t, target) {
- return this.delta(target).multiplyScalar(t).add(this.start);
- }
+ const startEnd2 = _startEnd.dot(_startEnd);
- closestPointToPointParameter(point, clampToLine) {
- _startP.subVectors(point, this.start);
+ const startEnd_startP = _startEnd.dot(_startP);
- _startEnd.subVectors(this.end, this.start);
+ let t = startEnd_startP / startEnd2;
- const startEnd2 = _startEnd.dot(_startEnd);
+ if (clampToLine) {
+ t = clamp(t, 0, 1);
+ }
- const startEnd_startP = _startEnd.dot(_startP);
+ return t;
+ }
- let t = startEnd_startP / startEnd2;
+ closestPointToPoint(point, clampToLine, target) {
+ const t = this.closestPointToPointParameter(point, clampToLine);
+ return this.delta(target).multiplyScalar(t).add(this.start);
+ }
- if (clampToLine) {
- t = clamp(t, 0, 1);
- }
+ applyMatrix4(matrix) {
+ this.start.applyMatrix4(matrix);
+ this.end.applyMatrix4(matrix);
+ return this;
+ }
- return t;
- }
+ equals(line) {
+ return line.start.equals(this.start) && line.end.equals(this.end);
+ }
- closestPointToPoint(point, clampToLine, target) {
- const t = this.closestPointToPointParameter(point, clampToLine);
- return this.delta(target).multiplyScalar(t).add(this.start);
- }
+ clone() {
+ return new this.constructor().copy(this);
+ }
- applyMatrix4(matrix) {
- this.start.applyMatrix4(matrix);
- this.end.applyMatrix4(matrix);
- return this;
- }
+ }
- equals(line) {
- return line.start.equals(this.start) && line.end.equals(this.end);
- }
+ class ImmediateRenderObject extends Object3D {
+ constructor(material) {
+ super();
+ this.material = material;
- clone() {
- return new this.constructor().copy(this);
- }
+ this.render = function () {
+ };
- }
+ this.hasPositions = false;
+ this.hasNormals = false;
+ this.hasColors = false;
+ this.hasUvs = false;
+ this.positionArray = null;
+ this.normalArray = null;
+ this.colorArray = null;
+ this.uvArray = null;
+ this.count = 0;
+ }
- class ImmediateRenderObject extends Object3D {
- constructor(material) {
- super();
- this.material = material;
-
- this.render = function () {};
-
- this.hasPositions = false;
- this.hasNormals = false;
- this.hasColors = false;
- this.hasUvs = false;
- this.positionArray = null;
- this.normalArray = null;
- this.colorArray = null;
- this.uvArray = null;
- this.count = 0;
- }
+ }
- }
+ ImmediateRenderObject.prototype.isImmediateRenderObject = true;
- ImmediateRenderObject.prototype.isImmediateRenderObject = true;
+ const _vector$3 = /*@__PURE__*/new Vector3();
- const _vector$3 = /*@__PURE__*/new Vector3();
+ class SpotLightHelper extends Object3D {
+ constructor(light, color) {
+ super();
+ this.light = light;
+ this.light.updateMatrixWorld();
+ this.matrix = light.matrixWorld;
+ this.matrixAutoUpdate = false;
+ this.color = color;
+ const geometry = new BufferGeometry();
+ const positions = [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, 1];
- class SpotLightHelper extends Object3D {
- constructor(light, color) {
- super();
- this.light = light;
- this.light.updateMatrixWorld();
- this.matrix = light.matrixWorld;
- this.matrixAutoUpdate = false;
- this.color = color;
- const geometry = new BufferGeometry();
- const positions = [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, 1];
+ for (let i = 0, j = 1, l = 32; i < l; i++, j++) {
+ const p1 = i / l * Math.PI * 2;
+ const p2 = j / l * Math.PI * 2;
+ positions.push(Math.cos(p1), Math.sin(p1), 1, Math.cos(p2), Math.sin(p2), 1);
+ }
- for (let i = 0, j = 1, l = 32; i < l; i++, j++) {
- const p1 = i / l * Math.PI * 2;
- const p2 = j / l * Math.PI * 2;
- positions.push(Math.cos(p1), Math.sin(p1), 1, Math.cos(p2), Math.sin(p2), 1);
- }
+ geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
+ const material = new LineBasicMaterial({
+ fog: false,
+ toneMapped: false
+ });
+ this.cone = new LineSegments(geometry, material);
+ this.add(this.cone);
+ this.update();
+ }
- geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
- const material = new LineBasicMaterial({
- fog: false,
- toneMapped: false
- });
- this.cone = new LineSegments(geometry, material);
- this.add(this.cone);
- this.update();
- }
+ dispose() {
+ this.cone.geometry.dispose();
+ this.cone.material.dispose();
+ }
- dispose() {
- this.cone.geometry.dispose();
- this.cone.material.dispose();
- }
+ update() {
+ this.light.updateMatrixWorld();
+ const coneLength = this.light.distance ? this.light.distance : 1000;
+ const coneWidth = coneLength * Math.tan(this.light.angle);
+ this.cone.scale.set(coneWidth, coneWidth, coneLength);
- update() {
- this.light.updateMatrixWorld();
- const coneLength = this.light.distance ? this.light.distance : 1000;
- const coneWidth = coneLength * Math.tan(this.light.angle);
- this.cone.scale.set(coneWidth, coneWidth, coneLength);
+ _vector$3.setFromMatrixPosition(this.light.target.matrixWorld);
- _vector$3.setFromMatrixPosition(this.light.target.matrixWorld);
+ this.cone.lookAt(_vector$3);
- this.cone.lookAt(_vector$3);
+ if (this.color !== undefined) {
+ this.cone.material.color.set(this.color);
+ } else {
+ this.cone.material.color.copy(this.light.color);
+ }
+ }
- if (this.color !== undefined) {
- this.cone.material.color.set(this.color);
- } else {
- this.cone.material.color.copy(this.light.color);
}
- }
- }
+ const _vector$2 = /*@__PURE__*/new Vector3();
- const _vector$2 = /*@__PURE__*/new Vector3();
+ const _boneMatrix = /*@__PURE__*/new Matrix4();
- const _boneMatrix = /*@__PURE__*/new Matrix4();
+ const _matrixWorldInv = /*@__PURE__*/new Matrix4();
- const _matrixWorldInv = /*@__PURE__*/new Matrix4();
+ class SkeletonHelper extends LineSegments {
+ constructor(object) {
+ const bones = getBoneList(object);
+ const geometry = new BufferGeometry();
+ const vertices = [];
+ const colors = [];
+ const color1 = new Color(0, 0, 1);
+ const color2 = new Color(0, 1, 0);
- class SkeletonHelper extends LineSegments {
- constructor(object) {
- const bones = getBoneList(object);
- const geometry = new BufferGeometry();
- const vertices = [];
- const colors = [];
- const color1 = new Color(0, 0, 1);
- const color2 = new Color(0, 1, 0);
+ for (let i = 0; i < bones.length; i++) {
+ const bone = bones[i];
- for (let i = 0; i < bones.length; i++) {
- const bone = bones[i];
+ if (bone.parent && bone.parent.isBone) {
+ vertices.push(0, 0, 0);
+ vertices.push(0, 0, 0);
+ colors.push(color1.r, color1.g, color1.b);
+ colors.push(color2.r, color2.g, color2.b);
+ }
+ }
- if (bone.parent && bone.parent.isBone) {
- vertices.push(0, 0, 0);
- vertices.push(0, 0, 0);
- colors.push(color1.r, color1.g, color1.b);
- colors.push(color2.r, color2.g, color2.b);
+ geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
+ const material = new LineBasicMaterial({
+ vertexColors: true,
+ depthTest: false,
+ depthWrite: false,
+ toneMapped: false,
+ transparent: true
+ });
+ super(geometry, material);
+ this.type = 'SkeletonHelper';
+ this.isSkeletonHelper = true;
+ this.root = object;
+ this.bones = bones;
+ this.matrix = object.matrixWorld;
+ this.matrixAutoUpdate = false;
}
- }
- geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
- const material = new LineBasicMaterial({
- vertexColors: true,
- depthTest: false,
- depthWrite: false,
- toneMapped: false,
- transparent: true
- });
- super(geometry, material);
- this.type = 'SkeletonHelper';
- this.isSkeletonHelper = true;
- this.root = object;
- this.bones = bones;
- this.matrix = object.matrixWorld;
- this.matrixAutoUpdate = false;
- }
+ updateMatrixWorld(force) {
+ const bones = this.bones;
+ const geometry = this.geometry;
+ const position = geometry.getAttribute('position');
- updateMatrixWorld(force) {
- const bones = this.bones;
- const geometry = this.geometry;
- const position = geometry.getAttribute('position');
+ _matrixWorldInv.copy(this.root.matrixWorld).invert();
- _matrixWorldInv.copy(this.root.matrixWorld).invert();
+ for (let i = 0, j = 0; i < bones.length; i++) {
+ const bone = bones[i];
- for (let i = 0, j = 0; i < bones.length; i++) {
- const bone = bones[i];
+ if (bone.parent && bone.parent.isBone) {
+ _boneMatrix.multiplyMatrices(_matrixWorldInv, bone.matrixWorld);
- if (bone.parent && bone.parent.isBone) {
- _boneMatrix.multiplyMatrices(_matrixWorldInv, bone.matrixWorld);
+ _vector$2.setFromMatrixPosition(_boneMatrix);
- _vector$2.setFromMatrixPosition(_boneMatrix);
+ position.setXYZ(j, _vector$2.x, _vector$2.y, _vector$2.z);
- position.setXYZ(j, _vector$2.x, _vector$2.y, _vector$2.z);
+ _boneMatrix.multiplyMatrices(_matrixWorldInv, bone.parent.matrixWorld);
- _boneMatrix.multiplyMatrices(_matrixWorldInv, bone.parent.matrixWorld);
+ _vector$2.setFromMatrixPosition(_boneMatrix);
- _vector$2.setFromMatrixPosition(_boneMatrix);
+ position.setXYZ(j + 1, _vector$2.x, _vector$2.y, _vector$2.z);
+ j += 2;
+ }
+ }
- position.setXYZ(j + 1, _vector$2.x, _vector$2.y, _vector$2.z);
- j += 2;
+ geometry.getAttribute('position').needsUpdate = true;
+ super.updateMatrixWorld(force);
}
- }
-
- geometry.getAttribute('position').needsUpdate = true;
- super.updateMatrixWorld(force);
- }
- }
+ }
- function getBoneList(object) {
- const boneList = [];
+ function getBoneList(object) {
+ const boneList = [];
- if (object && object.isBone) {
- boneList.push(object);
- }
+ if (object && object.isBone) {
+ boneList.push(object);
+ }
- for (let i = 0; i < object.children.length; i++) {
- boneList.push.apply(boneList, getBoneList(object.children[i]));
- }
+ for (let i = 0; i < object.children.length; i++) {
+ boneList.push.apply(boneList, getBoneList(object.children[i]));
+ }
- return boneList;
- }
+ return boneList;
+ }
- class PointLightHelper extends Mesh {
- constructor(light, sphereSize, color) {
- const geometry = new SphereGeometry(sphereSize, 4, 2);
- const material = new MeshBasicMaterial({
- wireframe: true,
- fog: false,
- toneMapped: false
- });
- super(geometry, material);
- this.light = light;
- this.light.updateMatrixWorld();
- this.color = color;
- this.type = 'PointLightHelper';
- this.matrix = this.light.matrixWorld;
- this.matrixAutoUpdate = false;
- this.update();
- /*
+ class PointLightHelper extends Mesh {
+ constructor(light, sphereSize, color) {
+ const geometry = new SphereGeometry(sphereSize, 4, 2);
+ const material = new MeshBasicMaterial({
+ wireframe: true,
+ fog: false,
+ toneMapped: false
+ });
+ super(geometry, material);
+ this.light = light;
+ this.light.updateMatrixWorld();
+ this.color = color;
+ this.type = 'PointLightHelper';
+ this.matrix = this.light.matrixWorld;
+ this.matrixAutoUpdate = false;
+ this.update();
+ /*
// TODO: delete this comment?
const distanceGeometry = new THREE.IcosahedronBufferGeometry( 1, 2 );
const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } );
}
this.add( this.lightDistance );
*/
- }
+ }
- dispose() {
- this.geometry.dispose();
- this.material.dispose();
- }
+ dispose() {
+ this.geometry.dispose();
+ this.material.dispose();
+ }
- update() {
- if (this.color !== undefined) {
- this.material.color.set(this.color);
- } else {
- this.material.color.copy(this.light.color);
- }
- /*
+ update() {
+ if (this.color !== undefined) {
+ this.material.color.set(this.color);
+ } else {
+ this.material.color.copy(this.light.color);
+ }
+ /*
const d = this.light.distance;
if ( d === 0.0 ) {
this.lightDistance.visible = false;
}
*/
- }
+ }
- }
+ }
- const _vector$1 = /*@__PURE__*/new Vector3();
-
- const _color1 = /*@__PURE__*/new Color();
-
- const _color2 = /*@__PURE__*/new Color();
-
- class HemisphereLightHelper extends Object3D {
- constructor(light, size, color) {
- super();
- this.light = light;
- this.light.updateMatrixWorld();
- this.matrix = light.matrixWorld;
- this.matrixAutoUpdate = false;
- this.color = color;
- const geometry = new OctahedronGeometry(size);
- geometry.rotateY(Math.PI * 0.5);
- this.material = new MeshBasicMaterial({
- wireframe: true,
- fog: false,
- toneMapped: false
- });
- if (this.color === undefined) this.material.vertexColors = true;
- const position = geometry.getAttribute('position');
- const colors = new Float32Array(position.count * 3);
- geometry.setAttribute('color', new BufferAttribute(colors, 3));
- this.add(new Mesh(geometry, this.material));
- this.update();
- }
+ const _vector$1 = /*@__PURE__*/new Vector3();
- dispose() {
- this.children[0].geometry.dispose();
- this.children[0].material.dispose();
- }
+ const _color1 = /*@__PURE__*/new Color();
- update() {
- const mesh = this.children[0];
+ const _color2 = /*@__PURE__*/new Color();
- if (this.color !== undefined) {
- this.material.color.set(this.color);
- } else {
- const colors = mesh.geometry.getAttribute('color');
+ class HemisphereLightHelper extends Object3D {
+ constructor(light, size, color) {
+ super();
+ this.light = light;
+ this.light.updateMatrixWorld();
+ this.matrix = light.matrixWorld;
+ this.matrixAutoUpdate = false;
+ this.color = color;
+ const geometry = new OctahedronGeometry(size);
+ geometry.rotateY(Math.PI * 0.5);
+ this.material = new MeshBasicMaterial({
+ wireframe: true,
+ fog: false,
+ toneMapped: false
+ });
+ if (this.color === undefined) this.material.vertexColors = true;
+ const position = geometry.getAttribute('position');
+ const colors = new Float32Array(position.count * 3);
+ geometry.setAttribute('color', new BufferAttribute(colors, 3));
+ this.add(new Mesh(geometry, this.material));
+ this.update();
+ }
+
+ dispose() {
+ this.children[0].geometry.dispose();
+ this.children[0].material.dispose();
+ }
+
+ update() {
+ const mesh = this.children[0];
- _color1.copy(this.light.color);
+ if (this.color !== undefined) {
+ this.material.color.set(this.color);
+ } else {
+ const colors = mesh.geometry.getAttribute('color');
+
+ _color1.copy(this.light.color);
+
+ _color2.copy(this.light.groundColor);
+
+ for (let i = 0, l = colors.count; i < l; i++) {
+ const color = i < l / 2 ? _color1 : _color2;
+ colors.setXYZ(i, color.r, color.g, color.b);
+ }
- _color2.copy(this.light.groundColor);
+ colors.needsUpdate = true;
+ }
- for (let i = 0, l = colors.count; i < l; i++) {
- const color = i < l / 2 ? _color1 : _color2;
- colors.setXYZ(i, color.r, color.g, color.b);
+ mesh.lookAt(_vector$1.setFromMatrixPosition(this.light.matrixWorld).negate());
}
- colors.needsUpdate = true;
}
- mesh.lookAt(_vector$1.setFromMatrixPosition(this.light.matrixWorld).negate());
- }
+ class GridHelper extends LineSegments {
+ constructor(size = 10, divisions = 10, color1 = 0x444444, color2 = 0x888888) {
+ color1 = new Color(color1);
+ color2 = new Color(color2);
+ const center = divisions / 2;
+ const step = size / divisions;
+ const halfSize = size / 2;
+ const vertices = [],
+ colors = [];
- }
+ for (let i = 0, j = 0, k = -halfSize; i <= divisions; i++, k += step) {
+ vertices.push(-halfSize, 0, k, halfSize, 0, k);
+ vertices.push(k, 0, -halfSize, k, 0, halfSize);
+ const color = i === center ? color1 : color2;
+ color.toArray(colors, j);
+ j += 3;
+ color.toArray(colors, j);
+ j += 3;
+ color.toArray(colors, j);
+ j += 3;
+ color.toArray(colors, j);
+ j += 3;
+ }
- class GridHelper extends LineSegments {
- constructor(size = 10, divisions = 10, color1 = 0x444444, color2 = 0x888888) {
- color1 = new Color(color1);
- color2 = new Color(color2);
- const center = divisions / 2;
- const step = size / divisions;
- const halfSize = size / 2;
- const vertices = [],
- colors = [];
+ const geometry = new BufferGeometry();
+ geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
+ const material = new LineBasicMaterial({
+ vertexColors: true,
+ toneMapped: false
+ });
+ super(geometry, material);
+ this.type = 'GridHelper';
+ }
+
+ }
+
+ class PolarGridHelper extends LineSegments {
+ constructor(radius = 10, radials = 16, circles = 8, divisions = 64, color1 = 0x444444, color2 = 0x888888) {
+ color1 = new Color(color1);
+ color2 = new Color(color2);
+ const vertices = [];
+ const colors = []; // create the radials
+
+ for (let i = 0; i <= radials; i++) {
+ const v = i / radials * (Math.PI * 2);
+ const x = Math.sin(v) * radius;
+ const z = Math.cos(v) * radius;
+ vertices.push(0, 0, 0);
+ vertices.push(x, 0, z);
+ const color = i & 1 ? color1 : color2;
+ colors.push(color.r, color.g, color.b);
+ colors.push(color.r, color.g, color.b);
+ } // create the circles
+
+
+ for (let i = 0; i <= circles; i++) {
+ const color = i & 1 ? color1 : color2;
+ const r = radius - radius / circles * i;
+
+ for (let j = 0; j < divisions; j++) {
+ // first vertex
+ let v = j / divisions * (Math.PI * 2);
+ let x = Math.sin(v) * r;
+ let z = Math.cos(v) * r;
+ vertices.push(x, 0, z);
+ colors.push(color.r, color.g, color.b); // second vertex
+
+ v = (j + 1) / divisions * (Math.PI * 2);
+ x = Math.sin(v) * r;
+ z = Math.cos(v) * r;
+ vertices.push(x, 0, z);
+ colors.push(color.r, color.g, color.b);
+ }
+ }
- for (let i = 0, j = 0, k = -halfSize; i <= divisions; i++, k += step) {
- vertices.push(-halfSize, 0, k, halfSize, 0, k);
- vertices.push(k, 0, -halfSize, k, 0, halfSize);
- const color = i === center ? color1 : color2;
- color.toArray(colors, j);
- j += 3;
- color.toArray(colors, j);
- j += 3;
- color.toArray(colors, j);
- j += 3;
- color.toArray(colors, j);
- j += 3;
- }
-
- const geometry = new BufferGeometry();
- geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
- const material = new LineBasicMaterial({
- vertexColors: true,
- toneMapped: false
- });
- super(geometry, material);
- this.type = 'GridHelper';
- }
+ const geometry = new BufferGeometry();
+ geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
+ const material = new LineBasicMaterial({
+ vertexColors: true,
+ toneMapped: false
+ });
+ super(geometry, material);
+ this.type = 'PolarGridHelper';
+ }
- }
+ }
- class PolarGridHelper extends LineSegments {
- constructor(radius = 10, radials = 16, circles = 8, divisions = 64, color1 = 0x444444, color2 = 0x888888) {
- color1 = new Color(color1);
- color2 = new Color(color2);
- const vertices = [];
- const colors = []; // create the radials
-
- for (let i = 0; i <= radials; i++) {
- const v = i / radials * (Math.PI * 2);
- const x = Math.sin(v) * radius;
- const z = Math.cos(v) * radius;
- vertices.push(0, 0, 0);
- vertices.push(x, 0, z);
- const color = i & 1 ? color1 : color2;
- colors.push(color.r, color.g, color.b);
- colors.push(color.r, color.g, color.b);
- } // create the circles
-
-
- for (let i = 0; i <= circles; i++) {
- const color = i & 1 ? color1 : color2;
- const r = radius - radius / circles * i;
-
- for (let j = 0; j < divisions; j++) {
- // first vertex
- let v = j / divisions * (Math.PI * 2);
- let x = Math.sin(v) * r;
- let z = Math.cos(v) * r;
- vertices.push(x, 0, z);
- colors.push(color.r, color.g, color.b); // second vertex
-
- v = (j + 1) / divisions * (Math.PI * 2);
- x = Math.sin(v) * r;
- z = Math.cos(v) * r;
- vertices.push(x, 0, z);
- colors.push(color.r, color.g, color.b);
- }
- }
-
- const geometry = new BufferGeometry();
- geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
- const material = new LineBasicMaterial({
- vertexColors: true,
- toneMapped: false
- });
- super(geometry, material);
- this.type = 'PolarGridHelper';
- }
+ const _v1 = /*@__PURE__*/new Vector3();
- }
+ const _v2 = /*@__PURE__*/new Vector3();
- const _v1 = /*@__PURE__*/new Vector3();
-
- const _v2 = /*@__PURE__*/new Vector3();
-
- const _v3 = /*@__PURE__*/new Vector3();
-
- class DirectionalLightHelper extends Object3D {
- constructor(light, size, color) {
- super();
- this.light = light;
- this.light.updateMatrixWorld();
- this.matrix = light.matrixWorld;
- this.matrixAutoUpdate = false;
- this.color = color;
- if (size === undefined) size = 1;
- let geometry = new BufferGeometry();
- geometry.setAttribute('position', new Float32BufferAttribute([-size, size, 0, size, size, 0, size, -size, 0, -size, -size, 0, -size, size, 0], 3));
- const material = new LineBasicMaterial({
- fog: false,
- toneMapped: false
- });
- this.lightPlane = new Line(geometry, material);
- this.add(this.lightPlane);
- geometry = new BufferGeometry();
- geometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 0, 1], 3));
- this.targetLine = new Line(geometry, material);
- this.add(this.targetLine);
- this.update();
- }
+ const _v3 = /*@__PURE__*/new Vector3();
- dispose() {
- this.lightPlane.geometry.dispose();
- this.lightPlane.material.dispose();
- this.targetLine.geometry.dispose();
- this.targetLine.material.dispose();
- }
+ class DirectionalLightHelper extends Object3D {
+ constructor(light, size, color) {
+ super();
+ this.light = light;
+ this.light.updateMatrixWorld();
+ this.matrix = light.matrixWorld;
+ this.matrixAutoUpdate = false;
+ this.color = color;
+ if (size === undefined) size = 1;
+ let geometry = new BufferGeometry();
+ geometry.setAttribute('position', new Float32BufferAttribute([-size, size, 0, size, size, 0, size, -size, 0, -size, -size, 0, -size, size, 0], 3));
+ const material = new LineBasicMaterial({
+ fog: false,
+ toneMapped: false
+ });
+ this.lightPlane = new Line(geometry, material);
+ this.add(this.lightPlane);
+ geometry = new BufferGeometry();
+ geometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 0, 1], 3));
+ this.targetLine = new Line(geometry, material);
+ this.add(this.targetLine);
+ this.update();
+ }
- update() {
- _v1.setFromMatrixPosition(this.light.matrixWorld);
+ dispose() {
+ this.lightPlane.geometry.dispose();
+ this.lightPlane.material.dispose();
+ this.targetLine.geometry.dispose();
+ this.targetLine.material.dispose();
+ }
- _v2.setFromMatrixPosition(this.light.target.matrixWorld);
+ update() {
+ _v1.setFromMatrixPosition(this.light.matrixWorld);
- _v3.subVectors(_v2, _v1);
+ _v2.setFromMatrixPosition(this.light.target.matrixWorld);
- this.lightPlane.lookAt(_v2);
+ _v3.subVectors(_v2, _v1);
+
+ this.lightPlane.lookAt(_v2);
+
+ if (this.color !== undefined) {
+ this.lightPlane.material.color.set(this.color);
+ this.targetLine.material.color.set(this.color);
+ } else {
+ this.lightPlane.material.color.copy(this.light.color);
+ this.targetLine.material.color.copy(this.light.color);
+ }
+
+ this.targetLine.lookAt(_v2);
+ this.targetLine.scale.z = _v3.length();
+ }
- if (this.color !== undefined) {
- this.lightPlane.material.color.set(this.color);
- this.targetLine.material.color.set(this.color);
- } else {
- this.lightPlane.material.color.copy(this.light.color);
- this.targetLine.material.color.copy(this.light.color);
}
- this.targetLine.lookAt(_v2);
- this.targetLine.scale.z = _v3.length();
- }
+ const _vector = /*@__PURE__*/new Vector3();
- }
+ const _camera = /*@__PURE__*/new Camera();
+
+ /**
+ * - shows frustum, line of sight and up of the camera
+ * - suitable for fast updates
+ * - based on frustum visualization in lightgl.js shadowmap example
+ * http://evanw.github.com/lightgl.js/tests/shadowmap.html
+ */
- const _vector = /*@__PURE__*/new Vector3();
- const _camera = /*@__PURE__*/new Camera();
- /**
- * - shows frustum, line of sight and up of the camera
- * - suitable for fast updates
- * - based on frustum visualization in lightgl.js shadowmap example
- * http://evanw.github.com/lightgl.js/tests/shadowmap.html
- */
+ class CameraHelper extends LineSegments {
+ constructor(camera) {
+ const geometry = new BufferGeometry();
+ const material = new LineBasicMaterial({
+ color: 0xffffff,
+ vertexColors: true,
+ toneMapped: false
+ });
+ const vertices = [];
+ const colors = [];
+ const pointMap = {}; // colors
+
+ const colorFrustum = new Color(0xffaa00);
+ const colorCone = new Color(0xff0000);
+ const colorUp = new Color(0x00aaff);
+ const colorTarget = new Color(0xffffff);
+ const colorCross = new Color(0x333333); // near
+
+ addLine('n1', 'n2', colorFrustum);
+ addLine('n2', 'n4', colorFrustum);
+ addLine('n4', 'n3', colorFrustum);
+ addLine('n3', 'n1', colorFrustum); // far
+
+ addLine('f1', 'f2', colorFrustum);
+ addLine('f2', 'f4', colorFrustum);
+ addLine('f4', 'f3', colorFrustum);
+ addLine('f3', 'f1', colorFrustum); // sides
+
+ addLine('n1', 'f1', colorFrustum);
+ addLine('n2', 'f2', colorFrustum);
+ addLine('n3', 'f3', colorFrustum);
+ addLine('n4', 'f4', colorFrustum); // cone
+
+ addLine('p', 'n1', colorCone);
+ addLine('p', 'n2', colorCone);
+ addLine('p', 'n3', colorCone);
+ addLine('p', 'n4', colorCone); // up
+
+ addLine('u1', 'u2', colorUp);
+ addLine('u2', 'u3', colorUp);
+ addLine('u3', 'u1', colorUp); // target
+
+ addLine('c', 't', colorTarget);
+ addLine('p', 'c', colorCross); // cross
+
+ addLine('cn1', 'cn2', colorCross);
+ addLine('cn3', 'cn4', colorCross);
+ addLine('cf1', 'cf2', colorCross);
+ addLine('cf3', 'cf4', colorCross);
+
+ function addLine(a, b, color) {
+ addPoint(a, color);
+ addPoint(b, color);
+ }
+ function addPoint(id, color) {
+ vertices.push(0, 0, 0);
+ colors.push(color.r, color.g, color.b);
- class CameraHelper extends LineSegments {
- constructor(camera) {
- const geometry = new BufferGeometry();
- const material = new LineBasicMaterial({
- color: 0xffffff,
- vertexColors: true,
- toneMapped: false
- });
- const vertices = [];
- const colors = [];
- const pointMap = {}; // colors
-
- const colorFrustum = new Color(0xffaa00);
- const colorCone = new Color(0xff0000);
- const colorUp = new Color(0x00aaff);
- const colorTarget = new Color(0xffffff);
- const colorCross = new Color(0x333333); // near
-
- addLine('n1', 'n2', colorFrustum);
- addLine('n2', 'n4', colorFrustum);
- addLine('n4', 'n3', colorFrustum);
- addLine('n3', 'n1', colorFrustum); // far
-
- addLine('f1', 'f2', colorFrustum);
- addLine('f2', 'f4', colorFrustum);
- addLine('f4', 'f3', colorFrustum);
- addLine('f3', 'f1', colorFrustum); // sides
-
- addLine('n1', 'f1', colorFrustum);
- addLine('n2', 'f2', colorFrustum);
- addLine('n3', 'f3', colorFrustum);
- addLine('n4', 'f4', colorFrustum); // cone
-
- addLine('p', 'n1', colorCone);
- addLine('p', 'n2', colorCone);
- addLine('p', 'n3', colorCone);
- addLine('p', 'n4', colorCone); // up
-
- addLine('u1', 'u2', colorUp);
- addLine('u2', 'u3', colorUp);
- addLine('u3', 'u1', colorUp); // target
-
- addLine('c', 't', colorTarget);
- addLine('p', 'c', colorCross); // cross
-
- addLine('cn1', 'cn2', colorCross);
- addLine('cn3', 'cn4', colorCross);
- addLine('cf1', 'cf2', colorCross);
- addLine('cf3', 'cf4', colorCross);
-
- function addLine(a, b, color) {
- addPoint(a, color);
- addPoint(b, color);
- }
-
- function addPoint(id, color) {
- vertices.push(0, 0, 0);
- colors.push(color.r, color.g, color.b);
-
- if (pointMap[id] === undefined) {
- pointMap[id] = [];
- }
-
- pointMap[id].push(vertices.length / 3 - 1);
- }
-
- geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
- super(geometry, material);
- this.type = 'CameraHelper';
- this.camera = camera;
- if (this.camera.updateProjectionMatrix) this.camera.updateProjectionMatrix();
- this.matrix = camera.matrixWorld;
- this.matrixAutoUpdate = false;
- this.pointMap = pointMap;
- this.update();
- }
+ if (pointMap[id] === undefined) {
+ pointMap[id] = [];
+ }
+
+ pointMap[id].push(vertices.length / 3 - 1);
+ }
- update() {
- const geometry = this.geometry;
- const pointMap = this.pointMap;
- const w = 1,
+ geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
+ super(geometry, material);
+ this.type = 'CameraHelper';
+ this.camera = camera;
+ if (this.camera.updateProjectionMatrix) this.camera.updateProjectionMatrix();
+ this.matrix = camera.matrixWorld;
+ this.matrixAutoUpdate = false;
+ this.pointMap = pointMap;
+ this.update();
+ }
+
+ update() {
+ const geometry = this.geometry;
+ const pointMap = this.pointMap;
+ const w = 1,
h = 1; // we need just camera projection matrix inverse
- // world matrix must be identity
+ // world matrix must be identity
- _camera.projectionMatrixInverse.copy(this.camera.projectionMatrixInverse); // center / target
+ _camera.projectionMatrixInverse.copy(this.camera.projectionMatrixInverse); // center / target
- setPoint('c', pointMap, geometry, _camera, 0, 0, -1);
- setPoint('t', pointMap, geometry, _camera, 0, 0, 1); // near
+ setPoint('c', pointMap, geometry, _camera, 0, 0, -1);
+ setPoint('t', pointMap, geometry, _camera, 0, 0, 1); // near
- setPoint('n1', pointMap, geometry, _camera, -w, -h, -1);
- setPoint('n2', pointMap, geometry, _camera, w, -h, -1);
- setPoint('n3', pointMap, geometry, _camera, -w, h, -1);
- setPoint('n4', pointMap, geometry, _camera, w, h, -1); // far
+ setPoint('n1', pointMap, geometry, _camera, -w, -h, -1);
+ setPoint('n2', pointMap, geometry, _camera, w, -h, -1);
+ setPoint('n3', pointMap, geometry, _camera, -w, h, -1);
+ setPoint('n4', pointMap, geometry, _camera, w, h, -1); // far
- setPoint('f1', pointMap, geometry, _camera, -w, -h, 1);
- setPoint('f2', pointMap, geometry, _camera, w, -h, 1);
- setPoint('f3', pointMap, geometry, _camera, -w, h, 1);
- setPoint('f4', pointMap, geometry, _camera, w, h, 1); // up
+ setPoint('f1', pointMap, geometry, _camera, -w, -h, 1);
+ setPoint('f2', pointMap, geometry, _camera, w, -h, 1);
+ setPoint('f3', pointMap, geometry, _camera, -w, h, 1);
+ setPoint('f4', pointMap, geometry, _camera, w, h, 1); // up
- setPoint('u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, -1);
- setPoint('u2', pointMap, geometry, _camera, -w * 0.7, h * 1.1, -1);
- setPoint('u3', pointMap, geometry, _camera, 0, h * 2, -1); // cross
+ setPoint('u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, -1);
+ setPoint('u2', pointMap, geometry, _camera, -w * 0.7, h * 1.1, -1);
+ setPoint('u3', pointMap, geometry, _camera, 0, h * 2, -1); // cross
- setPoint('cf1', pointMap, geometry, _camera, -w, 0, 1);
- setPoint('cf2', pointMap, geometry, _camera, w, 0, 1);
- setPoint('cf3', pointMap, geometry, _camera, 0, -h, 1);
- setPoint('cf4', pointMap, geometry, _camera, 0, h, 1);
- setPoint('cn1', pointMap, geometry, _camera, -w, 0, -1);
- setPoint('cn2', pointMap, geometry, _camera, w, 0, -1);
- setPoint('cn3', pointMap, geometry, _camera, 0, -h, -1);
- setPoint('cn4', pointMap, geometry, _camera, 0, h, -1);
- geometry.getAttribute('position').needsUpdate = true;
- }
+ setPoint('cf1', pointMap, geometry, _camera, -w, 0, 1);
+ setPoint('cf2', pointMap, geometry, _camera, w, 0, 1);
+ setPoint('cf3', pointMap, geometry, _camera, 0, -h, 1);
+ setPoint('cf4', pointMap, geometry, _camera, 0, h, 1);
+ setPoint('cn1', pointMap, geometry, _camera, -w, 0, -1);
+ setPoint('cn2', pointMap, geometry, _camera, w, 0, -1);
+ setPoint('cn3', pointMap, geometry, _camera, 0, -h, -1);
+ setPoint('cn4', pointMap, geometry, _camera, 0, h, -1);
+ geometry.getAttribute('position').needsUpdate = true;
+ }
- dispose() {
- this.geometry.dispose();
- this.material.dispose();
- }
+ dispose() {
+ this.geometry.dispose();
+ this.material.dispose();
+ }
- }
+ }
- function setPoint(point, pointMap, geometry, camera, x, y, z) {
- _vector.set(x, y, z).unproject(camera);
+ function setPoint(point, pointMap, geometry, camera, x, y, z) {
+ _vector.set(x, y, z).unproject(camera);
- const points = pointMap[point];
+ const points = pointMap[point];
- if (points !== undefined) {
- const position = geometry.getAttribute('position');
+ if (points !== undefined) {
+ const position = geometry.getAttribute('position');
- for (let i = 0, l = points.length; i < l; i++) {
- position.setXYZ(points[i], _vector.x, _vector.y, _vector.z);
+ for (let i = 0, l = points.length; i < l; i++) {
+ position.setXYZ(points[i], _vector.x, _vector.y, _vector.z);
+ }
+ }
}
- }
- }
- const _box = /*@__PURE__*/new Box3();
-
- class BoxHelper extends LineSegments {
- constructor(object, color = 0xffff00) {
- const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]);
- const positions = new Float32Array(8 * 3);
- const geometry = new BufferGeometry();
- geometry.setIndex(new BufferAttribute(indices, 1));
- geometry.setAttribute('position', new BufferAttribute(positions, 3));
- super(geometry, new LineBasicMaterial({
- color: color,
- toneMapped: false
- }));
- this.object = object;
- this.type = 'BoxHelper';
- this.matrixAutoUpdate = false;
- this.update();
- }
+ const _box = /*@__PURE__*/new Box3();
- update(object) {
- if (object !== undefined) {
- console.warn('THREE.BoxHelper: .update() has no longer arguments.');
- }
+ class BoxHelper extends LineSegments {
+ constructor(object, color = 0xffff00) {
+ const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]);
+ const positions = new Float32Array(8 * 3);
+ const geometry = new BufferGeometry();
+ geometry.setIndex(new BufferAttribute(indices, 1));
+ geometry.setAttribute('position', new BufferAttribute(positions, 3));
+ super(geometry, new LineBasicMaterial({
+ color: color,
+ toneMapped: false
+ }));
+ this.object = object;
+ this.type = 'BoxHelper';
+ this.matrixAutoUpdate = false;
+ this.update();
+ }
- if (this.object !== undefined) {
- _box.setFromObject(this.object);
- }
+ update(object) {
+ if (object !== undefined) {
+ console.warn('THREE.BoxHelper: .update() has no longer arguments.');
+ }
- if (_box.isEmpty()) return;
- const min = _box.min;
- const max = _box.max;
- /*
+ if (this.object !== undefined) {
+ _box.setFromObject(this.object);
+ }
+
+ if (_box.isEmpty()) return;
+ const min = _box.min;
+ const max = _box.max;
+ /*
5____4
1/___0/|
| 6__|_7
7: max.x, min.y, min.z
*/
- const position = this.geometry.attributes.position;
- const array = position.array;
- array[0] = max.x;
- array[1] = max.y;
- array[2] = max.z;
- array[3] = min.x;
- array[4] = max.y;
- array[5] = max.z;
- array[6] = min.x;
- array[7] = min.y;
- array[8] = max.z;
- array[9] = max.x;
- array[10] = min.y;
- array[11] = max.z;
- array[12] = max.x;
- array[13] = max.y;
- array[14] = min.z;
- array[15] = min.x;
- array[16] = max.y;
- array[17] = min.z;
- array[18] = min.x;
- array[19] = min.y;
- array[20] = min.z;
- array[21] = max.x;
- array[22] = min.y;
- array[23] = min.z;
- position.needsUpdate = true;
- this.geometry.computeBoundingSphere();
- }
-
- setFromObject(object) {
- this.object = object;
- this.update();
- return this;
- }
-
- copy(source) {
- LineSegments.prototype.copy.call(this, source);
- this.object = source.object;
- return this;
- }
-
- }
+ const position = this.geometry.attributes.position;
+ const array = position.array;
+ array[0] = max.x;
+ array[1] = max.y;
+ array[2] = max.z;
+ array[3] = min.x;
+ array[4] = max.y;
+ array[5] = max.z;
+ array[6] = min.x;
+ array[7] = min.y;
+ array[8] = max.z;
+ array[9] = max.x;
+ array[10] = min.y;
+ array[11] = max.z;
+ array[12] = max.x;
+ array[13] = max.y;
+ array[14] = min.z;
+ array[15] = min.x;
+ array[16] = max.y;
+ array[17] = min.z;
+ array[18] = min.x;
+ array[19] = min.y;
+ array[20] = min.z;
+ array[21] = max.x;
+ array[22] = min.y;
+ array[23] = min.z;
+ position.needsUpdate = true;
+ this.geometry.computeBoundingSphere();
+ }
+
+ setFromObject(object) {
+ this.object = object;
+ this.update();
+ return this;
+ }
- class Box3Helper extends LineSegments {
- constructor(box, color = 0xffff00) {
- const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]);
- const positions = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1];
- const geometry = new BufferGeometry();
- geometry.setIndex(new BufferAttribute(indices, 1));
- geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
- super(geometry, new LineBasicMaterial({
- color: color,
- toneMapped: false
- }));
- this.box = box;
- this.type = 'Box3Helper';
- this.geometry.computeBoundingSphere();
- }
+ copy(source) {
+ LineSegments.prototype.copy.call(this, source);
+ this.object = source.object;
+ return this;
+ }
- updateMatrixWorld(force) {
- const box = this.box;
- if (box.isEmpty()) return;
- box.getCenter(this.position);
- box.getSize(this.scale);
- this.scale.multiplyScalar(0.5);
- super.updateMatrixWorld(force);
- }
+ }
- }
+ class Box3Helper extends LineSegments {
+ constructor(box, color = 0xffff00) {
+ const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]);
+ const positions = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1];
+ const geometry = new BufferGeometry();
+ geometry.setIndex(new BufferAttribute(indices, 1));
+ geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
+ super(geometry, new LineBasicMaterial({
+ color: color,
+ toneMapped: false
+ }));
+ this.box = box;
+ this.type = 'Box3Helper';
+ this.geometry.computeBoundingSphere();
+ }
- class PlaneHelper extends Line {
- constructor(plane, size = 1, hex = 0xffff00) {
- const color = hex;
- const positions = [1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0];
- const geometry = new BufferGeometry();
- geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
- geometry.computeBoundingSphere();
- super(geometry, new LineBasicMaterial({
- color: color,
- toneMapped: false
- }));
- this.type = 'PlaneHelper';
- this.plane = plane;
- this.size = size;
- const positions2 = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1];
- const geometry2 = new BufferGeometry();
- geometry2.setAttribute('position', new Float32BufferAttribute(positions2, 3));
- geometry2.computeBoundingSphere();
- this.add(new Mesh(geometry2, new MeshBasicMaterial({
- color: color,
- opacity: 0.2,
- transparent: true,
- depthWrite: false,
- toneMapped: false
- })));
- }
+ updateMatrixWorld(force) {
+ const box = this.box;
+ if (box.isEmpty()) return;
+ box.getCenter(this.position);
+ box.getSize(this.scale);
+ this.scale.multiplyScalar(0.5);
+ super.updateMatrixWorld(force);
+ }
- updateMatrixWorld(force) {
- let scale = -this.plane.constant;
- if (Math.abs(scale) < 1e-8) scale = 1e-8; // sign does not matter
+ }
- this.scale.set(0.5 * this.size, 0.5 * this.size, scale);
- this.children[0].material.side = scale < 0 ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here
+ class PlaneHelper extends Line {
+ constructor(plane, size = 1, hex = 0xffff00) {
+ const color = hex;
+ const positions = [1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0];
+ const geometry = new BufferGeometry();
+ geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
+ geometry.computeBoundingSphere();
+ super(geometry, new LineBasicMaterial({
+ color: color,
+ toneMapped: false
+ }));
+ this.type = 'PlaneHelper';
+ this.plane = plane;
+ this.size = size;
+ const positions2 = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1];
+ const geometry2 = new BufferGeometry();
+ geometry2.setAttribute('position', new Float32BufferAttribute(positions2, 3));
+ geometry2.computeBoundingSphere();
+ this.add(new Mesh(geometry2, new MeshBasicMaterial({
+ color: color,
+ opacity: 0.2,
+ transparent: true,
+ depthWrite: false,
+ toneMapped: false
+ })));
+ }
- this.lookAt(this.plane.normal);
- super.updateMatrixWorld(force);
- }
+ updateMatrixWorld(force) {
+ let scale = -this.plane.constant;
+ if (Math.abs(scale) < 1e-8) scale = 1e-8; // sign does not matter
- }
+ this.scale.set(0.5 * this.size, 0.5 * this.size, scale);
+ this.children[0].material.side = scale < 0 ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here
- const _axis = /*@__PURE__*/new Vector3();
+ this.lookAt(this.plane.normal);
+ super.updateMatrixWorld(force);
+ }
- let _lineGeometry, _coneGeometry;
+ }
- class ArrowHelper extends Object3D {
- // dir is assumed to be normalized
- constructor(dir = new Vector3(0, 0, 1), origin = new Vector3(0, 0, 0), length = 1, color = 0xffff00, headLength = length * 0.2, headWidth = headLength * 0.2) {
- super();
- this.type = 'ArrowHelper';
+ const _axis = /*@__PURE__*/new Vector3();
- if (_lineGeometry === undefined) {
- _lineGeometry = new BufferGeometry();
+ let _lineGeometry, _coneGeometry;
- _lineGeometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 1, 0], 3));
+ class ArrowHelper extends Object3D {
+ // dir is assumed to be normalized
+ constructor(dir = new Vector3(0, 0, 1), origin = new Vector3(0, 0, 0), length = 1, color = 0xffff00, headLength = length * 0.2, headWidth = headLength * 0.2) {
+ super();
+ this.type = 'ArrowHelper';
- _coneGeometry = new CylinderGeometry(0, 0.5, 1, 5, 1);
+ if (_lineGeometry === undefined) {
+ _lineGeometry = new BufferGeometry();
- _coneGeometry.translate(0, -0.5, 0);
- }
+ _lineGeometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 1, 0], 3));
- this.position.copy(origin);
- this.line = new Line(_lineGeometry, new LineBasicMaterial({
- color: color,
- toneMapped: false
- }));
- this.line.matrixAutoUpdate = false;
- this.add(this.line);
- this.cone = new Mesh(_coneGeometry, new MeshBasicMaterial({
- color: color,
- toneMapped: false
- }));
- this.cone.matrixAutoUpdate = false;
- this.add(this.cone);
- this.setDirection(dir);
- this.setLength(length, headLength, headWidth);
- }
+ _coneGeometry = new CylinderGeometry(0, 0.5, 1, 5, 1);
- setDirection(dir) {
- // dir is assumed to be normalized
- if (dir.y > 0.99999) {
- this.quaternion.set(0, 0, 0, 1);
- } else if (dir.y < -0.99999) {
- this.quaternion.set(1, 0, 0, 0);
- } else {
- _axis.set(dir.z, 0, -dir.x).normalize();
+ _coneGeometry.translate(0, -0.5, 0);
+ }
- const radians = Math.acos(dir.y);
- this.quaternion.setFromAxisAngle(_axis, radians);
- }
- }
+ this.position.copy(origin);
+ this.line = new Line(_lineGeometry, new LineBasicMaterial({
+ color: color,
+ toneMapped: false
+ }));
+ this.line.matrixAutoUpdate = false;
+ this.add(this.line);
+ this.cone = new Mesh(_coneGeometry, new MeshBasicMaterial({
+ color: color,
+ toneMapped: false
+ }));
+ this.cone.matrixAutoUpdate = false;
+ this.add(this.cone);
+ this.setDirection(dir);
+ this.setLength(length, headLength, headWidth);
+ }
+
+ setDirection(dir) {
+ // dir is assumed to be normalized
+ if (dir.y > 0.99999) {
+ this.quaternion.set(0, 0, 0, 1);
+ } else if (dir.y < -0.99999) {
+ this.quaternion.set(1, 0, 0, 0);
+ } else {
+ _axis.set(dir.z, 0, -dir.x).normalize();
- setLength(length, headLength = length * 0.2, headWidth = headLength * 0.2) {
- this.line.scale.set(1, Math.max(0.0001, length - headLength), 1); // see #17458
+ const radians = Math.acos(dir.y);
+ this.quaternion.setFromAxisAngle(_axis, radians);
+ }
+ }
- this.line.updateMatrix();
- this.cone.scale.set(headWidth, headLength, headWidth);
- this.cone.position.y = length;
- this.cone.updateMatrix();
- }
+ setLength(length, headLength = length * 0.2, headWidth = headLength * 0.2) {
+ this.line.scale.set(1, Math.max(0.0001, length - headLength), 1); // see #17458
- setColor(color) {
- this.line.material.color.set(color);
- this.cone.material.color.set(color);
- }
+ this.line.updateMatrix();
+ this.cone.scale.set(headWidth, headLength, headWidth);
+ this.cone.position.y = length;
+ this.cone.updateMatrix();
+ }
- copy(source) {
- super.copy(source, false);
- this.line.copy(source.line);
- this.cone.copy(source.cone);
- return this;
- }
+ setColor(color) {
+ this.line.material.color.set(color);
+ this.cone.material.color.set(color);
+ }
- }
+ copy(source) {
+ super.copy(source, false);
+ this.line.copy(source.line);
+ this.cone.copy(source.cone);
+ return this;
+ }
- class AxesHelper extends LineSegments {
- constructor(size = 1) {
- const vertices = [0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size];
- const colors = [1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1];
- const geometry = new BufferGeometry();
- geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
- geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
- const material = new LineBasicMaterial({
- vertexColors: true,
- toneMapped: false
- });
- super(geometry, material);
- this.type = 'AxesHelper';
- }
+ }
- setColors(xAxisColor, yAxisColor, zAxisColor) {
- const color = new Color();
- const array = this.geometry.attributes.color.array;
- color.set(xAxisColor);
- color.toArray(array, 0);
- color.toArray(array, 3);
- color.set(yAxisColor);
- color.toArray(array, 6);
- color.toArray(array, 9);
- color.set(zAxisColor);
- color.toArray(array, 12);
- color.toArray(array, 15);
- this.geometry.attributes.color.needsUpdate = true;
- return this;
- }
+ class AxesHelper extends LineSegments {
+ constructor(size = 1) {
+ const vertices = [0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size];
+ const colors = [1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1];
+ const geometry = new BufferGeometry();
+ geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
+ const material = new LineBasicMaterial({
+ vertexColors: true,
+ toneMapped: false
+ });
+ super(geometry, material);
+ this.type = 'AxesHelper';
+ }
+
+ setColors(xAxisColor, yAxisColor, zAxisColor) {
+ const color = new Color();
+ const array = this.geometry.attributes.color.array;
+ color.set(xAxisColor);
+ color.toArray(array, 0);
+ color.toArray(array, 3);
+ color.set(yAxisColor);
+ color.toArray(array, 6);
+ color.toArray(array, 9);
+ color.set(zAxisColor);
+ color.toArray(array, 12);
+ color.toArray(array, 15);
+ this.geometry.attributes.color.needsUpdate = true;
+ return this;
+ }
- dispose() {
- this.geometry.dispose();
- this.material.dispose();
- }
+ dispose() {
+ this.geometry.dispose();
+ this.material.dispose();
+ }
- }
+ }
- const _floatView = new Float32Array(1);
+ const _floatView = new Float32Array(1);
- const _int32View = new Int32Array(_floatView.buffer);
+ const _int32View = new Int32Array(_floatView.buffer);
- class DataUtils {
- // Converts float32 to float16 (stored as uint16 value).
- static toHalfFloat(val) {
- // Source: http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410
+ class DataUtils {
+ // Converts float32 to float16 (stored as uint16 value).
+ static toHalfFloat(val) {
+ // Source: http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410
- /* This method is faster than the OpenEXR implementation (very often
+ /* This method is faster than the OpenEXR implementation (very often
* used, eg. in Ogre), with the additional benefit of rounding, inspired
* by James Tursa?s half-precision code. */
- _floatView[0] = val;
- const x = _int32View[0];
- let bits = x >> 16 & 0x8000;
- /* Get the sign */
+ _floatView[0] = val;
+ const x = _int32View[0];
+ let bits = x >> 16 & 0x8000;
+ /* Get the sign */
- let m = x >> 12 & 0x07ff;
- /* Keep one extra bit for rounding */
+ let m = x >> 12 & 0x07ff;
+ /* Keep one extra bit for rounding */
- const e = x >> 23 & 0xff;
- /* Using int is faster here */
+ const e = x >> 23 & 0xff;
+ /* Using int is faster here */
- /* If zero, or denormal, or exponent underflows too much for a denormal
+ /* If zero, or denormal, or exponent underflows too much for a denormal
* half, return signed zero. */
- if (e < 103) return bits;
- /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
+ if (e < 103) return bits;
+ /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
- if (e > 142) {
- bits |= 0x7c00;
- /* If exponent was 0xff and one mantissa bit was set, it means NaN,
+ if (e > 142) {
+ bits |= 0x7c00;
+ /* If exponent was 0xff and one mantissa bit was set, it means NaN,
* not Inf, so make sure we set one mantissa bit too. */
- bits |= (e == 255 ? 0 : 1) && x & 0x007fffff;
- return bits;
- }
- /* If exponent underflows but not too much, return a denormal */
+ bits |= (e == 255 ? 0 : 1) && x & 0x007fffff;
+ return bits;
+ }
+ /* If exponent underflows but not too much, return a denormal */
- if (e < 113) {
- m |= 0x0800;
- /* Extra rounding may overflow and set mantissa to 0 and exponent
+ if (e < 113) {
+ m |= 0x0800;
+ /* Extra rounding may overflow and set mantissa to 0 and exponent
* to 1, which is OK. */
- bits |= (m >> 114 - e) + (m >> 113 - e & 1);
- return bits;
- }
+ bits |= (m >> 114 - e) + (m >> 113 - e & 1);
+ return bits;
+ }
- bits |= e - 112 << 10 | m >> 1;
- /* Extra rounding. An overflow will set mantissa to 0 and increment
+ bits |= e - 112 << 10 | m >> 1;
+ /* Extra rounding. An overflow will set mantissa to 0 and increment
* the exponent, which is OK. */
- bits += m & 1;
- return bits;
- }
-
- }
+ bits += m & 1;
+ return bits;
+ }
- const LineStrip = 0;
- const LinePieces = 1;
- const NoColors = 0;
- const FaceColors = 1;
- const VertexColors = 2;
- function MeshFaceMaterial(materials) {
- console.warn('THREE.MeshFaceMaterial has been removed. Use an Array instead.');
- return materials;
- }
- function MultiMaterial(materials = []) {
- console.warn('THREE.MultiMaterial has been removed. Use an Array instead.');
- materials.isMultiMaterial = true;
- materials.materials = materials;
+ }
- materials.clone = function () {
- return materials.slice();
- };
+ const LineStrip = 0;
+ const LinePieces = 1;
+ const NoColors = 0;
+ const FaceColors = 1;
+ const VertexColors = 2;
- return materials;
- }
- function PointCloud(geometry, material) {
- console.warn('THREE.PointCloud has been renamed to THREE.Points.');
- return new Points(geometry, material);
- }
- function Particle(material) {
- console.warn('THREE.Particle has been renamed to THREE.Sprite.');
- return new Sprite(material);
- }
- function ParticleSystem(geometry, material) {
- console.warn('THREE.ParticleSystem has been renamed to THREE.Points.');
- return new Points(geometry, material);
- }
- function PointCloudMaterial(parameters) {
- console.warn('THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.');
- return new PointsMaterial(parameters);
- }
- function ParticleBasicMaterial(parameters) {
- console.warn('THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.');
- return new PointsMaterial(parameters);
- }
- function ParticleSystemMaterial(parameters) {
- console.warn('THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.');
- return new PointsMaterial(parameters);
- }
- function Vertex(x, y, z) {
- console.warn('THREE.Vertex has been removed. Use THREE.Vector3 instead.');
- return new Vector3(x, y, z);
- } //
-
- function DynamicBufferAttribute(array, itemSize) {
- console.warn('THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead.');
- return new BufferAttribute(array, itemSize).setUsage(DynamicDrawUsage);
- }
- function Int8Attribute(array, itemSize) {
- console.warn('THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.');
- return new Int8BufferAttribute(array, itemSize);
- }
- function Uint8Attribute(array, itemSize) {
- console.warn('THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.');
- return new Uint8BufferAttribute(array, itemSize);
- }
- function Uint8ClampedAttribute(array, itemSize) {
- console.warn('THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.');
- return new Uint8ClampedBufferAttribute(array, itemSize);
- }
- function Int16Attribute(array, itemSize) {
- console.warn('THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.');
- return new Int16BufferAttribute(array, itemSize);
- }
- function Uint16Attribute(array, itemSize) {
- console.warn('THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.');
- return new Uint16BufferAttribute(array, itemSize);
- }
- function Int32Attribute(array, itemSize) {
- console.warn('THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.');
- return new Int32BufferAttribute(array, itemSize);
- }
- function Uint32Attribute(array, itemSize) {
- console.warn('THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.');
- return new Uint32BufferAttribute(array, itemSize);
- }
- function Float32Attribute(array, itemSize) {
- console.warn('THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.');
- return new Float32BufferAttribute(array, itemSize);
- }
- function Float64Attribute(array, itemSize) {
- console.warn('THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.');
- return new Float64BufferAttribute(array, itemSize);
- } //
+ function MeshFaceMaterial(materials) {
+ console.warn('THREE.MeshFaceMaterial has been removed. Use an Array instead.');
+ return materials;
+ }
- Curve.create = function (construct, getPoint) {
- console.log('THREE.Curve.create() has been deprecated');
- construct.prototype = Object.create(Curve.prototype);
- construct.prototype.constructor = construct;
- construct.prototype.getPoint = getPoint;
- return construct;
- }; //
+ function MultiMaterial(materials = []) {
+ console.warn('THREE.MultiMaterial has been removed. Use an Array instead.');
+ materials.isMultiMaterial = true;
+ materials.materials = materials;
+ materials.clone = function () {
+ return materials.slice();
+ };
- Path.prototype.fromPoints = function (points) {
- console.warn('THREE.Path: .fromPoints() has been renamed to .setFromPoints().');
- return this.setFromPoints(points);
- }; //
+ return materials;
+ }
+ function PointCloud(geometry, material) {
+ console.warn('THREE.PointCloud has been renamed to THREE.Points.');
+ return new Points(geometry, material);
+ }
- function AxisHelper(size) {
- console.warn('THREE.AxisHelper has been renamed to THREE.AxesHelper.');
- return new AxesHelper(size);
- }
- function BoundingBoxHelper(object, color) {
- console.warn('THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.');
- return new BoxHelper(object, color);
- }
- function EdgesHelper(object, hex) {
- console.warn('THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.');
- return new LineSegments(new EdgesGeometry(object.geometry), new LineBasicMaterial({
- color: hex !== undefined ? hex : 0xffffff
- }));
- }
+ function Particle(material) {
+ console.warn('THREE.Particle has been renamed to THREE.Sprite.');
+ return new Sprite(material);
+ }
- GridHelper.prototype.setColors = function () {
- console.error('THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.');
- };
-
- SkeletonHelper.prototype.update = function () {
- console.error('THREE.SkeletonHelper: update() no longer needs to be called.');
- };
-
- function WireframeHelper(object, hex) {
- console.warn('THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.');
- return new LineSegments(new WireframeGeometry(object.geometry), new LineBasicMaterial({
- color: hex !== undefined ? hex : 0xffffff
- }));
- } //
-
- Loader.prototype.extractUrlBase = function (url) {
- console.warn('THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.');
- return LoaderUtils.extractUrlBase(url);
- };
-
- Loader.Handlers = {
- add: function () {
- console.error('THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.');
- },
- get: function () {
- console.error('THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.');
- }
- };
- function XHRLoader(manager) {
- console.warn('THREE.XHRLoader has been renamed to THREE.FileLoader.');
- return new FileLoader(manager);
- }
- function BinaryTextureLoader(manager) {
- console.warn('THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.');
- return new DataTextureLoader(manager);
- } //
+ function ParticleSystem(geometry, material) {
+ console.warn('THREE.ParticleSystem has been renamed to THREE.Points.');
+ return new Points(geometry, material);
+ }
- Box2.prototype.center = function (optionalTarget) {
- console.warn('THREE.Box2: .center() has been renamed to .getCenter().');
- return this.getCenter(optionalTarget);
- };
+ function PointCloudMaterial(parameters) {
+ console.warn('THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.');
+ return new PointsMaterial(parameters);
+ }
- Box2.prototype.empty = function () {
- console.warn('THREE.Box2: .empty() has been renamed to .isEmpty().');
- return this.isEmpty();
- };
+ function ParticleBasicMaterial(parameters) {
+ console.warn('THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.');
+ return new PointsMaterial(parameters);
+ }
- Box2.prototype.isIntersectionBox = function (box) {
- console.warn('THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().');
- return this.intersectsBox(box);
- };
-
- Box2.prototype.size = function (optionalTarget) {
- console.warn('THREE.Box2: .size() has been renamed to .getSize().');
- return this.getSize(optionalTarget);
- }; //
-
-
- Box3.prototype.center = function (optionalTarget) {
- console.warn('THREE.Box3: .center() has been renamed to .getCenter().');
- return this.getCenter(optionalTarget);
- };
-
- Box3.prototype.empty = function () {
- console.warn('THREE.Box3: .empty() has been renamed to .isEmpty().');
- return this.isEmpty();
- };
-
- Box3.prototype.isIntersectionBox = function (box) {
- console.warn('THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().');
- return this.intersectsBox(box);
- };
-
- Box3.prototype.isIntersectionSphere = function (sphere) {
- console.warn('THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().');
- return this.intersectsSphere(sphere);
- };
-
- Box3.prototype.size = function (optionalTarget) {
- console.warn('THREE.Box3: .size() has been renamed to .getSize().');
- return this.getSize(optionalTarget);
- }; //
-
-
- Sphere.prototype.empty = function () {
- console.warn('THREE.Sphere: .empty() has been renamed to .isEmpty().');
- return this.isEmpty();
- }; //
-
-
- Frustum.prototype.setFromMatrix = function (m) {
- console.warn('THREE.Frustum: .setFromMatrix() has been renamed to .setFromProjectionMatrix().');
- return this.setFromProjectionMatrix(m);
- }; //
-
-
- Line3.prototype.center = function (optionalTarget) {
- console.warn('THREE.Line3: .center() has been renamed to .getCenter().');
- return this.getCenter(optionalTarget);
- }; //
-
-
- Matrix3.prototype.flattenToArrayOffset = function (array, offset) {
- console.warn('THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.');
- return this.toArray(array, offset);
- };
-
- Matrix3.prototype.multiplyVector3 = function (vector) {
- console.warn('THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.');
- return vector.applyMatrix3(this);
- };
-
- Matrix3.prototype.multiplyVector3Array = function () {
- console.error('THREE.Matrix3: .multiplyVector3Array() has been removed.');
- };
-
- Matrix3.prototype.applyToBufferAttribute = function (attribute) {
- console.warn('THREE.Matrix3: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix3( matrix ) instead.');
- return attribute.applyMatrix3(this);
- };
-
- Matrix3.prototype.applyToVector3Array = function () {
- console.error('THREE.Matrix3: .applyToVector3Array() has been removed.');
- };
-
- Matrix3.prototype.getInverse = function (matrix) {
- console.warn('THREE.Matrix3: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.');
- return this.copy(matrix).invert();
- }; //
-
-
- Matrix4.prototype.extractPosition = function (m) {
- console.warn('THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().');
- return this.copyPosition(m);
- };
+ function ParticleSystemMaterial(parameters) {
+ console.warn('THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.');
+ return new PointsMaterial(parameters);
+ }
- Matrix4.prototype.flattenToArrayOffset = function (array, offset) {
- console.warn('THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.');
- return this.toArray(array, offset);
- };
+ function Vertex(x, y, z) {
+ console.warn('THREE.Vertex has been removed. Use THREE.Vector3 instead.');
+ return new Vector3(x, y, z);
+ } //
- Matrix4.prototype.getPosition = function () {
- console.warn('THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.');
- return new Vector3().setFromMatrixColumn(this, 3);
- };
+ function DynamicBufferAttribute(array, itemSize) {
+ console.warn('THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead.');
+ return new BufferAttribute(array, itemSize).setUsage(DynamicDrawUsage);
+ }
- Matrix4.prototype.setRotationFromQuaternion = function (q) {
- console.warn('THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().');
- return this.makeRotationFromQuaternion(q);
- };
+ function Int8Attribute(array, itemSize) {
+ console.warn('THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.');
+ return new Int8BufferAttribute(array, itemSize);
+ }
- Matrix4.prototype.multiplyToArray = function () {
- console.warn('THREE.Matrix4: .multiplyToArray() has been removed.');
- };
+ function Uint8Attribute(array, itemSize) {
+ console.warn('THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.');
+ return new Uint8BufferAttribute(array, itemSize);
+ }
- Matrix4.prototype.multiplyVector3 = function (vector) {
- console.warn('THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.');
- return vector.applyMatrix4(this);
- };
-
- Matrix4.prototype.multiplyVector4 = function (vector) {
- console.warn('THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.');
- return vector.applyMatrix4(this);
- };
-
- Matrix4.prototype.multiplyVector3Array = function () {
- console.error('THREE.Matrix4: .multiplyVector3Array() has been removed.');
- };
-
- Matrix4.prototype.rotateAxis = function (v) {
- console.warn('THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.');
- v.transformDirection(this);
- };
-
- Matrix4.prototype.crossVector = function (vector) {
- console.warn('THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.');
- return vector.applyMatrix4(this);
- };
-
- Matrix4.prototype.translate = function () {
- console.error('THREE.Matrix4: .translate() has been removed.');
- };
+ function Uint8ClampedAttribute(array, itemSize) {
+ console.warn('THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.');
+ return new Uint8ClampedBufferAttribute(array, itemSize);
+ }
- Matrix4.prototype.rotateX = function () {
- console.error('THREE.Matrix4: .rotateX() has been removed.');
- };
-
- Matrix4.prototype.rotateY = function () {
- console.error('THREE.Matrix4: .rotateY() has been removed.');
- };
-
- Matrix4.prototype.rotateZ = function () {
- console.error('THREE.Matrix4: .rotateZ() has been removed.');
- };
-
- Matrix4.prototype.rotateByAxis = function () {
- console.error('THREE.Matrix4: .rotateByAxis() has been removed.');
- };
-
- Matrix4.prototype.applyToBufferAttribute = function (attribute) {
- console.warn('THREE.Matrix4: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix4( matrix ) instead.');
- return attribute.applyMatrix4(this);
- };
-
- Matrix4.prototype.applyToVector3Array = function () {
- console.error('THREE.Matrix4: .applyToVector3Array() has been removed.');
- };
-
- Matrix4.prototype.makeFrustum = function (left, right, bottom, top, near, far) {
- console.warn('THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.');
- return this.makePerspective(left, right, top, bottom, near, far);
- };
-
- Matrix4.prototype.getInverse = function (matrix) {
- console.warn('THREE.Matrix4: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.');
- return this.copy(matrix).invert();
- }; //
-
-
- Plane.prototype.isIntersectionLine = function (line) {
- console.warn('THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().');
- return this.intersectsLine(line);
- }; //
-
-
- Quaternion.prototype.multiplyVector3 = function (vector) {
- console.warn('THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.');
- return vector.applyQuaternion(this);
- };
-
- Quaternion.prototype.inverse = function () {
- console.warn('THREE.Quaternion: .inverse() has been renamed to invert().');
- return this.invert();
- }; //
-
-
- Ray.prototype.isIntersectionBox = function (box) {
- console.warn('THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().');
- return this.intersectsBox(box);
- };
-
- Ray.prototype.isIntersectionPlane = function (plane) {
- console.warn('THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().');
- return this.intersectsPlane(plane);
- };
-
- Ray.prototype.isIntersectionSphere = function (sphere) {
- console.warn('THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().');
- return this.intersectsSphere(sphere);
- }; //
-
-
- Triangle.prototype.area = function () {
- console.warn('THREE.Triangle: .area() has been renamed to .getArea().');
- return this.getArea();
- };
-
- Triangle.prototype.barycoordFromPoint = function (point, target) {
- console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().');
- return this.getBarycoord(point, target);
- };
-
- Triangle.prototype.midpoint = function (target) {
- console.warn('THREE.Triangle: .midpoint() has been renamed to .getMidpoint().');
- return this.getMidpoint(target);
- };
-
- Triangle.prototypenormal = function (target) {
- console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().');
- return this.getNormal(target);
- };
-
- Triangle.prototype.plane = function (target) {
- console.warn('THREE.Triangle: .plane() has been renamed to .getPlane().');
- return this.getPlane(target);
- };
-
- Triangle.barycoordFromPoint = function (point, a, b, c, target) {
- console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().');
- return Triangle.getBarycoord(point, a, b, c, target);
- };
-
- Triangle.normal = function (a, b, c, target) {
- console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().');
- return Triangle.getNormal(a, b, c, target);
- }; //
-
-
- Shape.prototype.extractAllPoints = function (divisions) {
- console.warn('THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.');
- return this.extractPoints(divisions);
- };
-
- Shape.prototype.extrude = function (options) {
- console.warn('THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.');
- return new ExtrudeGeometry(this, options);
- };
-
- Shape.prototype.makeGeometry = function (options) {
- console.warn('THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.');
- return new ShapeGeometry(this, options);
- }; //
-
-
- Vector2.prototype.fromAttribute = function (attribute, index, offset) {
- console.warn('THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().');
- return this.fromBufferAttribute(attribute, index, offset);
- };
-
- Vector2.prototype.distanceToManhattan = function (v) {
- console.warn('THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().');
- return this.manhattanDistanceTo(v);
- };
-
- Vector2.prototype.lengthManhattan = function () {
- console.warn('THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().');
- return this.manhattanLength();
- }; //
-
-
- Vector3.prototype.setEulerFromRotationMatrix = function () {
- console.error('THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.');
- };
-
- Vector3.prototype.setEulerFromQuaternion = function () {
- console.error('THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.');
- };
-
- Vector3.prototype.getPositionFromMatrix = function (m) {
- console.warn('THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().');
- return this.setFromMatrixPosition(m);
- };
-
- Vector3.prototype.getScaleFromMatrix = function (m) {
- console.warn('THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().');
- return this.setFromMatrixScale(m);
- };
-
- Vector3.prototype.getColumnFromMatrix = function (index, matrix) {
- console.warn('THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().');
- return this.setFromMatrixColumn(matrix, index);
- };
-
- Vector3.prototype.applyProjection = function (m) {
- console.warn('THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.');
- return this.applyMatrix4(m);
- };
-
- Vector3.prototype.fromAttribute = function (attribute, index, offset) {
- console.warn('THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().');
- return this.fromBufferAttribute(attribute, index, offset);
- };
-
- Vector3.prototype.distanceToManhattan = function (v) {
- console.warn('THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().');
- return this.manhattanDistanceTo(v);
- };
-
- Vector3.prototype.lengthManhattan = function () {
- console.warn('THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().');
- return this.manhattanLength();
- }; //
-
-
- Vector4.prototype.fromAttribute = function (attribute, index, offset) {
- console.warn('THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().');
- return this.fromBufferAttribute(attribute, index, offset);
- };
-
- Vector4.prototype.lengthManhattan = function () {
- console.warn('THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().');
- return this.manhattanLength();
- }; //
-
-
- Object3D.prototype.getChildByName = function (name) {
- console.warn('THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().');
- return this.getObjectByName(name);
- };
-
- Object3D.prototype.renderDepth = function () {
- console.warn('THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.');
- };
-
- Object3D.prototype.translate = function (distance, axis) {
- console.warn('THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.');
- return this.translateOnAxis(axis, distance);
- };
-
- Object3D.prototype.getWorldRotation = function () {
- console.error('THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.');
- };
-
- Object3D.prototype.applyMatrix = function (matrix) {
- console.warn('THREE.Object3D: .applyMatrix() has been renamed to .applyMatrix4().');
- return this.applyMatrix4(matrix);
- };
-
- Object.defineProperties(Object3D.prototype, {
- eulerOrder: {
- get: function () {
- console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.');
- return this.rotation.order;
- },
- set: function (value) {
- console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.');
- this.rotation.order = value;
- }
- },
- useQuaternion: {
- get: function () {
- console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.');
- },
- set: function () {
- console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.');
+ function Int16Attribute(array, itemSize) {
+ console.warn('THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.');
+ return new Int16BufferAttribute(array, itemSize);
}
- }
- });
- Mesh.prototype.setDrawMode = function () {
- console.error('THREE.Mesh: .setDrawMode() has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.');
- };
+ function Uint16Attribute(array, itemSize) {
+ console.warn('THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.');
+ return new Uint16BufferAttribute(array, itemSize);
+ }
- Object.defineProperties(Mesh.prototype, {
- drawMode: {
- get: function () {
- console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode.');
- return TrianglesDrawMode;
- },
- set: function () {
- console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.');
+ function Int32Attribute(array, itemSize) {
+ console.warn('THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.');
+ return new Int32BufferAttribute(array, itemSize);
}
- }
- });
-
- SkinnedMesh.prototype.initBones = function () {
- console.error('THREE.SkinnedMesh: initBones() has been removed.');
- }; //
-
-
- PerspectiveCamera.prototype.setLens = function (focalLength, filmGauge) {
- console.warn('THREE.PerspectiveCamera.setLens is deprecated. ' + 'Use .setFocalLength and .filmGauge for a photographic setup.');
- if (filmGauge !== undefined) this.filmGauge = filmGauge;
- this.setFocalLength(focalLength);
- }; //
-
-
- Object.defineProperties(Light.prototype, {
- onlyShadow: {
- set: function () {
- console.warn('THREE.Light: .onlyShadow has been removed.');
- }
- },
- shadowCameraFov: {
- set: function (value) {
- console.warn('THREE.Light: .shadowCameraFov is now .shadow.camera.fov.');
- this.shadow.camera.fov = value;
- }
- },
- shadowCameraLeft: {
- set: function (value) {
- console.warn('THREE.Light: .shadowCameraLeft is now .shadow.camera.left.');
- this.shadow.camera.left = value;
- }
- },
- shadowCameraRight: {
- set: function (value) {
- console.warn('THREE.Light: .shadowCameraRight is now .shadow.camera.right.');
- this.shadow.camera.right = value;
- }
- },
- shadowCameraTop: {
- set: function (value) {
- console.warn('THREE.Light: .shadowCameraTop is now .shadow.camera.top.');
- this.shadow.camera.top = value;
- }
- },
- shadowCameraBottom: {
- set: function (value) {
- console.warn('THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.');
- this.shadow.camera.bottom = value;
- }
- },
- shadowCameraNear: {
- set: function (value) {
- console.warn('THREE.Light: .shadowCameraNear is now .shadow.camera.near.');
- this.shadow.camera.near = value;
- }
- },
- shadowCameraFar: {
- set: function (value) {
- console.warn('THREE.Light: .shadowCameraFar is now .shadow.camera.far.');
- this.shadow.camera.far = value;
- }
- },
- shadowCameraVisible: {
- set: function () {
- console.warn('THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.');
- }
- },
- shadowBias: {
- set: function (value) {
- console.warn('THREE.Light: .shadowBias is now .shadow.bias.');
- this.shadow.bias = value;
- }
- },
- shadowDarkness: {
- set: function () {
- console.warn('THREE.Light: .shadowDarkness has been removed.');
- }
- },
- shadowMapWidth: {
- set: function (value) {
- console.warn('THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.');
- this.shadow.mapSize.width = value;
- }
- },
- shadowMapHeight: {
- set: function (value) {
- console.warn('THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.');
- this.shadow.mapSize.height = value;
+
+ function Uint32Attribute(array, itemSize) {
+ console.warn('THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.');
+ return new Uint32BufferAttribute(array, itemSize);
}
- }
- }); //
-
- Object.defineProperties(BufferAttribute.prototype, {
- length: {
- get: function () {
- console.warn('THREE.BufferAttribute: .length has been deprecated. Use .count instead.');
- return this.array.length;
- }
- },
- dynamic: {
- get: function () {
- console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.');
- return this.usage === DynamicDrawUsage;
- },
- set: function () {
- console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.');
- this.setUsage(DynamicDrawUsage);
+
+ function Float32Attribute(array, itemSize) {
+ console.warn('THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.');
+ return new Float32BufferAttribute(array, itemSize);
}
- }
- });
-
- BufferAttribute.prototype.setDynamic = function (value) {
- console.warn('THREE.BufferAttribute: .setDynamic() has been deprecated. Use .setUsage() instead.');
- this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage);
- return this;
- };
-
- BufferAttribute.prototype.copyIndicesArray = function () {
- console.error('THREE.BufferAttribute: .copyIndicesArray() has been removed.');
- }, BufferAttribute.prototype.setArray = function () {
- console.error('THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers');
- }; //
-
- BufferGeometry.prototype.addIndex = function (index) {
- console.warn('THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().');
- this.setIndex(index);
- };
-
- BufferGeometry.prototype.addAttribute = function (name, attribute) {
- console.warn('THREE.BufferGeometry: .addAttribute() has been renamed to .setAttribute().');
-
- if (!(attribute && attribute.isBufferAttribute) && !(attribute && attribute.isInterleavedBufferAttribute)) {
- console.warn('THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).');
- return this.setAttribute(name, new BufferAttribute(arguments[1], arguments[2]));
- }
- if (name === 'index') {
- console.warn('THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.');
- this.setIndex(attribute);
- return this;
- }
+ function Float64Attribute(array, itemSize) {
+ console.warn('THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.');
+ return new Float64BufferAttribute(array, itemSize);
+ } //
- return this.setAttribute(name, attribute);
- };
+ Curve.create = function (construct, getPoint) {
+ console.log('THREE.Curve.create() has been deprecated');
+ construct.prototype = Object.create(Curve.prototype);
+ construct.prototype.constructor = construct;
+ construct.prototype.getPoint = getPoint;
+ return construct;
+ }; //
- BufferGeometry.prototype.addDrawCall = function (start, count, indexOffset) {
- if (indexOffset !== undefined) {
- console.warn('THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.');
- }
- console.warn('THREE.BufferGeometry: .addDrawCall() is now .addGroup().');
- this.addGroup(start, count);
- };
-
- BufferGeometry.prototype.clearDrawCalls = function () {
- console.warn('THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().');
- this.clearGroups();
- };
-
- BufferGeometry.prototype.computeOffsets = function () {
- console.warn('THREE.BufferGeometry: .computeOffsets() has been removed.');
- };
-
- BufferGeometry.prototype.removeAttribute = function (name) {
- console.warn('THREE.BufferGeometry: .removeAttribute() has been renamed to .deleteAttribute().');
- return this.deleteAttribute(name);
- };
-
- BufferGeometry.prototype.applyMatrix = function (matrix) {
- console.warn('THREE.BufferGeometry: .applyMatrix() has been renamed to .applyMatrix4().');
- return this.applyMatrix4(matrix);
- };
-
- Object.defineProperties(BufferGeometry.prototype, {
- drawcalls: {
- get: function () {
- console.error('THREE.BufferGeometry: .drawcalls has been renamed to .groups.');
- return this.groups;
- }
- },
- offsets: {
- get: function () {
- console.warn('THREE.BufferGeometry: .offsets has been renamed to .groups.');
- return this.groups;
- }
- }
- });
-
- InterleavedBuffer.prototype.setDynamic = function (value) {
- console.warn('THREE.InterleavedBuffer: .setDynamic() has been deprecated. Use .setUsage() instead.');
- this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage);
- return this;
- };
-
- InterleavedBuffer.prototype.setArray = function () {
- console.error('THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers');
- }; //
-
-
- ExtrudeGeometry.prototype.getArrays = function () {
- console.error('THREE.ExtrudeGeometry: .getArrays() has been removed.');
- };
-
- ExtrudeGeometry.prototype.addShapeList = function () {
- console.error('THREE.ExtrudeGeometry: .addShapeList() has been removed.');
- };
-
- ExtrudeGeometry.prototype.addShape = function () {
- console.error('THREE.ExtrudeGeometry: .addShape() has been removed.');
- }; //
-
-
- Scene.prototype.dispose = function () {
- console.error('THREE.Scene: .dispose() has been removed.');
- }; //
-
-
- Uniform.prototype.onUpdate = function () {
- console.warn('THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.');
- return this;
- }; //
-
-
- Object.defineProperties(Material.prototype, {
- wrapAround: {
- get: function () {
- console.warn('THREE.Material: .wrapAround has been removed.');
- },
- set: function () {
- console.warn('THREE.Material: .wrapAround has been removed.');
- }
- },
- overdraw: {
- get: function () {
- console.warn('THREE.Material: .overdraw has been removed.');
- },
- set: function () {
- console.warn('THREE.Material: .overdraw has been removed.');
- }
- },
- wrapRGB: {
- get: function () {
- console.warn('THREE.Material: .wrapRGB has been removed.');
- return new Color();
- }
- },
- shading: {
- get: function () {
- console.error('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
- },
- set: function (value) {
- console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
- this.flatShading = value === FlatShading;
- }
- },
- stencilMask: {
- get: function () {
- console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.');
- return this.stencilFuncMask;
- },
- set: function (value) {
- console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.');
- this.stencilFuncMask = value;
- }
- },
- vertexTangents: {
- get: function () {
- console.warn('THREE.' + this.type + ': .vertexTangents has been removed.');
- },
- set: function () {
- console.warn('THREE.' + this.type + ': .vertexTangents has been removed.');
- }
- }
- });
- Object.defineProperties(ShaderMaterial.prototype, {
- derivatives: {
- get: function () {
- console.warn('THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.');
- return this.extensions.derivatives;
- },
- set: function (value) {
- console.warn('THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.');
- this.extensions.derivatives = value;
- }
- }
- }); //
-
- WebGLRenderer.prototype.clearTarget = function (renderTarget, color, depth, stencil) {
- console.warn('THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.');
- this.setRenderTarget(renderTarget);
- this.clear(color, depth, stencil);
- };
-
- WebGLRenderer.prototype.animate = function (callback) {
- console.warn('THREE.WebGLRenderer: .animate() is now .setAnimationLoop().');
- this.setAnimationLoop(callback);
- };
-
- WebGLRenderer.prototype.getCurrentRenderTarget = function () {
- console.warn('THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().');
- return this.getRenderTarget();
- };
-
- WebGLRenderer.prototype.getMaxAnisotropy = function () {
- console.warn('THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().');
- return this.capabilities.getMaxAnisotropy();
- };
-
- WebGLRenderer.prototype.getPrecision = function () {
- console.warn('THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.');
- return this.capabilities.precision;
- };
-
- WebGLRenderer.prototype.resetGLState = function () {
- console.warn('THREE.WebGLRenderer: .resetGLState() is now .state.reset().');
- return this.state.reset();
- };
-
- WebGLRenderer.prototype.supportsFloatTextures = function () {
- console.warn('THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).');
- return this.extensions.get('OES_texture_float');
- };
-
- WebGLRenderer.prototype.supportsHalfFloatTextures = function () {
- console.warn('THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).');
- return this.extensions.get('OES_texture_half_float');
- };
-
- WebGLRenderer.prototype.supportsStandardDerivatives = function () {
- console.warn('THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).');
- return this.extensions.get('OES_standard_derivatives');
- };
-
- WebGLRenderer.prototype.supportsCompressedTextureS3TC = function () {
- console.warn('THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).');
- return this.extensions.get('WEBGL_compressed_texture_s3tc');
- };
-
- WebGLRenderer.prototype.supportsCompressedTexturePVRTC = function () {
- console.warn('THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).');
- return this.extensions.get('WEBGL_compressed_texture_pvrtc');
- };
-
- WebGLRenderer.prototype.supportsBlendMinMax = function () {
- console.warn('THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).');
- return this.extensions.get('EXT_blend_minmax');
- };
-
- WebGLRenderer.prototype.supportsVertexTextures = function () {
- console.warn('THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.');
- return this.capabilities.vertexTextures;
- };
-
- WebGLRenderer.prototype.supportsInstancedArrays = function () {
- console.warn('THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).');
- return this.extensions.get('ANGLE_instanced_arrays');
- };
-
- WebGLRenderer.prototype.enableScissorTest = function (boolean) {
- console.warn('THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().');
- this.setScissorTest(boolean);
- };
-
- WebGLRenderer.prototype.initMaterial = function () {
- console.warn('THREE.WebGLRenderer: .initMaterial() has been removed.');
- };
-
- WebGLRenderer.prototype.addPrePlugin = function () {
- console.warn('THREE.WebGLRenderer: .addPrePlugin() has been removed.');
- };
-
- WebGLRenderer.prototype.addPostPlugin = function () {
- console.warn('THREE.WebGLRenderer: .addPostPlugin() has been removed.');
- };
-
- WebGLRenderer.prototype.updateShadowMap = function () {
- console.warn('THREE.WebGLRenderer: .updateShadowMap() has been removed.');
- };
-
- WebGLRenderer.prototype.setFaceCulling = function () {
- console.warn('THREE.WebGLRenderer: .setFaceCulling() has been removed.');
- };
-
- WebGLRenderer.prototype.allocTextureUnit = function () {
- console.warn('THREE.WebGLRenderer: .allocTextureUnit() has been removed.');
- };
-
- WebGLRenderer.prototype.setTexture = function () {
- console.warn('THREE.WebGLRenderer: .setTexture() has been removed.');
- };
-
- WebGLRenderer.prototype.setTexture2D = function () {
- console.warn('THREE.WebGLRenderer: .setTexture2D() has been removed.');
- };
-
- WebGLRenderer.prototype.setTextureCube = function () {
- console.warn('THREE.WebGLRenderer: .setTextureCube() has been removed.');
- };
-
- WebGLRenderer.prototype.getActiveMipMapLevel = function () {
- console.warn('THREE.WebGLRenderer: .getActiveMipMapLevel() is now .getActiveMipmapLevel().');
- return this.getActiveMipmapLevel();
- };
-
- Object.defineProperties(WebGLRenderer.prototype, {
- shadowMapEnabled: {
- get: function () {
- return this.shadowMap.enabled;
- },
- set: function (value) {
- console.warn('THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.');
- this.shadowMap.enabled = value;
- }
- },
- shadowMapType: {
- get: function () {
- return this.shadowMap.type;
- },
- set: function (value) {
- console.warn('THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.');
- this.shadowMap.type = value;
- }
- },
- shadowMapCullFace: {
- get: function () {
- console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.');
- return undefined;
- },
- set: function () {
- console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.');
- }
- },
- context: {
- get: function () {
- console.warn('THREE.WebGLRenderer: .context has been removed. Use .getContext() instead.');
- return this.getContext();
- }
- },
- vr: {
- get: function () {
- console.warn('THREE.WebGLRenderer: .vr has been renamed to .xr');
- return this.xr;
- }
- },
- gammaInput: {
- get: function () {
- console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.');
- return false;
- },
- set: function () {
- console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.');
- }
- },
- gammaOutput: {
- get: function () {
- console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.');
- return false;
- },
- set: function (value) {
- console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.');
- this.outputEncoding = value === true ? sRGBEncoding : LinearEncoding;
- }
- },
- toneMappingWhitePoint: {
- get: function () {
- console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.');
- return 1.0;
- },
- set: function () {
- console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.');
+ Path.prototype.fromPoints = function (points) {
+ console.warn('THREE.Path: .fromPoints() has been renamed to .setFromPoints().');
+ return this.setFromPoints(points);
+ }; //
+
+
+ function AxisHelper(size) {
+ console.warn('THREE.AxisHelper has been renamed to THREE.AxesHelper.');
+ return new AxesHelper(size);
}
- }
- });
- Object.defineProperties(WebGLShadowMap.prototype, {
- cullFace: {
- get: function () {
- console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.');
- return undefined;
- },
- set: function () {
- console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.');
- }
- },
- renderReverseSided: {
- get: function () {
- console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.');
- return undefined;
- },
- set: function () {
- console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.');
- }
- },
- renderSingleSided: {
- get: function () {
- console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.');
- return undefined;
- },
- set: function () {
- console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.');
+
+ function BoundingBoxHelper(object, color) {
+ console.warn('THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.');
+ return new BoxHelper(object, color);
}
- }
- });
- function WebGLRenderTargetCube(width, height, options) {
- console.warn('THREE.WebGLRenderTargetCube( width, height, options ) is now WebGLCubeRenderTarget( size, options ).');
- return new WebGLCubeRenderTarget(width, options);
- } //
-
- Object.defineProperties(WebGLRenderTarget.prototype, {
- wrapS: {
- get: function () {
- console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.');
- return this.texture.wrapS;
- },
- set: function (value) {
- console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.');
- this.texture.wrapS = value;
- }
- },
- wrapT: {
- get: function () {
- console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.');
- return this.texture.wrapT;
- },
- set: function (value) {
- console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.');
- this.texture.wrapT = value;
- }
- },
- magFilter: {
- get: function () {
- console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.');
- return this.texture.magFilter;
- },
- set: function (value) {
- console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.');
- this.texture.magFilter = value;
- }
- },
- minFilter: {
- get: function () {
- console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.');
- return this.texture.minFilter;
- },
- set: function (value) {
- console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.');
- this.texture.minFilter = value;
- }
- },
- anisotropy: {
- get: function () {
- console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.');
- return this.texture.anisotropy;
- },
- set: function (value) {
- console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.');
- this.texture.anisotropy = value;
- }
- },
- offset: {
- get: function () {
- console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.');
- return this.texture.offset;
- },
- set: function (value) {
- console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.');
- this.texture.offset = value;
- }
- },
- repeat: {
- get: function () {
- console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.');
- return this.texture.repeat;
- },
- set: function (value) {
- console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.');
- this.texture.repeat = value;
- }
- },
- format: {
- get: function () {
- console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.');
- return this.texture.format;
- },
- set: function (value) {
- console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.');
- this.texture.format = value;
- }
- },
- type: {
- get: function () {
- console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.');
- return this.texture.type;
- },
- set: function (value) {
- console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.');
- this.texture.type = value;
- }
- },
- generateMipmaps: {
- get: function () {
- console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.');
- return this.texture.generateMipmaps;
- },
- set: function (value) {
- console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.');
- this.texture.generateMipmaps = value;
+
+ function EdgesHelper(object, hex) {
+ console.warn('THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.');
+ return new LineSegments(new EdgesGeometry(object.geometry), new LineBasicMaterial({
+ color: hex !== undefined ? hex : 0xffffff
+ }));
}
- }
- }); //
-
- Audio.prototype.load = function (file) {
- console.warn('THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.');
- const scope = this;
- const audioLoader = new AudioLoader();
- audioLoader.load(file, function (buffer) {
- scope.setBuffer(buffer);
- });
- return this;
- };
-
- AudioAnalyser.prototype.getData = function () {
- console.warn('THREE.AudioAnalyser: .getData() is now .getFrequencyData().');
- return this.getFrequencyData();
- }; //
-
-
- CubeCamera.prototype.updateCubeMap = function (renderer, scene) {
- console.warn('THREE.CubeCamera: .updateCubeMap() is now .update().');
- return this.update(renderer, scene);
- };
-
- CubeCamera.prototype.clear = function (renderer, color, depth, stencil) {
- console.warn('THREE.CubeCamera: .clear() is now .renderTarget.clear().');
- return this.renderTarget.clear(renderer, color, depth, stencil);
- };
-
- ImageUtils.crossOrigin = undefined;
-
- ImageUtils.loadTexture = function (url, mapping, onLoad, onError) {
- console.warn('THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.');
- const loader = new TextureLoader();
- loader.setCrossOrigin(this.crossOrigin);
- const texture = loader.load(url, onLoad, undefined, onError);
- if (mapping) texture.mapping = mapping;
- return texture;
- };
-
- ImageUtils.loadTextureCube = function (urls, mapping, onLoad, onError) {
- console.warn('THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.');
- const loader = new CubeTextureLoader();
- loader.setCrossOrigin(this.crossOrigin);
- const texture = loader.load(urls, onLoad, undefined, onError);
- if (mapping) texture.mapping = mapping;
- return texture;
- };
-
- ImageUtils.loadCompressedTexture = function () {
- console.error('THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.');
- };
-
- ImageUtils.loadCompressedTextureCube = function () {
- console.error('THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.');
- }; //
-
-
- function CanvasRenderer() {
- console.error('THREE.CanvasRenderer has been removed');
- } //
-
- function JSONLoader() {
- console.error('THREE.JSONLoader has been removed.');
- } //
-
- const SceneUtils = {
- createMultiMaterialObject: function () {
- console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
- },
- detach: function () {
- console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
- },
- attach: function () {
- console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
- }
- }; //
- function LensFlare() {
- console.error('THREE.LensFlare has been moved to /examples/jsm/objects/Lensflare.js');
- }
+ GridHelper.prototype.setColors = function () {
+ console.error('THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.');
+ };
+
+ SkeletonHelper.prototype.update = function () {
+ console.error('THREE.SkeletonHelper: update() no longer needs to be called.');
+ };
+
+ function WireframeHelper(object, hex) {
+ console.warn('THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.');
+ return new LineSegments(new WireframeGeometry(object.geometry), new LineBasicMaterial({
+ color: hex !== undefined ? hex : 0xffffff
+ }));
+ } //
+
+ Loader.prototype.extractUrlBase = function (url) {
+ console.warn('THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.');
+ return LoaderUtils.extractUrlBase(url);
+ };
- if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
- /* eslint-disable no-undef */
- __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('register', {
- detail: {
- revision: REVISION
+ Loader.Handlers = {
+ add: function () {
+ console.error('THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.');
+ },
+ get: function () {
+ console.error('THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.');
+ }
+ };
+
+ function XHRLoader(manager) {
+ console.warn('THREE.XHRLoader has been renamed to THREE.FileLoader.');
+ return new FileLoader(manager);
}
- }));
- /* eslint-enable no-undef */
- }
+ function BinaryTextureLoader(manager) {
+ console.warn('THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.');
+ return new DataTextureLoader(manager);
+ } //
- if (typeof window !== 'undefined') {
- if (window.__THREE__) {
- console.warn('WARNING: Multiple instances of Three.js being imported.');
- } else {
- window.__THREE__ = REVISION;
- }
- }
+ Box2.prototype.center = function (optionalTarget) {
+ console.warn('THREE.Box2: .center() has been renamed to .getCenter().');
+ return this.getCenter(optionalTarget);
+ };
+
+ Box2.prototype.empty = function () {
+ console.warn('THREE.Box2: .empty() has been renamed to .isEmpty().');
+ return this.isEmpty();
+ };
+
+ Box2.prototype.isIntersectionBox = function (box) {
+ console.warn('THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().');
+ return this.intersectsBox(box);
+ };
+
+ Box2.prototype.size = function (optionalTarget) {
+ console.warn('THREE.Box2: .size() has been renamed to .getSize().');
+ return this.getSize(optionalTarget);
+ }; //
+
+
+ Box3.prototype.center = function (optionalTarget) {
+ console.warn('THREE.Box3: .center() has been renamed to .getCenter().');
+ return this.getCenter(optionalTarget);
+ };
+
+ Box3.prototype.empty = function () {
+ console.warn('THREE.Box3: .empty() has been renamed to .isEmpty().');
+ return this.isEmpty();
+ };
+
+ Box3.prototype.isIntersectionBox = function (box) {
+ console.warn('THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().');
+ return this.intersectsBox(box);
+ };
+
+ Box3.prototype.isIntersectionSphere = function (sphere) {
+ console.warn('THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().');
+ return this.intersectsSphere(sphere);
+ };
+
+ Box3.prototype.size = function (optionalTarget) {
+ console.warn('THREE.Box3: .size() has been renamed to .getSize().');
+ return this.getSize(optionalTarget);
+ }; //
+
+
+ Sphere.prototype.empty = function () {
+ console.warn('THREE.Sphere: .empty() has been renamed to .isEmpty().');
+ return this.isEmpty();
+ }; //
+
+
+ Frustum.prototype.setFromMatrix = function (m) {
+ console.warn('THREE.Frustum: .setFromMatrix() has been renamed to .setFromProjectionMatrix().');
+ return this.setFromProjectionMatrix(m);
+ }; //
+
+
+ Line3.prototype.center = function (optionalTarget) {
+ console.warn('THREE.Line3: .center() has been renamed to .getCenter().');
+ return this.getCenter(optionalTarget);
+ }; //
+
+
+ Matrix3.prototype.flattenToArrayOffset = function (array, offset) {
+ console.warn('THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.');
+ return this.toArray(array, offset);
+ };
+
+ Matrix3.prototype.multiplyVector3 = function (vector) {
+ console.warn('THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.');
+ return vector.applyMatrix3(this);
+ };
+
+ Matrix3.prototype.multiplyVector3Array = function () {
+ console.error('THREE.Matrix3: .multiplyVector3Array() has been removed.');
+ };
+
+ Matrix3.prototype.applyToBufferAttribute = function (attribute) {
+ console.warn('THREE.Matrix3: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix3( matrix ) instead.');
+ return attribute.applyMatrix3(this);
+ };
+
+ Matrix3.prototype.applyToVector3Array = function () {
+ console.error('THREE.Matrix3: .applyToVector3Array() has been removed.');
+ };
+
+ Matrix3.prototype.getInverse = function (matrix) {
+ console.warn('THREE.Matrix3: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.');
+ return this.copy(matrix).invert();
+ }; //
+
+
+ Matrix4.prototype.extractPosition = function (m) {
+ console.warn('THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().');
+ return this.copyPosition(m);
+ };
+
+ Matrix4.prototype.flattenToArrayOffset = function (array, offset) {
+ console.warn('THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.');
+ return this.toArray(array, offset);
+ };
+
+ Matrix4.prototype.getPosition = function () {
+ console.warn('THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.');
+ return new Vector3().setFromMatrixColumn(this, 3);
+ };
+
+ Matrix4.prototype.setRotationFromQuaternion = function (q) {
+ console.warn('THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().');
+ return this.makeRotationFromQuaternion(q);
+ };
+
+ Matrix4.prototype.multiplyToArray = function () {
+ console.warn('THREE.Matrix4: .multiplyToArray() has been removed.');
+ };
+
+ Matrix4.prototype.multiplyVector3 = function (vector) {
+ console.warn('THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.');
+ return vector.applyMatrix4(this);
+ };
+
+ Matrix4.prototype.multiplyVector4 = function (vector) {
+ console.warn('THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.');
+ return vector.applyMatrix4(this);
+ };
+
+ Matrix4.prototype.multiplyVector3Array = function () {
+ console.error('THREE.Matrix4: .multiplyVector3Array() has been removed.');
+ };
+
+ Matrix4.prototype.rotateAxis = function (v) {
+ console.warn('THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.');
+ v.transformDirection(this);
+ };
+
+ Matrix4.prototype.crossVector = function (vector) {
+ console.warn('THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.');
+ return vector.applyMatrix4(this);
+ };
+
+ Matrix4.prototype.translate = function () {
+ console.error('THREE.Matrix4: .translate() has been removed.');
+ };
+
+ Matrix4.prototype.rotateX = function () {
+ console.error('THREE.Matrix4: .rotateX() has been removed.');
+ };
+
+ Matrix4.prototype.rotateY = function () {
+ console.error('THREE.Matrix4: .rotateY() has been removed.');
+ };
+
+ Matrix4.prototype.rotateZ = function () {
+ console.error('THREE.Matrix4: .rotateZ() has been removed.');
+ };
+
+ Matrix4.prototype.rotateByAxis = function () {
+ console.error('THREE.Matrix4: .rotateByAxis() has been removed.');
+ };
+
+ Matrix4.prototype.applyToBufferAttribute = function (attribute) {
+ console.warn('THREE.Matrix4: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix4( matrix ) instead.');
+ return attribute.applyMatrix4(this);
+ };
+
+ Matrix4.prototype.applyToVector3Array = function () {
+ console.error('THREE.Matrix4: .applyToVector3Array() has been removed.');
+ };
+
+ Matrix4.prototype.makeFrustum = function (left, right, bottom, top, near, far) {
+ console.warn('THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.');
+ return this.makePerspective(left, right, top, bottom, near, far);
+ };
+
+ Matrix4.prototype.getInverse = function (matrix) {
+ console.warn('THREE.Matrix4: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.');
+ return this.copy(matrix).invert();
+ }; //
+
+
+ Plane.prototype.isIntersectionLine = function (line) {
+ console.warn('THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().');
+ return this.intersectsLine(line);
+ }; //
+
+
+ Quaternion.prototype.multiplyVector3 = function (vector) {
+ console.warn('THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.');
+ return vector.applyQuaternion(this);
+ };
+
+ Quaternion.prototype.inverse = function () {
+ console.warn('THREE.Quaternion: .inverse() has been renamed to invert().');
+ return this.invert();
+ }; //
+
+
+ Ray.prototype.isIntersectionBox = function (box) {
+ console.warn('THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().');
+ return this.intersectsBox(box);
+ };
+
+ Ray.prototype.isIntersectionPlane = function (plane) {
+ console.warn('THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().');
+ return this.intersectsPlane(plane);
+ };
+
+ Ray.prototype.isIntersectionSphere = function (sphere) {
+ console.warn('THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().');
+ return this.intersectsSphere(sphere);
+ }; //
+
+
+ Triangle.prototype.area = function () {
+ console.warn('THREE.Triangle: .area() has been renamed to .getArea().');
+ return this.getArea();
+ };
+
+ Triangle.prototype.barycoordFromPoint = function (point, target) {
+ console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().');
+ return this.getBarycoord(point, target);
+ };
+
+ Triangle.prototype.midpoint = function (target) {
+ console.warn('THREE.Triangle: .midpoint() has been renamed to .getMidpoint().');
+ return this.getMidpoint(target);
+ };
+
+ Triangle.prototypenormal = function (target) {
+ console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().');
+ return this.getNormal(target);
+ };
- exports.ACESFilmicToneMapping = ACESFilmicToneMapping;
- exports.AddEquation = AddEquation;
- exports.AddOperation = AddOperation;
- exports.AdditiveAnimationBlendMode = AdditiveAnimationBlendMode;
- exports.AdditiveBlending = AdditiveBlending;
- exports.AlphaFormat = AlphaFormat;
- exports.AlwaysDepth = AlwaysDepth;
- exports.AlwaysStencilFunc = AlwaysStencilFunc;
- exports.AmbientLight = AmbientLight;
- exports.AmbientLightProbe = AmbientLightProbe;
- exports.AnimationClip = AnimationClip;
- exports.AnimationLoader = AnimationLoader;
- exports.AnimationMixer = AnimationMixer;
- exports.AnimationObjectGroup = AnimationObjectGroup;
- exports.AnimationUtils = AnimationUtils;
- exports.ArcCurve = ArcCurve;
- exports.ArrayCamera = ArrayCamera;
- exports.ArrowHelper = ArrowHelper;
- exports.Audio = Audio;
- exports.AudioAnalyser = AudioAnalyser;
- exports.AudioContext = AudioContext;
- exports.AudioListener = AudioListener;
- exports.AudioLoader = AudioLoader;
- exports.AxesHelper = AxesHelper;
- exports.AxisHelper = AxisHelper;
- exports.BackSide = BackSide;
- exports.BasicDepthPacking = BasicDepthPacking;
- exports.BasicShadowMap = BasicShadowMap;
- exports.BinaryTextureLoader = BinaryTextureLoader;
- exports.Bone = Bone;
- exports.BooleanKeyframeTrack = BooleanKeyframeTrack;
- exports.BoundingBoxHelper = BoundingBoxHelper;
- exports.Box2 = Box2;
- exports.Box3 = Box3;
- exports.Box3Helper = Box3Helper;
- exports.BoxBufferGeometry = BoxGeometry;
- exports.BoxGeometry = BoxGeometry;
- exports.BoxHelper = BoxHelper;
- exports.BufferAttribute = BufferAttribute;
- exports.BufferGeometry = BufferGeometry;
- exports.BufferGeometryLoader = BufferGeometryLoader;
- exports.ByteType = ByteType;
- exports.Cache = Cache;
- exports.Camera = Camera;
- exports.CameraHelper = CameraHelper;
- exports.CanvasRenderer = CanvasRenderer;
- exports.CanvasTexture = CanvasTexture;
- exports.CatmullRomCurve3 = CatmullRomCurve3;
- exports.CineonToneMapping = CineonToneMapping;
- exports.CircleBufferGeometry = CircleGeometry;
- exports.CircleGeometry = CircleGeometry;
- exports.ClampToEdgeWrapping = ClampToEdgeWrapping;
- exports.Clock = Clock;
- exports.Color = Color;
- exports.ColorKeyframeTrack = ColorKeyframeTrack;
- exports.CompressedTexture = CompressedTexture;
- exports.CompressedTextureLoader = CompressedTextureLoader;
- exports.ConeBufferGeometry = ConeGeometry;
- exports.ConeGeometry = ConeGeometry;
- exports.CubeCamera = CubeCamera;
- exports.CubeReflectionMapping = CubeReflectionMapping;
- exports.CubeRefractionMapping = CubeRefractionMapping;
- exports.CubeTexture = CubeTexture;
- exports.CubeTextureLoader = CubeTextureLoader;
- exports.CubeUVReflectionMapping = CubeUVReflectionMapping;
- exports.CubeUVRefractionMapping = CubeUVRefractionMapping;
- exports.CubicBezierCurve = CubicBezierCurve;
- exports.CubicBezierCurve3 = CubicBezierCurve3;
- exports.CubicInterpolant = CubicInterpolant;
- exports.CullFaceBack = CullFaceBack;
- exports.CullFaceFront = CullFaceFront;
- exports.CullFaceFrontBack = CullFaceFrontBack;
- exports.CullFaceNone = CullFaceNone;
- exports.Curve = Curve;
- exports.CurvePath = CurvePath;
- exports.CustomBlending = CustomBlending;
- exports.CustomToneMapping = CustomToneMapping;
- exports.CylinderBufferGeometry = CylinderGeometry;
- exports.CylinderGeometry = CylinderGeometry;
- exports.Cylindrical = Cylindrical;
- exports.DataTexture = DataTexture;
- exports.DataTexture2DArray = DataTexture2DArray;
- exports.DataTexture3D = DataTexture3D;
- exports.DataTextureLoader = DataTextureLoader;
- exports.DataUtils = DataUtils;
- exports.DecrementStencilOp = DecrementStencilOp;
- exports.DecrementWrapStencilOp = DecrementWrapStencilOp;
- exports.DefaultLoadingManager = DefaultLoadingManager;
- exports.DepthFormat = DepthFormat;
- exports.DepthStencilFormat = DepthStencilFormat;
- exports.DepthTexture = DepthTexture;
- exports.DirectionalLight = DirectionalLight;
- exports.DirectionalLightHelper = DirectionalLightHelper;
- exports.DiscreteInterpolant = DiscreteInterpolant;
- exports.DodecahedronBufferGeometry = DodecahedronGeometry;
- exports.DodecahedronGeometry = DodecahedronGeometry;
- exports.DoubleSide = DoubleSide;
- exports.DstAlphaFactor = DstAlphaFactor;
- exports.DstColorFactor = DstColorFactor;
- exports.DynamicBufferAttribute = DynamicBufferAttribute;
- exports.DynamicCopyUsage = DynamicCopyUsage;
- exports.DynamicDrawUsage = DynamicDrawUsage;
- exports.DynamicReadUsage = DynamicReadUsage;
- exports.EdgesGeometry = EdgesGeometry;
- exports.EdgesHelper = EdgesHelper;
- exports.EllipseCurve = EllipseCurve;
- exports.EqualDepth = EqualDepth;
- exports.EqualStencilFunc = EqualStencilFunc;
- exports.EquirectangularReflectionMapping = EquirectangularReflectionMapping;
- exports.EquirectangularRefractionMapping = EquirectangularRefractionMapping;
- exports.Euler = Euler;
- exports.EventDispatcher = EventDispatcher;
- exports.ExtrudeBufferGeometry = ExtrudeGeometry;
- exports.ExtrudeGeometry = ExtrudeGeometry;
- exports.FaceColors = FaceColors;
- exports.FileLoader = FileLoader;
- exports.FlatShading = FlatShading;
- exports.Float16BufferAttribute = Float16BufferAttribute;
- exports.Float32Attribute = Float32Attribute;
- exports.Float32BufferAttribute = Float32BufferAttribute;
- exports.Float64Attribute = Float64Attribute;
- exports.Float64BufferAttribute = Float64BufferAttribute;
- exports.FloatType = FloatType;
- exports.Fog = Fog;
- exports.FogExp2 = FogExp2;
- exports.Font = Font;
- exports.FontLoader = FontLoader;
- exports.FrontSide = FrontSide;
- exports.Frustum = Frustum;
- exports.GLBufferAttribute = GLBufferAttribute;
- exports.GLSL1 = GLSL1;
- exports.GLSL3 = GLSL3;
- exports.GammaEncoding = GammaEncoding;
- exports.GreaterDepth = GreaterDepth;
- exports.GreaterEqualDepth = GreaterEqualDepth;
- exports.GreaterEqualStencilFunc = GreaterEqualStencilFunc;
- exports.GreaterStencilFunc = GreaterStencilFunc;
- exports.GridHelper = GridHelper;
- exports.Group = Group;
- exports.HalfFloatType = HalfFloatType;
- exports.HemisphereLight = HemisphereLight;
- exports.HemisphereLightHelper = HemisphereLightHelper;
- exports.HemisphereLightProbe = HemisphereLightProbe;
- exports.IcosahedronBufferGeometry = IcosahedronGeometry;
- exports.IcosahedronGeometry = IcosahedronGeometry;
- exports.ImageBitmapLoader = ImageBitmapLoader;
- exports.ImageLoader = ImageLoader;
- exports.ImageUtils = ImageUtils;
- exports.ImmediateRenderObject = ImmediateRenderObject;
- exports.IncrementStencilOp = IncrementStencilOp;
- exports.IncrementWrapStencilOp = IncrementWrapStencilOp;
- exports.InstancedBufferAttribute = InstancedBufferAttribute;
- exports.InstancedBufferGeometry = InstancedBufferGeometry;
- exports.InstancedInterleavedBuffer = InstancedInterleavedBuffer;
- exports.InstancedMesh = InstancedMesh;
- exports.Int16Attribute = Int16Attribute;
- exports.Int16BufferAttribute = Int16BufferAttribute;
- exports.Int32Attribute = Int32Attribute;
- exports.Int32BufferAttribute = Int32BufferAttribute;
- exports.Int8Attribute = Int8Attribute;
- exports.Int8BufferAttribute = Int8BufferAttribute;
- exports.IntType = IntType;
- exports.InterleavedBuffer = InterleavedBuffer;
- exports.InterleavedBufferAttribute = InterleavedBufferAttribute;
- exports.Interpolant = Interpolant;
- exports.InterpolateDiscrete = InterpolateDiscrete;
- exports.InterpolateLinear = InterpolateLinear;
- exports.InterpolateSmooth = InterpolateSmooth;
- exports.InvertStencilOp = InvertStencilOp;
- exports.JSONLoader = JSONLoader;
- exports.KeepStencilOp = KeepStencilOp;
- exports.KeyframeTrack = KeyframeTrack;
- exports.LOD = LOD;
- exports.LatheBufferGeometry = LatheGeometry;
- exports.LatheGeometry = LatheGeometry;
- exports.Layers = Layers;
- exports.LensFlare = LensFlare;
- exports.LessDepth = LessDepth;
- exports.LessEqualDepth = LessEqualDepth;
- exports.LessEqualStencilFunc = LessEqualStencilFunc;
- exports.LessStencilFunc = LessStencilFunc;
- exports.Light = Light;
- exports.LightProbe = LightProbe;
- exports.Line = Line;
- exports.Line3 = Line3;
- exports.LineBasicMaterial = LineBasicMaterial;
- exports.LineCurve = LineCurve;
- exports.LineCurve3 = LineCurve3;
- exports.LineDashedMaterial = LineDashedMaterial;
- exports.LineLoop = LineLoop;
- exports.LinePieces = LinePieces;
- exports.LineSegments = LineSegments;
- exports.LineStrip = LineStrip;
- exports.LinearEncoding = LinearEncoding;
- exports.LinearFilter = LinearFilter;
- exports.LinearInterpolant = LinearInterpolant;
- exports.LinearMipMapLinearFilter = LinearMipMapLinearFilter;
- exports.LinearMipMapNearestFilter = LinearMipMapNearestFilter;
- exports.LinearMipmapLinearFilter = LinearMipmapLinearFilter;
- exports.LinearMipmapNearestFilter = LinearMipmapNearestFilter;
- exports.LinearToneMapping = LinearToneMapping;
- exports.Loader = Loader;
- exports.LoaderUtils = LoaderUtils;
- exports.LoadingManager = LoadingManager;
- exports.LogLuvEncoding = LogLuvEncoding;
- exports.LoopOnce = LoopOnce;
- exports.LoopPingPong = LoopPingPong;
- exports.LoopRepeat = LoopRepeat;
- exports.LuminanceAlphaFormat = LuminanceAlphaFormat;
- exports.LuminanceFormat = LuminanceFormat;
- exports.MOUSE = MOUSE;
- exports.Material = Material;
- exports.MaterialLoader = MaterialLoader;
- exports.Math = MathUtils;
- exports.MathUtils = MathUtils;
- exports.Matrix3 = Matrix3;
- exports.Matrix4 = Matrix4;
- exports.MaxEquation = MaxEquation;
- exports.Mesh = Mesh;
- exports.MeshBasicMaterial = MeshBasicMaterial;
- exports.MeshDepthMaterial = MeshDepthMaterial;
- exports.MeshDistanceMaterial = MeshDistanceMaterial;
- exports.MeshFaceMaterial = MeshFaceMaterial;
- exports.MeshLambertMaterial = MeshLambertMaterial;
- exports.MeshMatcapMaterial = MeshMatcapMaterial;
- exports.MeshNormalMaterial = MeshNormalMaterial;
- exports.MeshPhongMaterial = MeshPhongMaterial;
- exports.MeshPhysicalMaterial = MeshPhysicalMaterial;
- exports.MeshStandardMaterial = MeshStandardMaterial;
- exports.MeshToonMaterial = MeshToonMaterial;
- exports.MinEquation = MinEquation;
- exports.MirroredRepeatWrapping = MirroredRepeatWrapping;
- exports.MixOperation = MixOperation;
- exports.MultiMaterial = MultiMaterial;
- exports.MultiplyBlending = MultiplyBlending;
- exports.MultiplyOperation = MultiplyOperation;
- exports.NearestFilter = NearestFilter;
- exports.NearestMipMapLinearFilter = NearestMipMapLinearFilter;
- exports.NearestMipMapNearestFilter = NearestMipMapNearestFilter;
- exports.NearestMipmapLinearFilter = NearestMipmapLinearFilter;
- exports.NearestMipmapNearestFilter = NearestMipmapNearestFilter;
- exports.NeverDepth = NeverDepth;
- exports.NeverStencilFunc = NeverStencilFunc;
- exports.NoBlending = NoBlending;
- exports.NoColors = NoColors;
- exports.NoToneMapping = NoToneMapping;
- exports.NormalAnimationBlendMode = NormalAnimationBlendMode;
- exports.NormalBlending = NormalBlending;
- exports.NotEqualDepth = NotEqualDepth;
- exports.NotEqualStencilFunc = NotEqualStencilFunc;
- exports.NumberKeyframeTrack = NumberKeyframeTrack;
- exports.Object3D = Object3D;
- exports.ObjectLoader = ObjectLoader;
- exports.ObjectSpaceNormalMap = ObjectSpaceNormalMap;
- exports.OctahedronBufferGeometry = OctahedronGeometry;
- exports.OctahedronGeometry = OctahedronGeometry;
- exports.OneFactor = OneFactor;
- exports.OneMinusDstAlphaFactor = OneMinusDstAlphaFactor;
- exports.OneMinusDstColorFactor = OneMinusDstColorFactor;
- exports.OneMinusSrcAlphaFactor = OneMinusSrcAlphaFactor;
- exports.OneMinusSrcColorFactor = OneMinusSrcColorFactor;
- exports.OrthographicCamera = OrthographicCamera;
- exports.PCFShadowMap = PCFShadowMap;
- exports.PCFSoftShadowMap = PCFSoftShadowMap;
- exports.PMREMGenerator = PMREMGenerator;
- exports.ParametricBufferGeometry = ParametricGeometry;
- exports.ParametricGeometry = ParametricGeometry;
- exports.Particle = Particle;
- exports.ParticleBasicMaterial = ParticleBasicMaterial;
- exports.ParticleSystem = ParticleSystem;
- exports.ParticleSystemMaterial = ParticleSystemMaterial;
- exports.Path = Path;
- exports.PerspectiveCamera = PerspectiveCamera;
- exports.Plane = Plane;
- exports.PlaneBufferGeometry = PlaneGeometry;
- exports.PlaneGeometry = PlaneGeometry;
- exports.PlaneHelper = PlaneHelper;
- exports.PointCloud = PointCloud;
- exports.PointCloudMaterial = PointCloudMaterial;
- exports.PointLight = PointLight;
- exports.PointLightHelper = PointLightHelper;
- exports.Points = Points;
- exports.PointsMaterial = PointsMaterial;
- exports.PolarGridHelper = PolarGridHelper;
- exports.PolyhedronBufferGeometry = PolyhedronGeometry;
- exports.PolyhedronGeometry = PolyhedronGeometry;
- exports.PositionalAudio = PositionalAudio;
- exports.PropertyBinding = PropertyBinding;
- exports.PropertyMixer = PropertyMixer;
- exports.QuadraticBezierCurve = QuadraticBezierCurve;
- exports.QuadraticBezierCurve3 = QuadraticBezierCurve3;
- exports.Quaternion = Quaternion;
- exports.QuaternionKeyframeTrack = QuaternionKeyframeTrack;
- exports.QuaternionLinearInterpolant = QuaternionLinearInterpolant;
- exports.REVISION = REVISION;
- exports.RGBADepthPacking = RGBADepthPacking;
- exports.RGBAFormat = RGBAFormat;
- exports.RGBAIntegerFormat = RGBAIntegerFormat;
- exports.RGBA_ASTC_10x10_Format = RGBA_ASTC_10x10_Format;
- exports.RGBA_ASTC_10x5_Format = RGBA_ASTC_10x5_Format;
- exports.RGBA_ASTC_10x6_Format = RGBA_ASTC_10x6_Format;
- exports.RGBA_ASTC_10x8_Format = RGBA_ASTC_10x8_Format;
- exports.RGBA_ASTC_12x10_Format = RGBA_ASTC_12x10_Format;
- exports.RGBA_ASTC_12x12_Format = RGBA_ASTC_12x12_Format;
- exports.RGBA_ASTC_4x4_Format = RGBA_ASTC_4x4_Format;
- exports.RGBA_ASTC_5x4_Format = RGBA_ASTC_5x4_Format;
- exports.RGBA_ASTC_5x5_Format = RGBA_ASTC_5x5_Format;
- exports.RGBA_ASTC_6x5_Format = RGBA_ASTC_6x5_Format;
- exports.RGBA_ASTC_6x6_Format = RGBA_ASTC_6x6_Format;
- exports.RGBA_ASTC_8x5_Format = RGBA_ASTC_8x5_Format;
- exports.RGBA_ASTC_8x6_Format = RGBA_ASTC_8x6_Format;
- exports.RGBA_ASTC_8x8_Format = RGBA_ASTC_8x8_Format;
- exports.RGBA_BPTC_Format = RGBA_BPTC_Format;
- exports.RGBA_ETC2_EAC_Format = RGBA_ETC2_EAC_Format;
- exports.RGBA_PVRTC_2BPPV1_Format = RGBA_PVRTC_2BPPV1_Format;
- exports.RGBA_PVRTC_4BPPV1_Format = RGBA_PVRTC_4BPPV1_Format;
- exports.RGBA_S3TC_DXT1_Format = RGBA_S3TC_DXT1_Format;
- exports.RGBA_S3TC_DXT3_Format = RGBA_S3TC_DXT3_Format;
- exports.RGBA_S3TC_DXT5_Format = RGBA_S3TC_DXT5_Format;
- exports.RGBDEncoding = RGBDEncoding;
- exports.RGBEEncoding = RGBEEncoding;
- exports.RGBEFormat = RGBEFormat;
- exports.RGBFormat = RGBFormat;
- exports.RGBIntegerFormat = RGBIntegerFormat;
- exports.RGBM16Encoding = RGBM16Encoding;
- exports.RGBM7Encoding = RGBM7Encoding;
- exports.RGB_ETC1_Format = RGB_ETC1_Format;
- exports.RGB_ETC2_Format = RGB_ETC2_Format;
- exports.RGB_PVRTC_2BPPV1_Format = RGB_PVRTC_2BPPV1_Format;
- exports.RGB_PVRTC_4BPPV1_Format = RGB_PVRTC_4BPPV1_Format;
- exports.RGB_S3TC_DXT1_Format = RGB_S3TC_DXT1_Format;
- exports.RGFormat = RGFormat;
- exports.RGIntegerFormat = RGIntegerFormat;
- exports.RawShaderMaterial = RawShaderMaterial;
- exports.Ray = Ray;
- exports.Raycaster = Raycaster;
- exports.RectAreaLight = RectAreaLight;
- exports.RedFormat = RedFormat;
- exports.RedIntegerFormat = RedIntegerFormat;
- exports.ReinhardToneMapping = ReinhardToneMapping;
- exports.RepeatWrapping = RepeatWrapping;
- exports.ReplaceStencilOp = ReplaceStencilOp;
- exports.ReverseSubtractEquation = ReverseSubtractEquation;
- exports.RingBufferGeometry = RingGeometry;
- exports.RingGeometry = RingGeometry;
- exports.SRGB8_ALPHA8_ASTC_10x10_Format = SRGB8_ALPHA8_ASTC_10x10_Format;
- exports.SRGB8_ALPHA8_ASTC_10x5_Format = SRGB8_ALPHA8_ASTC_10x5_Format;
- exports.SRGB8_ALPHA8_ASTC_10x6_Format = SRGB8_ALPHA8_ASTC_10x6_Format;
- exports.SRGB8_ALPHA8_ASTC_10x8_Format = SRGB8_ALPHA8_ASTC_10x8_Format;
- exports.SRGB8_ALPHA8_ASTC_12x10_Format = SRGB8_ALPHA8_ASTC_12x10_Format;
- exports.SRGB8_ALPHA8_ASTC_12x12_Format = SRGB8_ALPHA8_ASTC_12x12_Format;
- exports.SRGB8_ALPHA8_ASTC_4x4_Format = SRGB8_ALPHA8_ASTC_4x4_Format;
- exports.SRGB8_ALPHA8_ASTC_5x4_Format = SRGB8_ALPHA8_ASTC_5x4_Format;
- exports.SRGB8_ALPHA8_ASTC_5x5_Format = SRGB8_ALPHA8_ASTC_5x5_Format;
- exports.SRGB8_ALPHA8_ASTC_6x5_Format = SRGB8_ALPHA8_ASTC_6x5_Format;
- exports.SRGB8_ALPHA8_ASTC_6x6_Format = SRGB8_ALPHA8_ASTC_6x6_Format;
- exports.SRGB8_ALPHA8_ASTC_8x5_Format = SRGB8_ALPHA8_ASTC_8x5_Format;
- exports.SRGB8_ALPHA8_ASTC_8x6_Format = SRGB8_ALPHA8_ASTC_8x6_Format;
- exports.SRGB8_ALPHA8_ASTC_8x8_Format = SRGB8_ALPHA8_ASTC_8x8_Format;
- exports.Scene = Scene;
- exports.SceneUtils = SceneUtils;
- exports.ShaderChunk = ShaderChunk;
- exports.ShaderLib = ShaderLib;
- exports.ShaderMaterial = ShaderMaterial;
- exports.ShadowMaterial = ShadowMaterial;
- exports.Shape = Shape;
- exports.ShapeBufferGeometry = ShapeGeometry;
- exports.ShapeGeometry = ShapeGeometry;
- exports.ShapePath = ShapePath;
- exports.ShapeUtils = ShapeUtils;
- exports.ShortType = ShortType;
- exports.Skeleton = Skeleton;
- exports.SkeletonHelper = SkeletonHelper;
- exports.SkinnedMesh = SkinnedMesh;
- exports.SmoothShading = SmoothShading;
- exports.Sphere = Sphere;
- exports.SphereBufferGeometry = SphereGeometry;
- exports.SphereGeometry = SphereGeometry;
- exports.Spherical = Spherical;
- exports.SphericalHarmonics3 = SphericalHarmonics3;
- exports.SplineCurve = SplineCurve;
- exports.SpotLight = SpotLight;
- exports.SpotLightHelper = SpotLightHelper;
- exports.Sprite = Sprite;
- exports.SpriteMaterial = SpriteMaterial;
- exports.SrcAlphaFactor = SrcAlphaFactor;
- exports.SrcAlphaSaturateFactor = SrcAlphaSaturateFactor;
- exports.SrcColorFactor = SrcColorFactor;
- exports.StaticCopyUsage = StaticCopyUsage;
- exports.StaticDrawUsage = StaticDrawUsage;
- exports.StaticReadUsage = StaticReadUsage;
- exports.StereoCamera = StereoCamera;
- exports.StreamCopyUsage = StreamCopyUsage;
- exports.StreamDrawUsage = StreamDrawUsage;
- exports.StreamReadUsage = StreamReadUsage;
- exports.StringKeyframeTrack = StringKeyframeTrack;
- exports.SubtractEquation = SubtractEquation;
- exports.SubtractiveBlending = SubtractiveBlending;
- exports.TOUCH = TOUCH;
- exports.TangentSpaceNormalMap = TangentSpaceNormalMap;
- exports.TetrahedronBufferGeometry = TetrahedronGeometry;
- exports.TetrahedronGeometry = TetrahedronGeometry;
- exports.TextBufferGeometry = TextGeometry;
- exports.TextGeometry = TextGeometry;
- exports.Texture = Texture;
- exports.TextureLoader = TextureLoader;
- exports.TorusBufferGeometry = TorusGeometry;
- exports.TorusGeometry = TorusGeometry;
- exports.TorusKnotBufferGeometry = TorusKnotGeometry;
- exports.TorusKnotGeometry = TorusKnotGeometry;
- exports.Triangle = Triangle;
- exports.TriangleFanDrawMode = TriangleFanDrawMode;
- exports.TriangleStripDrawMode = TriangleStripDrawMode;
- exports.TrianglesDrawMode = TrianglesDrawMode;
- exports.TubeBufferGeometry = TubeGeometry;
- exports.TubeGeometry = TubeGeometry;
- exports.UVMapping = UVMapping;
- exports.Uint16Attribute = Uint16Attribute;
- exports.Uint16BufferAttribute = Uint16BufferAttribute;
- exports.Uint32Attribute = Uint32Attribute;
- exports.Uint32BufferAttribute = Uint32BufferAttribute;
- exports.Uint8Attribute = Uint8Attribute;
- exports.Uint8BufferAttribute = Uint8BufferAttribute;
- exports.Uint8ClampedAttribute = Uint8ClampedAttribute;
- exports.Uint8ClampedBufferAttribute = Uint8ClampedBufferAttribute;
- exports.Uniform = Uniform;
- exports.UniformsLib = UniformsLib;
- exports.UniformsUtils = UniformsUtils;
- exports.UnsignedByteType = UnsignedByteType;
- exports.UnsignedInt248Type = UnsignedInt248Type;
- exports.UnsignedIntType = UnsignedIntType;
- exports.UnsignedShort4444Type = UnsignedShort4444Type;
- exports.UnsignedShort5551Type = UnsignedShort5551Type;
- exports.UnsignedShort565Type = UnsignedShort565Type;
- exports.UnsignedShortType = UnsignedShortType;
- exports.VSMShadowMap = VSMShadowMap;
- exports.Vector2 = Vector2;
- exports.Vector3 = Vector3;
- exports.Vector4 = Vector4;
- exports.VectorKeyframeTrack = VectorKeyframeTrack;
- exports.Vertex = Vertex;
- exports.VertexColors = VertexColors;
- exports.VideoTexture = VideoTexture;
- exports.WebGL1Renderer = WebGL1Renderer;
- exports.WebGLCubeRenderTarget = WebGLCubeRenderTarget;
- exports.WebGLMultipleRenderTargets = WebGLMultipleRenderTargets;
- exports.WebGLMultisampleRenderTarget = WebGLMultisampleRenderTarget;
- exports.WebGLRenderTarget = WebGLRenderTarget;
- exports.WebGLRenderTargetCube = WebGLRenderTargetCube;
- exports.WebGLRenderer = WebGLRenderer;
- exports.WebGLUtils = WebGLUtils;
- exports.WireframeGeometry = WireframeGeometry;
- exports.WireframeHelper = WireframeHelper;
- exports.WrapAroundEnding = WrapAroundEnding;
- exports.XHRLoader = XHRLoader;
- exports.ZeroCurvatureEnding = ZeroCurvatureEnding;
- exports.ZeroFactor = ZeroFactor;
- exports.ZeroSlopeEnding = ZeroSlopeEnding;
- exports.ZeroStencilOp = ZeroStencilOp;
- exports.sRGBEncoding = sRGBEncoding;
-
- Object.defineProperty(exports, '__esModule', { value: true });
-
-})));
-
-},{}]},{},[1]);
+ Triangle.prototype.plane = function (target) {
+ console.warn('THREE.Triangle: .plane() has been renamed to .getPlane().');
+ return this.getPlane(target);
+ };
+
+ Triangle.barycoordFromPoint = function (point, a, b, c, target) {
+ console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().');
+ return Triangle.getBarycoord(point, a, b, c, target);
+ };
+
+ Triangle.normal = function (a, b, c, target) {
+ console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().');
+ return Triangle.getNormal(a, b, c, target);
+ }; //
+
+
+ Shape.prototype.extractAllPoints = function (divisions) {
+ console.warn('THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.');
+ return this.extractPoints(divisions);
+ };
+
+ Shape.prototype.extrude = function (options) {
+ console.warn('THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.');
+ return new ExtrudeGeometry(this, options);
+ };
+
+ Shape.prototype.makeGeometry = function (options) {
+ console.warn('THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.');
+ return new ShapeGeometry(this, options);
+ }; //
+
+
+ Vector2.prototype.fromAttribute = function (attribute, index, offset) {
+ console.warn('THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().');
+ return this.fromBufferAttribute(attribute, index, offset);
+ };
+
+ Vector2.prototype.distanceToManhattan = function (v) {
+ console.warn('THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().');
+ return this.manhattanDistanceTo(v);
+ };
+
+ Vector2.prototype.lengthManhattan = function () {
+ console.warn('THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().');
+ return this.manhattanLength();
+ }; //
+
+
+ Vector3.prototype.setEulerFromRotationMatrix = function () {
+ console.error('THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.');
+ };
+
+ Vector3.prototype.setEulerFromQuaternion = function () {
+ console.error('THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.');
+ };
+
+ Vector3.prototype.getPositionFromMatrix = function (m) {
+ console.warn('THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().');
+ return this.setFromMatrixPosition(m);
+ };
+
+ Vector3.prototype.getScaleFromMatrix = function (m) {
+ console.warn('THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().');
+ return this.setFromMatrixScale(m);
+ };
+
+ Vector3.prototype.getColumnFromMatrix = function (index, matrix) {
+ console.warn('THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().');
+ return this.setFromMatrixColumn(matrix, index);
+ };
+
+ Vector3.prototype.applyProjection = function (m) {
+ console.warn('THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.');
+ return this.applyMatrix4(m);
+ };
+
+ Vector3.prototype.fromAttribute = function (attribute, index, offset) {
+ console.warn('THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().');
+ return this.fromBufferAttribute(attribute, index, offset);
+ };
+
+ Vector3.prototype.distanceToManhattan = function (v) {
+ console.warn('THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().');
+ return this.manhattanDistanceTo(v);
+ };
+
+ Vector3.prototype.lengthManhattan = function () {
+ console.warn('THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().');
+ return this.manhattanLength();
+ }; //
+
+
+ Vector4.prototype.fromAttribute = function (attribute, index, offset) {
+ console.warn('THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().');
+ return this.fromBufferAttribute(attribute, index, offset);
+ };
+
+ Vector4.prototype.lengthManhattan = function () {
+ console.warn('THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().');
+ return this.manhattanLength();
+ }; //
+
+
+ Object3D.prototype.getChildByName = function (name) {
+ console.warn('THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().');
+ return this.getObjectByName(name);
+ };
+
+ Object3D.prototype.renderDepth = function () {
+ console.warn('THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.');
+ };
+
+ Object3D.prototype.translate = function (distance, axis) {
+ console.warn('THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.');
+ return this.translateOnAxis(axis, distance);
+ };
+
+ Object3D.prototype.getWorldRotation = function () {
+ console.error('THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.');
+ };
+
+ Object3D.prototype.applyMatrix = function (matrix) {
+ console.warn('THREE.Object3D: .applyMatrix() has been renamed to .applyMatrix4().');
+ return this.applyMatrix4(matrix);
+ };
+
+ Object.defineProperties(Object3D.prototype, {
+ eulerOrder: {
+ get: function () {
+ console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.');
+ return this.rotation.order;
+ },
+ set: function (value) {
+ console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.');
+ this.rotation.order = value;
+ }
+ },
+ useQuaternion: {
+ get: function () {
+ console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.');
+ },
+ set: function () {
+ console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.');
+ }
+ }
+ });
+
+ Mesh.prototype.setDrawMode = function () {
+ console.error('THREE.Mesh: .setDrawMode() has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.');
+ };
+
+ Object.defineProperties(Mesh.prototype, {
+ drawMode: {
+ get: function () {
+ console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode.');
+ return TrianglesDrawMode;
+ },
+ set: function () {
+ console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.');
+ }
+ }
+ });
+
+ SkinnedMesh.prototype.initBones = function () {
+ console.error('THREE.SkinnedMesh: initBones() has been removed.');
+ }; //
+
+
+ PerspectiveCamera.prototype.setLens = function (focalLength, filmGauge) {
+ console.warn('THREE.PerspectiveCamera.setLens is deprecated. ' + 'Use .setFocalLength and .filmGauge for a photographic setup.');
+ if (filmGauge !== undefined) this.filmGauge = filmGauge;
+ this.setFocalLength(focalLength);
+ }; //
+
+
+ Object.defineProperties(Light.prototype, {
+ onlyShadow: {
+ set: function () {
+ console.warn('THREE.Light: .onlyShadow has been removed.');
+ }
+ },
+ shadowCameraFov: {
+ set: function (value) {
+ console.warn('THREE.Light: .shadowCameraFov is now .shadow.camera.fov.');
+ this.shadow.camera.fov = value;
+ }
+ },
+ shadowCameraLeft: {
+ set: function (value) {
+ console.warn('THREE.Light: .shadowCameraLeft is now .shadow.camera.left.');
+ this.shadow.camera.left = value;
+ }
+ },
+ shadowCameraRight: {
+ set: function (value) {
+ console.warn('THREE.Light: .shadowCameraRight is now .shadow.camera.right.');
+ this.shadow.camera.right = value;
+ }
+ },
+ shadowCameraTop: {
+ set: function (value) {
+ console.warn('THREE.Light: .shadowCameraTop is now .shadow.camera.top.');
+ this.shadow.camera.top = value;
+ }
+ },
+ shadowCameraBottom: {
+ set: function (value) {
+ console.warn('THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.');
+ this.shadow.camera.bottom = value;
+ }
+ },
+ shadowCameraNear: {
+ set: function (value) {
+ console.warn('THREE.Light: .shadowCameraNear is now .shadow.camera.near.');
+ this.shadow.camera.near = value;
+ }
+ },
+ shadowCameraFar: {
+ set: function (value) {
+ console.warn('THREE.Light: .shadowCameraFar is now .shadow.camera.far.');
+ this.shadow.camera.far = value;
+ }
+ },
+ shadowCameraVisible: {
+ set: function () {
+ console.warn('THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.');
+ }
+ },
+ shadowBias: {
+ set: function (value) {
+ console.warn('THREE.Light: .shadowBias is now .shadow.bias.');
+ this.shadow.bias = value;
+ }
+ },
+ shadowDarkness: {
+ set: function () {
+ console.warn('THREE.Light: .shadowDarkness has been removed.');
+ }
+ },
+ shadowMapWidth: {
+ set: function (value) {
+ console.warn('THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.');
+ this.shadow.mapSize.width = value;
+ }
+ },
+ shadowMapHeight: {
+ set: function (value) {
+ console.warn('THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.');
+ this.shadow.mapSize.height = value;
+ }
+ }
+ }); //
+
+ Object.defineProperties(BufferAttribute.prototype, {
+ length: {
+ get: function () {
+ console.warn('THREE.BufferAttribute: .length has been deprecated. Use .count instead.');
+ return this.array.length;
+ }
+ },
+ dynamic: {
+ get: function () {
+ console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.');
+ return this.usage === DynamicDrawUsage;
+ },
+ set: function () {
+ console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.');
+ this.setUsage(DynamicDrawUsage);
+ }
+ }
+ });
+
+ BufferAttribute.prototype.setDynamic = function (value) {
+ console.warn('THREE.BufferAttribute: .setDynamic() has been deprecated. Use .setUsage() instead.');
+ this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage);
+ return this;
+ };
+
+ BufferAttribute.prototype.copyIndicesArray = function () {
+ console.error('THREE.BufferAttribute: .copyIndicesArray() has been removed.');
+ }, BufferAttribute.prototype.setArray = function () {
+ console.error('THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers');
+ }; //
+
+ BufferGeometry.prototype.addIndex = function (index) {
+ console.warn('THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().');
+ this.setIndex(index);
+ };
+
+ BufferGeometry.prototype.addAttribute = function (name, attribute) {
+ console.warn('THREE.BufferGeometry: .addAttribute() has been renamed to .setAttribute().');
+
+ if (!(attribute && attribute.isBufferAttribute) && !(attribute && attribute.isInterleavedBufferAttribute)) {
+ console.warn('THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).');
+ return this.setAttribute(name, new BufferAttribute(arguments[1], arguments[2]));
+ }
+
+ if (name === 'index') {
+ console.warn('THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.');
+ this.setIndex(attribute);
+ return this;
+ }
+
+ return this.setAttribute(name, attribute);
+ };
+
+ BufferGeometry.prototype.addDrawCall = function (start, count, indexOffset) {
+ if (indexOffset !== undefined) {
+ console.warn('THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.');
+ }
+
+ console.warn('THREE.BufferGeometry: .addDrawCall() is now .addGroup().');
+ this.addGroup(start, count);
+ };
+
+ BufferGeometry.prototype.clearDrawCalls = function () {
+ console.warn('THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().');
+ this.clearGroups();
+ };
+
+ BufferGeometry.prototype.computeOffsets = function () {
+ console.warn('THREE.BufferGeometry: .computeOffsets() has been removed.');
+ };
+
+ BufferGeometry.prototype.removeAttribute = function (name) {
+ console.warn('THREE.BufferGeometry: .removeAttribute() has been renamed to .deleteAttribute().');
+ return this.deleteAttribute(name);
+ };
+
+ BufferGeometry.prototype.applyMatrix = function (matrix) {
+ console.warn('THREE.BufferGeometry: .applyMatrix() has been renamed to .applyMatrix4().');
+ return this.applyMatrix4(matrix);
+ };
+
+ Object.defineProperties(BufferGeometry.prototype, {
+ drawcalls: {
+ get: function () {
+ console.error('THREE.BufferGeometry: .drawcalls has been renamed to .groups.');
+ return this.groups;
+ }
+ },
+ offsets: {
+ get: function () {
+ console.warn('THREE.BufferGeometry: .offsets has been renamed to .groups.');
+ return this.groups;
+ }
+ }
+ });
+
+ InterleavedBuffer.prototype.setDynamic = function (value) {
+ console.warn('THREE.InterleavedBuffer: .setDynamic() has been deprecated. Use .setUsage() instead.');
+ this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage);
+ return this;
+ };
+
+ InterleavedBuffer.prototype.setArray = function () {
+ console.error('THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers');
+ }; //
+
+
+ ExtrudeGeometry.prototype.getArrays = function () {
+ console.error('THREE.ExtrudeGeometry: .getArrays() has been removed.');
+ };
+
+ ExtrudeGeometry.prototype.addShapeList = function () {
+ console.error('THREE.ExtrudeGeometry: .addShapeList() has been removed.');
+ };
+
+ ExtrudeGeometry.prototype.addShape = function () {
+ console.error('THREE.ExtrudeGeometry: .addShape() has been removed.');
+ }; //
+
+
+ Scene.prototype.dispose = function () {
+ console.error('THREE.Scene: .dispose() has been removed.');
+ }; //
+
+
+ Uniform.prototype.onUpdate = function () {
+ console.warn('THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.');
+ return this;
+ }; //
+
+
+ Object.defineProperties(Material.prototype, {
+ wrapAround: {
+ get: function () {
+ console.warn('THREE.Material: .wrapAround has been removed.');
+ },
+ set: function () {
+ console.warn('THREE.Material: .wrapAround has been removed.');
+ }
+ },
+ overdraw: {
+ get: function () {
+ console.warn('THREE.Material: .overdraw has been removed.');
+ },
+ set: function () {
+ console.warn('THREE.Material: .overdraw has been removed.');
+ }
+ },
+ wrapRGB: {
+ get: function () {
+ console.warn('THREE.Material: .wrapRGB has been removed.');
+ return new Color();
+ }
+ },
+ shading: {
+ get: function () {
+ console.error('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
+ },
+ set: function (value) {
+ console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
+ this.flatShading = value === FlatShading;
+ }
+ },
+ stencilMask: {
+ get: function () {
+ console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.');
+ return this.stencilFuncMask;
+ },
+ set: function (value) {
+ console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.');
+ this.stencilFuncMask = value;
+ }
+ },
+ vertexTangents: {
+ get: function () {
+ console.warn('THREE.' + this.type + ': .vertexTangents has been removed.');
+ },
+ set: function () {
+ console.warn('THREE.' + this.type + ': .vertexTangents has been removed.');
+ }
+ }
+ });
+ Object.defineProperties(ShaderMaterial.prototype, {
+ derivatives: {
+ get: function () {
+ console.warn('THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.');
+ return this.extensions.derivatives;
+ },
+ set: function (value) {
+ console.warn('THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.');
+ this.extensions.derivatives = value;
+ }
+ }
+ }); //
+
+ WebGLRenderer.prototype.clearTarget = function (renderTarget, color, depth, stencil) {
+ console.warn('THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.');
+ this.setRenderTarget(renderTarget);
+ this.clear(color, depth, stencil);
+ };
+
+ WebGLRenderer.prototype.animate = function (callback) {
+ console.warn('THREE.WebGLRenderer: .animate() is now .setAnimationLoop().');
+ this.setAnimationLoop(callback);
+ };
+
+ WebGLRenderer.prototype.getCurrentRenderTarget = function () {
+ console.warn('THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().');
+ return this.getRenderTarget();
+ };
+
+ WebGLRenderer.prototype.getMaxAnisotropy = function () {
+ console.warn('THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().');
+ return this.capabilities.getMaxAnisotropy();
+ };
+
+ WebGLRenderer.prototype.getPrecision = function () {
+ console.warn('THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.');
+ return this.capabilities.precision;
+ };
+
+ WebGLRenderer.prototype.resetGLState = function () {
+ console.warn('THREE.WebGLRenderer: .resetGLState() is now .state.reset().');
+ return this.state.reset();
+ };
+
+ WebGLRenderer.prototype.supportsFloatTextures = function () {
+ console.warn('THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).');
+ return this.extensions.get('OES_texture_float');
+ };
+
+ WebGLRenderer.prototype.supportsHalfFloatTextures = function () {
+ console.warn('THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).');
+ return this.extensions.get('OES_texture_half_float');
+ };
+
+ WebGLRenderer.prototype.supportsStandardDerivatives = function () {
+ console.warn('THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).');
+ return this.extensions.get('OES_standard_derivatives');
+ };
+
+ WebGLRenderer.prototype.supportsCompressedTextureS3TC = function () {
+ console.warn('THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).');
+ return this.extensions.get('WEBGL_compressed_texture_s3tc');
+ };
+
+ WebGLRenderer.prototype.supportsCompressedTexturePVRTC = function () {
+ console.warn('THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).');
+ return this.extensions.get('WEBGL_compressed_texture_pvrtc');
+ };
+
+ WebGLRenderer.prototype.supportsBlendMinMax = function () {
+ console.warn('THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).');
+ return this.extensions.get('EXT_blend_minmax');
+ };
+
+ WebGLRenderer.prototype.supportsVertexTextures = function () {
+ console.warn('THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.');
+ return this.capabilities.vertexTextures;
+ };
+
+ WebGLRenderer.prototype.supportsInstancedArrays = function () {
+ console.warn('THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).');
+ return this.extensions.get('ANGLE_instanced_arrays');
+ };
+
+ WebGLRenderer.prototype.enableScissorTest = function (boolean) {
+ console.warn('THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().');
+ this.setScissorTest(boolean);
+ };
+
+ WebGLRenderer.prototype.initMaterial = function () {
+ console.warn('THREE.WebGLRenderer: .initMaterial() has been removed.');
+ };
+
+ WebGLRenderer.prototype.addPrePlugin = function () {
+ console.warn('THREE.WebGLRenderer: .addPrePlugin() has been removed.');
+ };
+
+ WebGLRenderer.prototype.addPostPlugin = function () {
+ console.warn('THREE.WebGLRenderer: .addPostPlugin() has been removed.');
+ };
+
+ WebGLRenderer.prototype.updateShadowMap = function () {
+ console.warn('THREE.WebGLRenderer: .updateShadowMap() has been removed.');
+ };
+
+ WebGLRenderer.prototype.setFaceCulling = function () {
+ console.warn('THREE.WebGLRenderer: .setFaceCulling() has been removed.');
+ };
+
+ WebGLRenderer.prototype.allocTextureUnit = function () {
+ console.warn('THREE.WebGLRenderer: .allocTextureUnit() has been removed.');
+ };
+
+ WebGLRenderer.prototype.setTexture = function () {
+ console.warn('THREE.WebGLRenderer: .setTexture() has been removed.');
+ };
+
+ WebGLRenderer.prototype.setTexture2D = function () {
+ console.warn('THREE.WebGLRenderer: .setTexture2D() has been removed.');
+ };
+
+ WebGLRenderer.prototype.setTextureCube = function () {
+ console.warn('THREE.WebGLRenderer: .setTextureCube() has been removed.');
+ };
+
+ WebGLRenderer.prototype.getActiveMipMapLevel = function () {
+ console.warn('THREE.WebGLRenderer: .getActiveMipMapLevel() is now .getActiveMipmapLevel().');
+ return this.getActiveMipmapLevel();
+ };
+
+ Object.defineProperties(WebGLRenderer.prototype, {
+ shadowMapEnabled: {
+ get: function () {
+ return this.shadowMap.enabled;
+ },
+ set: function (value) {
+ console.warn('THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.');
+ this.shadowMap.enabled = value;
+ }
+ },
+ shadowMapType: {
+ get: function () {
+ return this.shadowMap.type;
+ },
+ set: function (value) {
+ console.warn('THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.');
+ this.shadowMap.type = value;
+ }
+ },
+ shadowMapCullFace: {
+ get: function () {
+ console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.');
+ return undefined;
+ },
+ set: function () {
+ console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.');
+ }
+ },
+ context: {
+ get: function () {
+ console.warn('THREE.WebGLRenderer: .context has been removed. Use .getContext() instead.');
+ return this.getContext();
+ }
+ },
+ vr: {
+ get: function () {
+ console.warn('THREE.WebGLRenderer: .vr has been renamed to .xr');
+ return this.xr;
+ }
+ },
+ gammaInput: {
+ get: function () {
+ console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.');
+ return false;
+ },
+ set: function () {
+ console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.');
+ }
+ },
+ gammaOutput: {
+ get: function () {
+ console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.');
+ return false;
+ },
+ set: function (value) {
+ console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.');
+ this.outputEncoding = value === true ? sRGBEncoding : LinearEncoding;
+ }
+ },
+ toneMappingWhitePoint: {
+ get: function () {
+ console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.');
+ return 1.0;
+ },
+ set: function () {
+ console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.');
+ }
+ }
+ });
+ Object.defineProperties(WebGLShadowMap.prototype, {
+ cullFace: {
+ get: function () {
+ console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.');
+ return undefined;
+ },
+ set: function () {
+ console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.');
+ }
+ },
+ renderReverseSided: {
+ get: function () {
+ console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.');
+ return undefined;
+ },
+ set: function () {
+ console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.');
+ }
+ },
+ renderSingleSided: {
+ get: function () {
+ console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.');
+ return undefined;
+ },
+ set: function () {
+ console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.');
+ }
+ }
+ });
+
+ function WebGLRenderTargetCube(width, height, options) {
+ console.warn('THREE.WebGLRenderTargetCube( width, height, options ) is now WebGLCubeRenderTarget( size, options ).');
+ return new WebGLCubeRenderTarget(width, options);
+ } //
+
+ Object.defineProperties(WebGLRenderTarget.prototype, {
+ wrapS: {
+ get: function () {
+ console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.');
+ return this.texture.wrapS;
+ },
+ set: function (value) {
+ console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.');
+ this.texture.wrapS = value;
+ }
+ },
+ wrapT: {
+ get: function () {
+ console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.');
+ return this.texture.wrapT;
+ },
+ set: function (value) {
+ console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.');
+ this.texture.wrapT = value;
+ }
+ },
+ magFilter: {
+ get: function () {
+ console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.');
+ return this.texture.magFilter;
+ },
+ set: function (value) {
+ console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.');
+ this.texture.magFilter = value;
+ }
+ },
+ minFilter: {
+ get: function () {
+ console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.');
+ return this.texture.minFilter;
+ },
+ set: function (value) {
+ console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.');
+ this.texture.minFilter = value;
+ }
+ },
+ anisotropy: {
+ get: function () {
+ console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.');
+ return this.texture.anisotropy;
+ },
+ set: function (value) {
+ console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.');
+ this.texture.anisotropy = value;
+ }
+ },
+ offset: {
+ get: function () {
+ console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.');
+ return this.texture.offset;
+ },
+ set: function (value) {
+ console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.');
+ this.texture.offset = value;
+ }
+ },
+ repeat: {
+ get: function () {
+ console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.');
+ return this.texture.repeat;
+ },
+ set: function (value) {
+ console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.');
+ this.texture.repeat = value;
+ }
+ },
+ format: {
+ get: function () {
+ console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.');
+ return this.texture.format;
+ },
+ set: function (value) {
+ console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.');
+ this.texture.format = value;
+ }
+ },
+ type: {
+ get: function () {
+ console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.');
+ return this.texture.type;
+ },
+ set: function (value) {
+ console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.');
+ this.texture.type = value;
+ }
+ },
+ generateMipmaps: {
+ get: function () {
+ console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.');
+ return this.texture.generateMipmaps;
+ },
+ set: function (value) {
+ console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.');
+ this.texture.generateMipmaps = value;
+ }
+ }
+ }); //
+
+ Audio.prototype.load = function (file) {
+ console.warn('THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.');
+ const scope = this;
+ const audioLoader = new AudioLoader();
+ audioLoader.load(file, function (buffer) {
+ scope.setBuffer(buffer);
+ });
+ return this;
+ };
+
+ AudioAnalyser.prototype.getData = function () {
+ console.warn('THREE.AudioAnalyser: .getData() is now .getFrequencyData().');
+ return this.getFrequencyData();
+ }; //
+
+
+ CubeCamera.prototype.updateCubeMap = function (renderer, scene) {
+ console.warn('THREE.CubeCamera: .updateCubeMap() is now .update().');
+ return this.update(renderer, scene);
+ };
+
+ CubeCamera.prototype.clear = function (renderer, color, depth, stencil) {
+ console.warn('THREE.CubeCamera: .clear() is now .renderTarget.clear().');
+ return this.renderTarget.clear(renderer, color, depth, stencil);
+ };
+
+ ImageUtils.crossOrigin = undefined;
+
+ ImageUtils.loadTexture = function (url, mapping, onLoad, onError) {
+ console.warn('THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.');
+ const loader = new TextureLoader();
+ loader.setCrossOrigin(this.crossOrigin);
+ const texture = loader.load(url, onLoad, undefined, onError);
+ if (mapping) texture.mapping = mapping;
+ return texture;
+ };
+
+ ImageUtils.loadTextureCube = function (urls, mapping, onLoad, onError) {
+ console.warn('THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.');
+ const loader = new CubeTextureLoader();
+ loader.setCrossOrigin(this.crossOrigin);
+ const texture = loader.load(urls, onLoad, undefined, onError);
+ if (mapping) texture.mapping = mapping;
+ return texture;
+ };
+
+ ImageUtils.loadCompressedTexture = function () {
+ console.error('THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.');
+ };
+
+ ImageUtils.loadCompressedTextureCube = function () {
+ console.error('THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.');
+ }; //
+
+
+ function CanvasRenderer() {
+ console.error('THREE.CanvasRenderer has been removed');
+ } //
+
+ function JSONLoader() {
+ console.error('THREE.JSONLoader has been removed.');
+ } //
+
+ const SceneUtils = {
+ createMultiMaterialObject: function () {
+ console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
+ },
+ detach: function () {
+ console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
+ },
+ attach: function () {
+ console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
+ }
+ }; //
+
+ function LensFlare() {
+ console.error('THREE.LensFlare has been moved to /examples/jsm/objects/Lensflare.js');
+ }
+
+ if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
+ /* eslint-disable no-undef */
+ __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('register', {
+ detail: {
+ revision: REVISION
+ }
+ }));
+ /* eslint-enable no-undef */
+
+ }
+
+ if (typeof window !== 'undefined') {
+ if (window.__THREE__) {
+ console.warn('WARNING: Multiple instances of Three.js being imported.');
+ } else {
+ window.__THREE__ = REVISION;
+ }
+ }
+
+ exports.ACESFilmicToneMapping = ACESFilmicToneMapping;
+ exports.AddEquation = AddEquation;
+ exports.AddOperation = AddOperation;
+ exports.AdditiveAnimationBlendMode = AdditiveAnimationBlendMode;
+ exports.AdditiveBlending = AdditiveBlending;
+ exports.AlphaFormat = AlphaFormat;
+ exports.AlwaysDepth = AlwaysDepth;
+ exports.AlwaysStencilFunc = AlwaysStencilFunc;
+ exports.AmbientLight = AmbientLight;
+ exports.AmbientLightProbe = AmbientLightProbe;
+ exports.AnimationClip = AnimationClip;
+ exports.AnimationLoader = AnimationLoader;
+ exports.AnimationMixer = AnimationMixer;
+ exports.AnimationObjectGroup = AnimationObjectGroup;
+ exports.AnimationUtils = AnimationUtils;
+ exports.ArcCurve = ArcCurve;
+ exports.ArrayCamera = ArrayCamera;
+ exports.ArrowHelper = ArrowHelper;
+ exports.Audio = Audio;
+ exports.AudioAnalyser = AudioAnalyser;
+ exports.AudioContext = AudioContext;
+ exports.AudioListener = AudioListener;
+ exports.AudioLoader = AudioLoader;
+ exports.AxesHelper = AxesHelper;
+ exports.AxisHelper = AxisHelper;
+ exports.BackSide = BackSide;
+ exports.BasicDepthPacking = BasicDepthPacking;
+ exports.BasicShadowMap = BasicShadowMap;
+ exports.BinaryTextureLoader = BinaryTextureLoader;
+ exports.Bone = Bone;
+ exports.BooleanKeyframeTrack = BooleanKeyframeTrack;
+ exports.BoundingBoxHelper = BoundingBoxHelper;
+ exports.Box2 = Box2;
+ exports.Box3 = Box3;
+ exports.Box3Helper = Box3Helper;
+ exports.BoxBufferGeometry = BoxGeometry;
+ exports.BoxGeometry = BoxGeometry;
+ exports.BoxHelper = BoxHelper;
+ exports.BufferAttribute = BufferAttribute;
+ exports.BufferGeometry = BufferGeometry;
+ exports.BufferGeometryLoader = BufferGeometryLoader;
+ exports.ByteType = ByteType;
+ exports.Cache = Cache;
+ exports.Camera = Camera;
+ exports.CameraHelper = CameraHelper;
+ exports.CanvasRenderer = CanvasRenderer;
+ exports.CanvasTexture = CanvasTexture;
+ exports.CatmullRomCurve3 = CatmullRomCurve3;
+ exports.CineonToneMapping = CineonToneMapping;
+ exports.CircleBufferGeometry = CircleGeometry;
+ exports.CircleGeometry = CircleGeometry;
+ exports.ClampToEdgeWrapping = ClampToEdgeWrapping;
+ exports.Clock = Clock;
+ exports.Color = Color;
+ exports.ColorKeyframeTrack = ColorKeyframeTrack;
+ exports.CompressedTexture = CompressedTexture;
+ exports.CompressedTextureLoader = CompressedTextureLoader;
+ exports.ConeBufferGeometry = ConeGeometry;
+ exports.ConeGeometry = ConeGeometry;
+ exports.CubeCamera = CubeCamera;
+ exports.CubeReflectionMapping = CubeReflectionMapping;
+ exports.CubeRefractionMapping = CubeRefractionMapping;
+ exports.CubeTexture = CubeTexture;
+ exports.CubeTextureLoader = CubeTextureLoader;
+ exports.CubeUVReflectionMapping = CubeUVReflectionMapping;
+ exports.CubeUVRefractionMapping = CubeUVRefractionMapping;
+ exports.CubicBezierCurve = CubicBezierCurve;
+ exports.CubicBezierCurve3 = CubicBezierCurve3;
+ exports.CubicInterpolant = CubicInterpolant;
+ exports.CullFaceBack = CullFaceBack;
+ exports.CullFaceFront = CullFaceFront;
+ exports.CullFaceFrontBack = CullFaceFrontBack;
+ exports.CullFaceNone = CullFaceNone;
+ exports.Curve = Curve;
+ exports.CurvePath = CurvePath;
+ exports.CustomBlending = CustomBlending;
+ exports.CustomToneMapping = CustomToneMapping;
+ exports.CylinderBufferGeometry = CylinderGeometry;
+ exports.CylinderGeometry = CylinderGeometry;
+ exports.Cylindrical = Cylindrical;
+ exports.DataTexture = DataTexture;
+ exports.DataTexture2DArray = DataTexture2DArray;
+ exports.DataTexture3D = DataTexture3D;
+ exports.DataTextureLoader = DataTextureLoader;
+ exports.DataUtils = DataUtils;
+ exports.DecrementStencilOp = DecrementStencilOp;
+ exports.DecrementWrapStencilOp = DecrementWrapStencilOp;
+ exports.DefaultLoadingManager = DefaultLoadingManager;
+ exports.DepthFormat = DepthFormat;
+ exports.DepthStencilFormat = DepthStencilFormat;
+ exports.DepthTexture = DepthTexture;
+ exports.DirectionalLight = DirectionalLight;
+ exports.DirectionalLightHelper = DirectionalLightHelper;
+ exports.DiscreteInterpolant = DiscreteInterpolant;
+ exports.DodecahedronBufferGeometry = DodecahedronGeometry;
+ exports.DodecahedronGeometry = DodecahedronGeometry;
+ exports.DoubleSide = DoubleSide;
+ exports.DstAlphaFactor = DstAlphaFactor;
+ exports.DstColorFactor = DstColorFactor;
+ exports.DynamicBufferAttribute = DynamicBufferAttribute;
+ exports.DynamicCopyUsage = DynamicCopyUsage;
+ exports.DynamicDrawUsage = DynamicDrawUsage;
+ exports.DynamicReadUsage = DynamicReadUsage;
+ exports.EdgesGeometry = EdgesGeometry;
+ exports.EdgesHelper = EdgesHelper;
+ exports.EllipseCurve = EllipseCurve;
+ exports.EqualDepth = EqualDepth;
+ exports.EqualStencilFunc = EqualStencilFunc;
+ exports.EquirectangularReflectionMapping = EquirectangularReflectionMapping;
+ exports.EquirectangularRefractionMapping = EquirectangularRefractionMapping;
+ exports.Euler = Euler;
+ exports.EventDispatcher = EventDispatcher;
+ exports.ExtrudeBufferGeometry = ExtrudeGeometry;
+ exports.ExtrudeGeometry = ExtrudeGeometry;
+ exports.FaceColors = FaceColors;
+ exports.FileLoader = FileLoader;
+ exports.FlatShading = FlatShading;
+ exports.Float16BufferAttribute = Float16BufferAttribute;
+ exports.Float32Attribute = Float32Attribute;
+ exports.Float32BufferAttribute = Float32BufferAttribute;
+ exports.Float64Attribute = Float64Attribute;
+ exports.Float64BufferAttribute = Float64BufferAttribute;
+ exports.FloatType = FloatType;
+ exports.Fog = Fog;
+ exports.FogExp2 = FogExp2;
+ exports.Font = Font;
+ exports.FontLoader = FontLoader;
+ exports.FrontSide = FrontSide;
+ exports.Frustum = Frustum;
+ exports.GLBufferAttribute = GLBufferAttribute;
+ exports.GLSL1 = GLSL1;
+ exports.GLSL3 = GLSL3;
+ exports.GammaEncoding = GammaEncoding;
+ exports.GreaterDepth = GreaterDepth;
+ exports.GreaterEqualDepth = GreaterEqualDepth;
+ exports.GreaterEqualStencilFunc = GreaterEqualStencilFunc;
+ exports.GreaterStencilFunc = GreaterStencilFunc;
+ exports.GridHelper = GridHelper;
+ exports.Group = Group;
+ exports.HalfFloatType = HalfFloatType;
+ exports.HemisphereLight = HemisphereLight;
+ exports.HemisphereLightHelper = HemisphereLightHelper;
+ exports.HemisphereLightProbe = HemisphereLightProbe;
+ exports.IcosahedronBufferGeometry = IcosahedronGeometry;
+ exports.IcosahedronGeometry = IcosahedronGeometry;
+ exports.ImageBitmapLoader = ImageBitmapLoader;
+ exports.ImageLoader = ImageLoader;
+ exports.ImageUtils = ImageUtils;
+ exports.ImmediateRenderObject = ImmediateRenderObject;
+ exports.IncrementStencilOp = IncrementStencilOp;
+ exports.IncrementWrapStencilOp = IncrementWrapStencilOp;
+ exports.InstancedBufferAttribute = InstancedBufferAttribute;
+ exports.InstancedBufferGeometry = InstancedBufferGeometry;
+ exports.InstancedInterleavedBuffer = InstancedInterleavedBuffer;
+ exports.InstancedMesh = InstancedMesh;
+ exports.Int16Attribute = Int16Attribute;
+ exports.Int16BufferAttribute = Int16BufferAttribute;
+ exports.Int32Attribute = Int32Attribute;
+ exports.Int32BufferAttribute = Int32BufferAttribute;
+ exports.Int8Attribute = Int8Attribute;
+ exports.Int8BufferAttribute = Int8BufferAttribute;
+ exports.IntType = IntType;
+ exports.InterleavedBuffer = InterleavedBuffer;
+ exports.InterleavedBufferAttribute = InterleavedBufferAttribute;
+ exports.Interpolant = Interpolant;
+ exports.InterpolateDiscrete = InterpolateDiscrete;
+ exports.InterpolateLinear = InterpolateLinear;
+ exports.InterpolateSmooth = InterpolateSmooth;
+ exports.InvertStencilOp = InvertStencilOp;
+ exports.JSONLoader = JSONLoader;
+ exports.KeepStencilOp = KeepStencilOp;
+ exports.KeyframeTrack = KeyframeTrack;
+ exports.LOD = LOD;
+ exports.LatheBufferGeometry = LatheGeometry;
+ exports.LatheGeometry = LatheGeometry;
+ exports.Layers = Layers;
+ exports.LensFlare = LensFlare;
+ exports.LessDepth = LessDepth;
+ exports.LessEqualDepth = LessEqualDepth;
+ exports.LessEqualStencilFunc = LessEqualStencilFunc;
+ exports.LessStencilFunc = LessStencilFunc;
+ exports.Light = Light;
+ exports.LightProbe = LightProbe;
+ exports.Line = Line;
+ exports.Line3 = Line3;
+ exports.LineBasicMaterial = LineBasicMaterial;
+ exports.LineCurve = LineCurve;
+ exports.LineCurve3 = LineCurve3;
+ exports.LineDashedMaterial = LineDashedMaterial;
+ exports.LineLoop = LineLoop;
+ exports.LinePieces = LinePieces;
+ exports.LineSegments = LineSegments;
+ exports.LineStrip = LineStrip;
+ exports.LinearEncoding = LinearEncoding;
+ exports.LinearFilter = LinearFilter;
+ exports.LinearInterpolant = LinearInterpolant;
+ exports.LinearMipMapLinearFilter = LinearMipMapLinearFilter;
+ exports.LinearMipMapNearestFilter = LinearMipMapNearestFilter;
+ exports.LinearMipmapLinearFilter = LinearMipmapLinearFilter;
+ exports.LinearMipmapNearestFilter = LinearMipmapNearestFilter;
+ exports.LinearToneMapping = LinearToneMapping;
+ exports.Loader = Loader;
+ exports.LoaderUtils = LoaderUtils;
+ exports.LoadingManager = LoadingManager;
+ exports.LogLuvEncoding = LogLuvEncoding;
+ exports.LoopOnce = LoopOnce;
+ exports.LoopPingPong = LoopPingPong;
+ exports.LoopRepeat = LoopRepeat;
+ exports.LuminanceAlphaFormat = LuminanceAlphaFormat;
+ exports.LuminanceFormat = LuminanceFormat;
+ exports.MOUSE = MOUSE;
+ exports.Material = Material;
+ exports.MaterialLoader = MaterialLoader;
+ exports.Math = MathUtils;
+ exports.MathUtils = MathUtils;
+ exports.Matrix3 = Matrix3;
+ exports.Matrix4 = Matrix4;
+ exports.MaxEquation = MaxEquation;
+ exports.Mesh = Mesh;
+ exports.MeshBasicMaterial = MeshBasicMaterial;
+ exports.MeshDepthMaterial = MeshDepthMaterial;
+ exports.MeshDistanceMaterial = MeshDistanceMaterial;
+ exports.MeshFaceMaterial = MeshFaceMaterial;
+ exports.MeshLambertMaterial = MeshLambertMaterial;
+ exports.MeshMatcapMaterial = MeshMatcapMaterial;
+ exports.MeshNormalMaterial = MeshNormalMaterial;
+ exports.MeshPhongMaterial = MeshPhongMaterial;
+ exports.MeshPhysicalMaterial = MeshPhysicalMaterial;
+ exports.MeshStandardMaterial = MeshStandardMaterial;
+ exports.MeshToonMaterial = MeshToonMaterial;
+ exports.MinEquation = MinEquation;
+ exports.MirroredRepeatWrapping = MirroredRepeatWrapping;
+ exports.MixOperation = MixOperation;
+ exports.MultiMaterial = MultiMaterial;
+ exports.MultiplyBlending = MultiplyBlending;
+ exports.MultiplyOperation = MultiplyOperation;
+ exports.NearestFilter = NearestFilter;
+ exports.NearestMipMapLinearFilter = NearestMipMapLinearFilter;
+ exports.NearestMipMapNearestFilter = NearestMipMapNearestFilter;
+ exports.NearestMipmapLinearFilter = NearestMipmapLinearFilter;
+ exports.NearestMipmapNearestFilter = NearestMipmapNearestFilter;
+ exports.NeverDepth = NeverDepth;
+ exports.NeverStencilFunc = NeverStencilFunc;
+ exports.NoBlending = NoBlending;
+ exports.NoColors = NoColors;
+ exports.NoToneMapping = NoToneMapping;
+ exports.NormalAnimationBlendMode = NormalAnimationBlendMode;
+ exports.NormalBlending = NormalBlending;
+ exports.NotEqualDepth = NotEqualDepth;
+ exports.NotEqualStencilFunc = NotEqualStencilFunc;
+ exports.NumberKeyframeTrack = NumberKeyframeTrack;
+ exports.Object3D = Object3D;
+ exports.ObjectLoader = ObjectLoader;
+ exports.ObjectSpaceNormalMap = ObjectSpaceNormalMap;
+ exports.OctahedronBufferGeometry = OctahedronGeometry;
+ exports.OctahedronGeometry = OctahedronGeometry;
+ exports.OneFactor = OneFactor;
+ exports.OneMinusDstAlphaFactor = OneMinusDstAlphaFactor;
+ exports.OneMinusDstColorFactor = OneMinusDstColorFactor;
+ exports.OneMinusSrcAlphaFactor = OneMinusSrcAlphaFactor;
+ exports.OneMinusSrcColorFactor = OneMinusSrcColorFactor;
+ exports.OrthographicCamera = OrthographicCamera;
+ exports.PCFShadowMap = PCFShadowMap;
+ exports.PCFSoftShadowMap = PCFSoftShadowMap;
+ exports.PMREMGenerator = PMREMGenerator;
+ exports.ParametricBufferGeometry = ParametricGeometry;
+ exports.ParametricGeometry = ParametricGeometry;
+ exports.Particle = Particle;
+ exports.ParticleBasicMaterial = ParticleBasicMaterial;
+ exports.ParticleSystem = ParticleSystem;
+ exports.ParticleSystemMaterial = ParticleSystemMaterial;
+ exports.Path = Path;
+ exports.PerspectiveCamera = PerspectiveCamera;
+ exports.Plane = Plane;
+ exports.PlaneBufferGeometry = PlaneGeometry;
+ exports.PlaneGeometry = PlaneGeometry;
+ exports.PlaneHelper = PlaneHelper;
+ exports.PointCloud = PointCloud;
+ exports.PointCloudMaterial = PointCloudMaterial;
+ exports.PointLight = PointLight;
+ exports.PointLightHelper = PointLightHelper;
+ exports.Points = Points;
+ exports.PointsMaterial = PointsMaterial;
+ exports.PolarGridHelper = PolarGridHelper;
+ exports.PolyhedronBufferGeometry = PolyhedronGeometry;
+ exports.PolyhedronGeometry = PolyhedronGeometry;
+ exports.PositionalAudio = PositionalAudio;
+ exports.PropertyBinding = PropertyBinding;
+ exports.PropertyMixer = PropertyMixer;
+ exports.QuadraticBezierCurve = QuadraticBezierCurve;
+ exports.QuadraticBezierCurve3 = QuadraticBezierCurve3;
+ exports.Quaternion = Quaternion;
+ exports.QuaternionKeyframeTrack = QuaternionKeyframeTrack;
+ exports.QuaternionLinearInterpolant = QuaternionLinearInterpolant;
+ exports.REVISION = REVISION;
+ exports.RGBADepthPacking = RGBADepthPacking;
+ exports.RGBAFormat = RGBAFormat;
+ exports.RGBAIntegerFormat = RGBAIntegerFormat;
+ exports.RGBA_ASTC_10x10_Format = RGBA_ASTC_10x10_Format;
+ exports.RGBA_ASTC_10x5_Format = RGBA_ASTC_10x5_Format;
+ exports.RGBA_ASTC_10x6_Format = RGBA_ASTC_10x6_Format;
+ exports.RGBA_ASTC_10x8_Format = RGBA_ASTC_10x8_Format;
+ exports.RGBA_ASTC_12x10_Format = RGBA_ASTC_12x10_Format;
+ exports.RGBA_ASTC_12x12_Format = RGBA_ASTC_12x12_Format;
+ exports.RGBA_ASTC_4x4_Format = RGBA_ASTC_4x4_Format;
+ exports.RGBA_ASTC_5x4_Format = RGBA_ASTC_5x4_Format;
+ exports.RGBA_ASTC_5x5_Format = RGBA_ASTC_5x5_Format;
+ exports.RGBA_ASTC_6x5_Format = RGBA_ASTC_6x5_Format;
+ exports.RGBA_ASTC_6x6_Format = RGBA_ASTC_6x6_Format;
+ exports.RGBA_ASTC_8x5_Format = RGBA_ASTC_8x5_Format;
+ exports.RGBA_ASTC_8x6_Format = RGBA_ASTC_8x6_Format;
+ exports.RGBA_ASTC_8x8_Format = RGBA_ASTC_8x8_Format;
+ exports.RGBA_BPTC_Format = RGBA_BPTC_Format;
+ exports.RGBA_ETC2_EAC_Format = RGBA_ETC2_EAC_Format;
+ exports.RGBA_PVRTC_2BPPV1_Format = RGBA_PVRTC_2BPPV1_Format;
+ exports.RGBA_PVRTC_4BPPV1_Format = RGBA_PVRTC_4BPPV1_Format;
+ exports.RGBA_S3TC_DXT1_Format = RGBA_S3TC_DXT1_Format;
+ exports.RGBA_S3TC_DXT3_Format = RGBA_S3TC_DXT3_Format;
+ exports.RGBA_S3TC_DXT5_Format = RGBA_S3TC_DXT5_Format;
+ exports.RGBDEncoding = RGBDEncoding;
+ exports.RGBEEncoding = RGBEEncoding;
+ exports.RGBEFormat = RGBEFormat;
+ exports.RGBFormat = RGBFormat;
+ exports.RGBIntegerFormat = RGBIntegerFormat;
+ exports.RGBM16Encoding = RGBM16Encoding;
+ exports.RGBM7Encoding = RGBM7Encoding;
+ exports.RGB_ETC1_Format = RGB_ETC1_Format;
+ exports.RGB_ETC2_Format = RGB_ETC2_Format;
+ exports.RGB_PVRTC_2BPPV1_Format = RGB_PVRTC_2BPPV1_Format;
+ exports.RGB_PVRTC_4BPPV1_Format = RGB_PVRTC_4BPPV1_Format;
+ exports.RGB_S3TC_DXT1_Format = RGB_S3TC_DXT1_Format;
+ exports.RGFormat = RGFormat;
+ exports.RGIntegerFormat = RGIntegerFormat;
+ exports.RawShaderMaterial = RawShaderMaterial;
+ exports.Ray = Ray;
+ exports.Raycaster = Raycaster;
+ exports.RectAreaLight = RectAreaLight;
+ exports.RedFormat = RedFormat;
+ exports.RedIntegerFormat = RedIntegerFormat;
+ exports.ReinhardToneMapping = ReinhardToneMapping;
+ exports.RepeatWrapping = RepeatWrapping;
+ exports.ReplaceStencilOp = ReplaceStencilOp;
+ exports.ReverseSubtractEquation = ReverseSubtractEquation;
+ exports.RingBufferGeometry = RingGeometry;
+ exports.RingGeometry = RingGeometry;
+ exports.SRGB8_ALPHA8_ASTC_10x10_Format = SRGB8_ALPHA8_ASTC_10x10_Format;
+ exports.SRGB8_ALPHA8_ASTC_10x5_Format = SRGB8_ALPHA8_ASTC_10x5_Format;
+ exports.SRGB8_ALPHA8_ASTC_10x6_Format = SRGB8_ALPHA8_ASTC_10x6_Format;
+ exports.SRGB8_ALPHA8_ASTC_10x8_Format = SRGB8_ALPHA8_ASTC_10x8_Format;
+ exports.SRGB8_ALPHA8_ASTC_12x10_Format = SRGB8_ALPHA8_ASTC_12x10_Format;
+ exports.SRGB8_ALPHA8_ASTC_12x12_Format = SRGB8_ALPHA8_ASTC_12x12_Format;
+ exports.SRGB8_ALPHA8_ASTC_4x4_Format = SRGB8_ALPHA8_ASTC_4x4_Format;
+ exports.SRGB8_ALPHA8_ASTC_5x4_Format = SRGB8_ALPHA8_ASTC_5x4_Format;
+ exports.SRGB8_ALPHA8_ASTC_5x5_Format = SRGB8_ALPHA8_ASTC_5x5_Format;
+ exports.SRGB8_ALPHA8_ASTC_6x5_Format = SRGB8_ALPHA8_ASTC_6x5_Format;
+ exports.SRGB8_ALPHA8_ASTC_6x6_Format = SRGB8_ALPHA8_ASTC_6x6_Format;
+ exports.SRGB8_ALPHA8_ASTC_8x5_Format = SRGB8_ALPHA8_ASTC_8x5_Format;
+ exports.SRGB8_ALPHA8_ASTC_8x6_Format = SRGB8_ALPHA8_ASTC_8x6_Format;
+ exports.SRGB8_ALPHA8_ASTC_8x8_Format = SRGB8_ALPHA8_ASTC_8x8_Format;
+ exports.Scene = Scene;
+ exports.SceneUtils = SceneUtils;
+ exports.ShaderChunk = ShaderChunk;
+ exports.ShaderLib = ShaderLib;
+ exports.ShaderMaterial = ShaderMaterial;
+ exports.ShadowMaterial = ShadowMaterial;
+ exports.Shape = Shape;
+ exports.ShapeBufferGeometry = ShapeGeometry;
+ exports.ShapeGeometry = ShapeGeometry;
+ exports.ShapePath = ShapePath;
+ exports.ShapeUtils = ShapeUtils;
+ exports.ShortType = ShortType;
+ exports.Skeleton = Skeleton;
+ exports.SkeletonHelper = SkeletonHelper;
+ exports.SkinnedMesh = SkinnedMesh;
+ exports.SmoothShading = SmoothShading;
+ exports.Sphere = Sphere;
+ exports.SphereBufferGeometry = SphereGeometry;
+ exports.SphereGeometry = SphereGeometry;
+ exports.Spherical = Spherical;
+ exports.SphericalHarmonics3 = SphericalHarmonics3;
+ exports.SplineCurve = SplineCurve;
+ exports.SpotLight = SpotLight;
+ exports.SpotLightHelper = SpotLightHelper;
+ exports.Sprite = Sprite;
+ exports.SpriteMaterial = SpriteMaterial;
+ exports.SrcAlphaFactor = SrcAlphaFactor;
+ exports.SrcAlphaSaturateFactor = SrcAlphaSaturateFactor;
+ exports.SrcColorFactor = SrcColorFactor;
+ exports.StaticCopyUsage = StaticCopyUsage;
+ exports.StaticDrawUsage = StaticDrawUsage;
+ exports.StaticReadUsage = StaticReadUsage;
+ exports.StereoCamera = StereoCamera;
+ exports.StreamCopyUsage = StreamCopyUsage;
+ exports.StreamDrawUsage = StreamDrawUsage;
+ exports.StreamReadUsage = StreamReadUsage;
+ exports.StringKeyframeTrack = StringKeyframeTrack;
+ exports.SubtractEquation = SubtractEquation;
+ exports.SubtractiveBlending = SubtractiveBlending;
+ exports.TOUCH = TOUCH;
+ exports.TangentSpaceNormalMap = TangentSpaceNormalMap;
+ exports.TetrahedronBufferGeometry = TetrahedronGeometry;
+ exports.TetrahedronGeometry = TetrahedronGeometry;
+ exports.TextBufferGeometry = TextGeometry;
+ exports.TextGeometry = TextGeometry;
+ exports.Texture = Texture;
+ exports.TextureLoader = TextureLoader;
+ exports.TorusBufferGeometry = TorusGeometry;
+ exports.TorusGeometry = TorusGeometry;
+ exports.TorusKnotBufferGeometry = TorusKnotGeometry;
+ exports.TorusKnotGeometry = TorusKnotGeometry;
+ exports.Triangle = Triangle;
+ exports.TriangleFanDrawMode = TriangleFanDrawMode;
+ exports.TriangleStripDrawMode = TriangleStripDrawMode;
+ exports.TrianglesDrawMode = TrianglesDrawMode;
+ exports.TubeBufferGeometry = TubeGeometry;
+ exports.TubeGeometry = TubeGeometry;
+ exports.UVMapping = UVMapping;
+ exports.Uint16Attribute = Uint16Attribute;
+ exports.Uint16BufferAttribute = Uint16BufferAttribute;
+ exports.Uint32Attribute = Uint32Attribute;
+ exports.Uint32BufferAttribute = Uint32BufferAttribute;
+ exports.Uint8Attribute = Uint8Attribute;
+ exports.Uint8BufferAttribute = Uint8BufferAttribute;
+ exports.Uint8ClampedAttribute = Uint8ClampedAttribute;
+ exports.Uint8ClampedBufferAttribute = Uint8ClampedBufferAttribute;
+ exports.Uniform = Uniform;
+ exports.UniformsLib = UniformsLib;
+ exports.UniformsUtils = UniformsUtils;
+ exports.UnsignedByteType = UnsignedByteType;
+ exports.UnsignedInt248Type = UnsignedInt248Type;
+ exports.UnsignedIntType = UnsignedIntType;
+ exports.UnsignedShort4444Type = UnsignedShort4444Type;
+ exports.UnsignedShort5551Type = UnsignedShort5551Type;
+ exports.UnsignedShort565Type = UnsignedShort565Type;
+ exports.UnsignedShortType = UnsignedShortType;
+ exports.VSMShadowMap = VSMShadowMap;
+ exports.Vector2 = Vector2;
+ exports.Vector3 = Vector3;
+ exports.Vector4 = Vector4;
+ exports.VectorKeyframeTrack = VectorKeyframeTrack;
+ exports.Vertex = Vertex;
+ exports.VertexColors = VertexColors;
+ exports.VideoTexture = VideoTexture;
+ exports.WebGL1Renderer = WebGL1Renderer;
+ exports.WebGLCubeRenderTarget = WebGLCubeRenderTarget;
+ exports.WebGLMultipleRenderTargets = WebGLMultipleRenderTargets;
+ exports.WebGLMultisampleRenderTarget = WebGLMultisampleRenderTarget;
+ exports.WebGLRenderTarget = WebGLRenderTarget;
+ exports.WebGLRenderTargetCube = WebGLRenderTargetCube;
+ exports.WebGLRenderer = WebGLRenderer;
+ exports.WebGLUtils = WebGLUtils;
+ exports.WireframeGeometry = WireframeGeometry;
+ exports.WireframeHelper = WireframeHelper;
+ exports.WrapAroundEnding = WrapAroundEnding;
+ exports.XHRLoader = XHRLoader;
+ exports.ZeroCurvatureEnding = ZeroCurvatureEnding;
+ exports.ZeroFactor = ZeroFactor;
+ exports.ZeroSlopeEnding = ZeroSlopeEnding;
+ exports.ZeroStencilOp = ZeroStencilOp;
+ exports.sRGBEncoding = sRGBEncoding;
+
+ Object.defineProperty(exports, '__esModule', {value: true});
+
+ })));
+
+ }, {}]
+}, {}, [1]);